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STRONG NONLINEAR ERGODIC THEOREMS FOR
ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN

BANACH SPACES

TAKESHI YOSHIMOTO

Abstract. In this paper the continuous (C, α) method of non-integral order
given by the fractional integration is taken as the basic method of summability
which generalizes the usual Cesàro method. We investigate the limiting behav-
iors of the (C, α) mean value processes of arbitrary positive order α for one-
parameter semigroups of asymptotically nonexpansive mappings with compact
domains in a strictly convex Banach space. The result obtained here is a con-
tinuous extension of the author’s discrete type result. Moreover, the nonlinear
ergodic [Abel→Cesàro] problem is also considered in the Lebesgue space Lp with
1 ≤ p < ∞.

1. Introduction

The purpose of the present paper is to investigate the strong ergodicity of the ex-
tended (C, α) mean value processes for one-parameter semigroups of asymptotically
nonexpansive mappings with compact domains in Banach spaces, when non-integral
orders of summability are considered. In fact, the following results are obtained:

(1) The (C, α) (0 < α < ∞) extension of Atsushiba, Nakajo and Takahashi’s
(C, 1) result for asymptotically nonexpansive (one-parameter) semigroups.

(2) Hille-type’s strong nonlinear ergodic theorems (in the discrete and continu-
ous time cases).

(3) Two nonlinear ergodic extensions of the Littlewood theorem concerning the
[Abel→Cesàro] problem.

Let X be a strictly convex Banach space and let C be a nonempty closed con-
vex subset of X. In 1964 Edelstein [5] introduced the strong ω-limit set Ωs(x)
of x ∈ C for a nonexpansive self-mapping T of C, which is defined as the set of
all strong subsequential limits of {Tnx}, and established the (C, 1) strong nonlin-
ear ergodic theorem which asserts that if X is reflexive and x ∈ C, then for each
ξ ∈ coΩs(x), 1

n

∑n−1
k=0T kξ converges strongly as n →∞ to a point η ∈ Fix(T ), where

Fix(T ) = {z ∈ C : Tz = z}. Recenly Edelstein’s strong nonlinear ergodic theorem
has extensively improved by Atsushiba and Takahashi [1] to hold for all points of C
being compact in such a way that Bruck [3], [4] originally built up his method. In
addition, they also obtained the continuous analogue for strongly continuous non-
expansive semigroups with compact domains [2]. A little later, Nakajo and Taka-
hashi [9], [10] showed that Atsushiba and Takahashi’s (C, 1) results in both discrete
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and continuous cases remain also valid even for asymptotically nonexpansive self-
mappings and strongly continuous semigroups of such mappings respectively.Their
proofs of the results just mentioned depend essentially on the technical (C, 1) equal-
ity due to Bruck [3]. So it seems to be somewhat interesting to see whether Bruck’s
equality is also valid for the (C, α) case of arbitrary positive order α. Unfortunately
we have no answer to this question as of now. Instead, we will utilize a Taube-
rian technique in treating the (C, α) case. The following question was raised by
Reich [12]: Let X be a uniformly convex Banach space with Fréchet differentiable
norm, let C be a nonempty closed convex subset of X, let T be a nonexpansive
self-mapping of C with Fix(T ) 6= ∅ and let {an,m} be a strongly regular matrix
method. Then the question is whether for each x ∈ C, the mean

∑∞
m=0an,mTmx

converges strongly as n → ∞ to a point y ∈ Fix(T ) even in the case where T is
odd.

Very recently, in connection with this question, the author [17] obtained the
discrete (C, α) extension of the (C, 1) result mentioned above to the case of arbitrary
real order α > 0 with a view to stepping up the question raised by Reich. In this
paper we shall be concerned with the continuous extension of our previous discrete
result. The result obtained here is the (C, α) extension of the continuous (C, 1) result
obtained by Atsushiba, Nakajo and Takahashi as mentioned above. Moreover, we
deal with the so-called nonlinear ergodic [Abel→ Cesàro] problem in the positive
cone L+

p of the Lebesgue space Lp (1 ≤ p < ∞) with a view to extending the
classical Littlewood theorem in the ergodic theory setting.

2. Strong nonlinear ergodic theorems

In what follows X is a strictly convex Banach space and C is a nonempty closed
convex subset of X. Let G = {T (t) : t ≥ 0} be a strongly continuous one-parameter
semigroup of asymptotically nonexpansive self-mappings of C with Lipschitz con-
stants {k(t) : t ≥ 0}. This means that

(i) for each t > 0, T (t) is a nonlinear mapping of C into itself;
(ii) T (0)x = x, T (t + s)x = T (t)T (s)x for all s, t ≥ 0 and all x ∈ C;
(iii) for each x ∈ C, T (t)x is continuous in t ≥ 0 in the sense of the strong

topology of X;
(iv) ‖ T (t)x− T (t)y ‖ ≤ (1 + k(t)) ‖x− y‖ for all t ≥ 0 and all x, y ∈ C, where

k(t) is a nonnegative continuous function on [0,∞) with k(t) → 0 as t →∞
(cf.[6]).

In particular, if k(t) = 0 for all t ≥ 0 then {T (t) : t ≥ 0} is called a nonexpansive
semigroup on C. Let α > 0 be any fixed real number and x ∈ C. We are now
interested in the (C,α) and the Abel limits, the first being based on the fractional
integral (or, the Volterra type integral) of T (t)x of order α, the second on the
Laplace transform of T (t)x. For each x ∈ C,we consider the (C, α) and the Abel
mean value processes {C(α)

t [G]x : t > 0} and {λR(λ;G)x : λ > 0} which are defined
by

C
(α)
t [G]x =

α

tα

∫ t

0
(t− u)α−1T (u)xdu, t > 0,
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and

λR(λ;G)x = λ

∫ ∞

0
e−λtT (t)xdt, λ > 0,

respectively, whenever the integrals on the right exist. We begin by reviewing
Atsushiba, Nakajo and Takahashi’s result:

Theorem A. Let X be a strictly convex Banach space, let C be a nonempty compact
convex subset of X and let G = {T (t) : t ≥ 0} be a strongly continuous semigroup
of asymptotically nonexpansive self-mappings of C with Lipschitz constants {k(t)}.
Then for each x ∈ C, C

(1)
t [G]T (s)x converges strongly as t → ∞ to a point y ∈

Fix(G) uniformly in s ≥ 0, where Fix(G) = ∩t≥0Fix(T (t)).

We need the following Hille’s vector-valued extension [7] of Wiener’s general
Tauberian theorem [14]:

Theorem B. Let K1(u) ∈ L1(−∞,∞) and assume that for all real t

(I)
∫ ∞

−∞
K1(u)e−itudu 6= 0.

Let z(u) be a bounded measurable function on (−∞,∞) to a complex Banach space
X and assume that for some w ∈ X

(II) lim
σ→∞

∫ ∞

−∞
K1(u− σ)z(u)du = w

∫ ∞

−∞
K1(u)du.

Then for any function K2(u) ∈ L1(−∞,∞)

(III) lim
σ→∞

∫ ∞

−∞
K2(u− σ)z(u)du = w

∫ ∞

−∞
K2(u)du.

Here convergence is taken in the sense of the strong topology of X.

According to Wiener’s basic theorem [14, Theorem II ], condition (I) is satisfied
for the function K1(u) if and only if the set of all linear combinations of the transla-
tions of K1(u) is dense in L1(−∞,∞). The proof of Theorem B depends essentially
on this fact and follows from slightly modified Wiener’s argument.

We are now in a position to state the (C, α) extension of real order α > 0 of
Theorem A.

Theorem 1. Let X be a strictly convex Banach space, let C be a nonempty compact
convex subset of X and let G = {T (t) : t ≥ 0} be a strongly continuous Lipschizian
semigroup of asymptotically nonexpansive self-mappings of C. Then the following
statements hold:

(i) For each x ∈ C, λR(λ;G)T (s)x converges strongly as λ → 0+ to a point
y ∈ Fix(G) uniformly in s ≥ 0.

(ii) Let α > 0 be any fixed real number. Then for each x ∈ C, C
(α)
t [G]T (s)x

converges strongly as t →∞ to a point y ∈ Fix(G) uniformly in s ≥ 0.

Proof. Let x ∈ C. It follows from Theorem A and the asymptotic nonexpansiveness
of the semigroup in question that Kx = supt≥0 ‖T (t)x‖ < ∞. The (C, α) and the
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Abel mean value processes of the semigroup are well-defined in this case. Here we
note that for each λ > 0

lim
n→∞

∥∥∥∥∥λR(λ;G)T (s)x−
∫ n

1
n

λe−λtT (t + s)xdt
∫ n

1
n

λe−λt dt

∥∥∥∥∥ = 0.

It is already known that C
(1)
t [G]T (s)x converges strongly as t → ∞ to some point

y ∈ Fix(G) uniformly in s ≥ 0. Hence statement (i) and the case of 1 < α < ∞ of
statement (ii) follow immediately from

‖λR(λ;G)T (s)x− y‖ ≤ λ2

∫ ∞

0
te−λt

∥∥∥C
(1)
t [G]T (s)x− y

∥∥∥ dt, λ > 0,

and
∥∥∥C

(α)
t [G]T (s)x− y

∥∥∥ ≤ Γ(α + 1)
Γ(α− 1)

t−α

∫ t

0
u(t− u)α−2

∥∥∥C(1)
u [G]T (s)x− y

∥∥∥ du, t > 0

respectively. We now prove the case of 0 < α < 1 of statement (ii). Using the
relation between the Abel and the Cesàro averages which is given by

λR(λ;G)T (s)x =
λα+1

Γ(α + 1)
L

(α)
λ [G]T (s)x, λ > 0,

where

L
(α)
λ [G]T (s)x =

∫ ∞

0
tαe−λtC

(α)
t [G]T (s)xdt, λ > 0

which exists for all values of λ > 0, it follows that

lim
λ→0+

∥∥∥λα+1L
(α)
λ [G]T (s)x− yΓ(α + 1)

∥∥∥ = 0

uniformly in s ≥ 0. Modifying Hille’s argument, let us set

σ = − log λ, ξ = exp[u], K1(u) = exp[(α + 1)u− eu].

Then we obtain the following limit of Wiener’s type

lim
σ→∞

∥∥∥∥
∫ ∞

−∞
K1(u− σ)C(α)

eu [G]T (s)xdu− y

∫ ∞

−∞
K1(u)du

∥∥∥∥ = 0

uniformly in s ≥ 0. On the other hand, a simple observation gives∫ ∞

−∞
K1(u)e−itudu =

∫ ∞

0
ξα−ite−ξdξ = Γ(α + 1− it) 6= 0.

Hence conditions (I) and (II) of Theorem B are satisfied. Now let δ > 0 be fixed
arbitrarily small and define the function K2(u) on (−∞,∞) by

K2(u) =

{
eu if 0 ≤ u ≤ log(1 + δ),
0 otherwise.

Then we can apply Theorem B to the function K2(u) ∈ L1(−∞,∞) and in view of
condition (III) we have after simplification

lim
µ→∞

∥∥∥∥∥
1
µδ

∫ µ(1+δ)

µ
C

(α)
t [G]T (s)x dt− y

∥∥∥∥∥ = 0
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uniformly in s ≥ 0. Thus for any given ε > 0 one can find a sufficiently large real
number µ0 > 0 which is independent of s, such that∥∥∥∥∥

1
µδ

∫ µ(1+δ)

µ
C

(α)
t [G]T (s)x dt− y

∥∥∥∥∥ < ε, µ > µ0.

Let us fix a sufficiently large real number µ such that µ ≥ [δ−1] + 1, where [δ−1] de-
notes the integer part of δ−1. We estimate the difference C

(α)
t [G]T (s)x −

C
(α)
µ [G]T (s)x for µ < t < µ(1 + δ) :

∥∥∥∥
α

tα

∫ t

0
(t− u)α−1T (u + s)xdu− α

µα

∫ µ

0
(µ− u)α−1T (u + s)xdu

∥∥∥∥

≤
(

sup
t≥0

‖T (t)x‖
)

α

tα

∫ µ

0

∣∣(t− u)α−1 − (µ− u)α−1
∣∣ du

+
(

sup
t≥0

‖T (t)x‖
) ∣∣∣∣

α

tα
− α

µα

∣∣∣∣
∫ µ

0
(µ− u)α−1du

+
(

sup
t≥0

‖T (t)x‖
)

α

tα

∫ t

µ
(t− u)α−1du

and
α

tα

∫ µ

0

∣∣(t− u)α−1 − (µ− u)α−1
∣∣ du ≤ 1−

(µ

t

)α
+ (1− µ

t
)α

< 1−
(

1
1 + δ

)α

+ δα

∣∣∣∣
α

tα
− α

µα

∣∣∣∣
∫ µ

0
(µ− u)α−1du ≤ 1−

(µ

t

)α
< 1−

(
1

1 + δ

)α

+ δα

α

tα

∫ t

µ
(t− u)α−1du ≤

(
1− µ

t

)α
< 1−

(
1

1 + δ

)α

+ δα

Hence, summing up these estimates yields
∥∥∥C

(α)
t [G]T (s)x− C(α)

µ [G]T (s)x
∥∥∥ < 3Kx{1−

(
1

1 + δ

)α

+ δα}

for µ < t < µ(1 + δ). We have therefore
∥∥∥C(α)

µ [G]T (s)x− y
∥∥∥ ≤

∥∥∥∥∥
1
µδ

∫ µ(1+δ)

µ
C

(α)
t [G]T (s)xdt− y

∥∥∥∥∥

+
1
µδ

∫ µ(1+δ)

µ

∥∥∥C
(α)
t [G]T (s)x− C(α)

µ [G]T (s)x
∥∥∥ dt

< ε + 3Kx{1−
(

1
1 + δ

)α

+ δα}

for all µ > max{µ0, [δ−1] + 1}. Consequently, arbitrariness of ε and δ guarantees
that C

(α)
t [G]T (s)x converges strongly as t → ∞ to the point y uniformly in s ≥ 0.

The proof of the theorem has hereby been completed. ¤
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The weak nonlinear ergodic theorem has been given a satisfactory formulation
in a uniformly convex Banach space with a Fréchet differentiable norm (cf. [13]).
In general, the existence of the (C, α) strong (or, weak) nonlinear ergodic limit
implies the existence of the Abel strong (or, weak) nonlinear ergodic limit. But
the converse does not necessarily hold without any additional condition. Here we
need a Tauberian condtion. The following abstract weak form of Wiener’s general
Tauberian theorem is very useful in treating of the ergodic [Abel→Cesàro] problem
(under some Tauberian condition) in general Banach spaces.

Theorem 2. Let K1(u) ∈ L1(−∞,∞) and suppose that condition (I) is satisfied
for all real t. Let z(u) be a bounded measurable function on (−∞,∞) to a complex
Banach space X and suppose that condition (II) is satisfied in the sense of the weak
topology. Then (III) holds for any function K2(u) ∈ L1(−∞,∞) in the sense of the
weak topology of X.

Proof. Accoding to Wiener’s basic theorem [14, Theorem II], condition (I) implies
that the set

Λ = {
N∑

k=1

akK1(u + λk) : ak ∈ C, λk ∈ (−∞,∞)}

is dense in L1(−∞,∞). Then it follows from condition (II) that for any G(u) ∈ Λ

lim
σ→∞

(
x∗,

∫ ∞

−∞
G(u− σ)z(u)du

)
=

(
x∗, w

∫
−∞∞G(u)du

)
.

Let K2(u) ∈ L1(−∞,∞) and for any given ε > 0 choose G(u) ∈ Λ such that
‖K2 −G‖1 < ε. We then have

∣∣∣∣
(

x∗,
∫ ∞

−∞
K2(u− σ)z(u)du− w

∫ ∞

−∞
K2(u)du

)∣∣∣∣

≤
∣∣∣∣
(

x∗,
∫ ∞

−∞
[K2(u− σ)−G(u− σ)]z(u)du

)∣∣∣∣

+
∣∣∣∣
(

x∗,
∫ ∞

−∞
G(u− σ)z(u)du− w

∫ ∞

−∞
G(u)du

)∣∣∣∣

+
∣∣∣∣
(

x∗, w
∫ ∞

−∞
[G(u)−K2(u)]du

)∣∣∣∣

< ε ‖x∗‖ (‖z‖∞ + ‖w‖) +
∣∣∣∣
(

x∗,
∫ ∞

−∞
G(u− σ)z(u)du− w

∫ ∞

−∞
G(u)du

)∣∣∣∣ .

Note here that if K3(u) ∈ L1(−∞,∞) and ‖K2 −K3‖1 < ε, then∣∣∣∣(x∗,
∫ ∞

−∞
[K2(u− σ)−K3(u− σ)]z(u)du)

∣∣∣∣ < ε ‖x∗‖ ‖z‖∞ .

Consequently, (III) follows from these estimates and the theorem is proved. ¤
The existence of the (strong or weak) Abel limit under an appropriate Tauberian

condition implies the existence of the (strong or weak) Cesàro (C, α) limit. In
fact, using the Tauberian technique (Theorem B and Theorem 2 ) as in the proof of
Theorem 1, we can give an answer to the nonlinear ergodic [Abel→Cesàro] problem.
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Theorem 3. Let X be a complex Banach space, let C be a nonempty bounded
closed convex subset of X and let G = {T (t) : t ≥ 0} be a strongly continuous one-
parameter semigroup of nonlinear self-mappings of C. If x ∈ C and λG(λ;G)T (s)x
converges strongly (or, weakly) as λ → 0+ to some z ∈ Fix(G) uniformly in s ≥ 0,
then for every α > 0, C

(α)
t [G]T (s)x converges strongly (or, weakly) as t →∞ to the

point z uniformly in s ≥ 0.

The proof of this theorem follows exactly the same line as in the proof of Theorem
1 and we omit the details. The discrete version of Theorem 3 becomes

Theorem 4. Let X be a complex Banach space, let C be a nonempty bounded
closed convex subset of X and let T be a nonlinear self-mapping of C. If x ∈
C and (λ − 1)

∑∞
n=0 λ−(n+1)Tn+mx (λ > 1) converges strongly (or, weakly) as

λ → 1 + 0 to some z ∈ Fix(T ) uniformly in m ≥ 0, then for every α > 0(
n+α

n

)−1 ∑n
k=0

(
n−k+α−1

n−k

)
Tn+mx converges strongly (or, weakly) as n → ∞ to the

point z uniformly in m ≥ 0.

3. The nonlinear ergodic [Abel→Cesàro] problem revisited

The Banach space X of the preceding section will now be replaced by a real
Lebesgue space Lp = Lp(Ω,Ξ, µ) (1 ≤ p < ∞) where (Ω,Ξ, µ) is a σ− finite positive
measure space. Let L+

p = {f ∈ Lp : f ≥ 0}. Our final consideration concerns
the (extended) nonlinear case of the ergodic [Abel→Cesàro] problem in the positive
cone L+

p . The aspect observed in the previous section was the question of rela-
tions between different types of summability and corresponding ergodic theorems,
in particular (C, α) and Abel summability. By analogy with the previous setting
one might expect that the existence of

strong lim
λ→0+

λα

Γ(α)

∫ ∞

0
tα−1e−λtT (t)fdt

(which we shall call the Abel limit of order α > 0) should imply the existence of

strong lim
t→∞

α

tα

∫ t

0
uα−1T (t)fdt

provided appropriate Tauberian conditions are satisfied. In connection with this
question, we have

Theorem 5. Let G = {T (t) : t ≥ 0} be a strongly continuous one-parameter
semigroup of asymptotically nonexpansive self-mappings of L+

p (1 ≤ p < ∞) with
Fix(G) 6= ∅. Let 0 < α < ∞ and f ∈ L+

p . If λα

Γ(α)

∫∞
0 tα−1e−λtT (t + s)fdt

(λ > 0) converges strongly as λ → 0+ to a point f0 ∈ L+
p uniformly in s ≥ 0, then

α
tα

∫ t
0 uα−1T (u + s)fdu (t > 0) converges strongly as t → ∞ to the same point f0

uniformly in s ≥ 0.

Proof. Let 0 < α < ∞ and let Φα(t; f) be the function on (0,∞) to L+
p which is

defined by

Φα(t; f) =
1

Γ(α)
tα−1T (t)f, t > 0.
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Note first that {T (t)f : t ≥ 0} is norm-bounded. This follows from the asymp- totic
nonexpansiveness of the semigroup and Fix(G) 6= ∅. Now putting u = e−λ, we
have by assumption

lim
u→1−0

∥∥∥∥(1− u)α

∫ ∞

0
ut Φα(t;T (s)f)dt− f0

∥∥∥∥
p

= 0

uniformly in s ≥ 0. Thus, letting r = exp[(m + 1)−1 log u] for some integer m ≥ 0
gives u = rm+1 and

lim
r→1−0

∥∥∥∥(1− r)α

∫ ∞

0
rt rmt Φα(t;T (s)f) dt− f0

(m + 1)α

∥∥∥∥
p

= 0

uniformly in s ≥ 0. However, since

1
Γ(α)

∫ 1

0
tσ(log

1
t
)α−1dt =

1
(1 + σ)α

, σ > −1,

we see that for every polynomial P (u) on [0, 1]

lim
r→1−0

∥∥∥∥(1− r)α

∫ ∞

0
rtP (rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
P (t)(log

1
t
)α−1dt

∥∥∥∥
p

= 0

uniformly in s ≥ 0. Here we follow modified Karamata’s argument for power series
(cf. [8], [11]). Let us define the functions g(t), h1,τ (t), h2,τ (t) bounded on [0, 1] as
follows:

g(t) =

{
t−1 if e−1 ≤ t ≤ 1,

0 if 0 ≤ t < e−1,

h1,τ (t) =





0 if 0 ≤ t ≤ e−1 − τ ,
e
τ (t− e−1 + τ) if e−1 − τ ≤ t ≤ e−1,

g(t) if e−1 ≤ t ≤ 1,

h2,τ (t) =





0 if 0 ≤ t ≤ e−1,
1

τ(e−1+τ)
(t− e−1) if e−1 ≤ t ≤ e−1 + τ ,

g(t) if e−1 + τ ≤ t ≤ 1,

where τ > 0 is fixed arbitrarily small such that 0 < τ < e−1. Now, for the
functions g1(t) = h1,τ (t) + τ, g2(t) = h2,τ (t)− τ continuous on [0, 1], there exist by
the Weierstrass approximation theorem two polynomials P (t), Q(t) on [0, 1], which
may depend on τ , such that

|g1(t)−Q(t)| < τ, g(t) ≤ h1,τ (t) ≤ Q(t), 0 ≤ t ≤ 1,

|g2(t)− P (t)| < τ, P (t) ≤ h2,τ (t) ≤ g(t), 0 ≤ t ≤ 1,

Q(t)− P (t) ≤ {h1,τ (t)− h2,τ (t)}+ 2τ, 0 ≤ t ≤ 1.

Let ε > 0 be any given number, however small. Then choosing a sufficiently small
τ , depending on ε, such that

0 < τ < min{ ε

2(e + 1)
,

ε

4Γ(α)
},

∫ e−1+τ

e−1−τ

(
log

1
t

)α−1

dt <
ε

2e
,



STRONG NONLINEAR ERGODIC THEOREMS 315

we have ∫ 1

0
{Q(t)− P (t)}dt < 2eτ + 2τ < ε

and
∫ 1

0
{Q(t)− P (t)}(log

1
t
)α−1dt < 2τΓ(α) +

∫ e−1

e−1−τ
h1,τ (t)

(
log

1
t

)α−1

dt

+
∫ e−1+τ

e−1

{g(t)− h2,τ (t)}
(

log
1
t

)α−1

dt

< 2τΓ(α) + e

∫ e−1+τ

e−1−τ

(
log

1
t

)α−1

dt < ε.

Furthermore there exists a small δ > 0 such that if 0 < 1− r < δ, then

‖ (1− r)α

∫ ∞

0
rtP (rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
P (t)(log

1
t
)α−1dt ‖p< ε

and

‖ (1− r)α

∫ ∞

0
rtQ(rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
Q(t)(log

1
t
)α−1dt ‖p< ε

On the other hand, one has, a priori,

(1− r)α

∫ ∞

0
rtP (rt)Φα(t;T (s)f)dt ≤ (1− r)α

∫ ∞

0
rtg(rt)Φα(t;T (s)f)dt

≤ (1− r)α

∫ ∞

0
rtQ(rt)Φα(t;T (s)f)dt.

Thus for 0 < 1− r < δ we have
∥∥∥∥∥(1− r)α

∫ ∞

0
rtg(rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
g(t)

(
log

1
t

)α−1

dt

∥∥∥∥∥
p

≤
∥∥∥∥(1− r)α

∫ ∞

0
rtQ(rt)Φα(t;T (s)f)dt− (1− r)α

∫ ∞

0
rtP (rt)Φα(t;T (s)f)dt

∥∥∥∥
p

+
∥∥∥∥(1− r)α

∫ ∞

0
rtQ(rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
Q(t)(log

1
t
)α−1dt

∥∥∥∥
p

+
∥∥∥∥

f0

Γ(α)

∫ 1

0
Q(t)(log

1
t
)α−1dt− f0

Γ(α)

∫ 1

0
g(t)(log

1
t
)α−1dt

∥∥∥∥
p

≤
∥∥∥∥(1− r)α

∫ ∞

0
rtP (rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
P (t)(log

1
t
)α−1dt

∥∥∥∥
p

+ 2
∥∥∥∥(1− r)α

∫ ∞

0
rtQ(rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
Q(t)(log

1
t
)α−1dt

∥∥∥∥
p

+ 2
∥∥∥∥

f0

Γ(α)

∫ 1

0
Q(t)(log

1
t
)α−1dt− f0

Γ(α)

∫
P (t)(log

1
t
)α−1dt

∥∥∥∥
p
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< ε + 2ε +
2 ‖f0‖p

Γ(α)
ε = (3 +

2 ‖f0‖p

Γ(α)
)ε,

and arbitrariness of ε yields

lim
r→1−0

∥∥∥∥(1− r)α

∫ ∞

0
rtg(rt)Φα(t;T (s)f)dt− f0

Γ(α)

∫ 1

0
g(t)(log

1
t
)α−1dt

∥∥∥∥
p

= 0

uniformly in s ≥ 0. Thus it follows that

lim
r→1−0

∥∥∥∥(1− r)α

∫ ∞

0
rt g(rt) Φα(t;T (s)f)dt− f0

Γ(α + 1)

∥∥∥∥
p

= 0

uniformly in s ≥ 0. Again, letting r = exp[− 1
τ ], we get

lim
τ→∞ ‖ (1− e−

1
τ )α

∫ τ

0
Φα(t;T (s)f)dt− f0

Γ(α + 1)
‖p= 0

and hence

lim
τ→∞ ‖ 1

τα

∫ τ

0
Φα(t;T (s)f)dt− f0

Γ(α + 1)
‖p= 0

uniformly in s ≥ 0. This immediately gives

lim
t→∞ ‖ α

tα

∫ t

0
uα−1T (u + s)fdu− f0 ‖p= 0

uniformlyin s ≥ 0, as required. ¤

This theorem has the following discrete analogue.

Theorem 6. Let T be an asymptotically nonexpansive self-mapping of L+
p (1 ≤ p <

∞) with Fix(T ) 6= ∅. Let f ∈ L+
p and 0 < α < ∞. If λα

∫∞
0 e−λt Ψα(t;Tmf)dt

(λ > 0) converges strongly as λ → 0+ to a point f0 ∈ L+
p uniformly in m ≥ 0,

where

Ψα(t; f) =
(

n + α− 1
n

)
Tnf, n ≤ t < n + 1, n ≥ 0,

then
(
n+α

n

)−1 ∑n
k=0

(
k+α−1

k

)
T k+mf converges strongly as n → ∞ to the point f0

uniformly in m ≥ 0.

Sketch of proof. As in the proof of Theorem 5, we have with Φα(t; f) replaced by
Ψα(t; f)

lim
τ→∞

∥∥∥∥
Γ(α + 1)

τα

∫ τ

0
Ψα(t;Tmf) dt− f0

∥∥∥∥
p

= 0

uniformly in m ≥ 0. If τ is sufficiently large, then

Γ(α + 1)
τα

∫ τ

0
Ψα(t;Tmf)dt =

[τ ]α

τα

Γ(α + 1)
[τ ]α

[τ ]∑

k=0

(
k + α− 1

k

)
T k+mf,

where [τ ] denotes the integer part of τ . Note further that [τ ]α

τα → 1 as τ → ∞ and(
n+α−1

n

)
= pn,α × nα

Γ(α+1) with pn,α such that pn,α → 1 as n →∞. Then by analogy
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with the argument used in the proof of Theorem 5 we obtain

lim
τ→∞

∥∥∥∥∥∥
Γ(α + 1)

[τ ]α

[τ ]∑

k=0

(
k+α−1
k

)
T k+mf − f0

∥∥∥∥∥∥
p

= 0

and hence

lim
n→∞

∥∥∥∥∥
1(

n+α
n

)
n∑

k=0

(
k + α− 1

k

)
T k+mf − f0

∥∥∥∥∥
p

= 0

uniformly in m ≥ 0. This is the very thing for our purpose. ¤

It seems to be natural to ask when (under what conditions) the Abel limits of
order α > 0 in Theorems 5 and 6 do exist. We consider the case that X is a reflexive
Banach space. Let G = {T (t) : t ≥ 0} be a strongly continuous semigroup of linear
operators on X with ‖T (t)‖ ≤ M for all t ≥ 0 and let T be a linear operator on X
with ‖Tn‖ ≤ M for all n ≥ 0. Then it follows that for some α with 0 < α ≤ 1 and
all x ∈ X

strong lim
λ→0+

λα

∫ ∞

0
e−λtΦα(t;x)dt

and

strong lim
λ→0+

λα

∫ ∞

0
e−λtΨα(t;x)dt

exist, where Φα(t;x) and Ψα(t;x) are given as in Theorems 5 and 6, respectively. For
example, to avoid complexity, we show the case for the operator T when 0 < α ≤ 1.
By the mean ergodic theorem we have the decomposition X = N(I−T )⊕R(I − T ),
where N(I−T ) and R(I−T ) denote the null space and range of I−T , respectively.
If x ∈ N(I − T ), then

strong lim
λ→0+

λα

∫ ∞

0
e−λtΨα(t;x)dt

= strong lim
λ→0+

λα
∞∑

n=0

(
n + α− 1

n

)
Tnx

∫ n+1

n
e−λtdt

= strong lim
λ→0+

λα

λ

(
1− 1

eλ

)
x
∞∑

n=0

(
n+α−1
n

)
e−λn

= strong lim
λ→0+

(
λeλ

eλ − 1

)α−1

x = x.

Next let x ∈ R(I − T ). For any given ε > 0 there exist y, z ∈ X such that x =
(I − T )y + z and ‖z‖ < ε. Then we obtain

∥∥∥∥∥
λα

λ
(1− 1

eλ
)
∞∑

n=0

e−λn

(
n + α− 1

n

)
Tn(I − T )y

∥∥∥∥∥
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=

∥∥∥∥∥
λα

λ
(1− 1

eλ
)[y +

∞∑

n=1

{e−λn

(
n + α− 1

n

)
− e−λ(n−1)

(
n− 1 + α− 1

n− 1

)
}Tny]

∥∥∥∥∥

≤ M ‖y‖ λα

λ
(1− 1

eλ
)[1 +

∞∑

n=1

{e−λ(n−1)

(
n− 1 + α− 1

n− 1

)
− e−λn

(
n+α−1
n

)}]

≤ 2M ‖y‖λα eλ − 1
λeλ

→ 0 (λ → 0+)

and∥∥∥∥∥
λα

λ
(1− 1

eλ
)
∞∑

n=0

e−λn
(
n+α−1
n

)
Tnz

∥∥∥∥∥ ≤ M ‖z‖
(

λeλ

eλ − 1

)α−1

≤ 2Mε (λ → 0+).

Hence

strong lim
λ→0+

λα

∫ ∞

0
e−λtΨα(t;x)dt = 0.

Remark. The original [Abel→Cesàro] problem was studied by Littlewood (1911)
who proved that a series is (C, 1) summable if its partial sums are bounded and
it is Abel summable. That such a series is actually (C, α) summable for every
α > 0 was first proved by Andersen (1921). Hille (1945) extended the latter to
Banach spaces and applied the result to give some ergodic theorems for bounded
linear operators on complex Banach spaces (see Hille [7]). Hille’s ergodic theorems
has extensively been improved by the author [15], [16]. Theorems 3 and 4 may be
regarded as the nonlinear versions of Hille’s ergodic theorems. Theorems 5 and 6
may be regarded as the nonlinear ergodic extensions of the Littlewood theorem. It
should be noticed that in Theorem 5, the strong convergence of λα

∫∞
0 tα−1e−λtT (t+

s)fdt does not necessarily imply the strong convergence of α
tα

∫ t
0 uα−1T (u + s)fdu

without assuming any additional condition (cf.[17]). To justify the implication, it is
needed that the semigroup in question satisfies an appropriate Tauberian condition.
The Tauberian condition for the semigroup in Theorem 5 is necessarily fulfilled
because limt→∞

∥∥∥T (t)f
tα

∥∥∥
1

= 0 for all α > 0 and all f ∈ L+
1 . A similar question

can also arise in Theorem 6. Finally, it is worthwhile to note that the Tauberian
technique used in Theorem 5 (or Theorem 6) can also be applicable to the study of
the mean law of large numbers for (not necessarily independent) random processes
in probability theory.
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