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RELAXATION OF SECOND ORDER GEOMETRIC INTEGRALS
AND NON-LOCAL EFFECTS

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We are concerned with the relaxation of second order geometric in-
tegrals, i.e., functionals of the type:

C∞c (IRN ) 3 u 7→ Fµ(u) :=

Z

IRN

f
`∇2u(x)

´
dµ(x),

where ∇2u is the Hessian of u, f : IMsym
N → [0, +∞] is a continuous function,

and µ is a finite positive Radon measure on IRN . A relaxation problem of this
type was studied for the first time by Bouchitté and Fragala in [2] where they
pointed out a new phenomenon: the functional relaxed of Fµ has, in general,
a “non-local” representation. Working on a more formal level than in [2], we
develop an alternative method making clear this “strange phenomenon”.

1. Main results

Referring to the next section for any unfamiliar notation or definition, in what
follows we state the main results of the paper.

Let a real number p > 1 and an integer number N ≥ 1, and let µ be a finite posi-
tive Radon measure on IRN . We will make the following connectedness assumption
on µ:

(C0) for every u ∈ C∞
c (IRN ), if ∇µu = 0 µ-a.e. then u = 0 µ-a.e..

Given a continuous function f : IMsym
N → [0,+∞], consider the following three

conditions:

(C1) there exists r > 0 such that f(ξ) ≥ r|ξ|p for all ξ ∈ IMsym
N ;

(C2) there exists R > 0 such that f(ξ) ≤ R(1 + |ξ|p) for all ξ ∈ IMsym
N ;

(C3) for µ-a.e. x ∈ IRN , the function T2,µ(x) 3 ξ 7→ inf
{
f(ξ + ξ′) : ξ′ ∈ N2,µ(x)

}
is convex.

Consider also the functional Fµ : C∞
c (IRN ) → [0,+∞] defined by

Fµ(u) =
∫

IRN
f

(∇2u(x)
)
dµ(x),

where ∇2u is the Hessian of u. The object of this paper is to provide a formula
representing the W 1,p

µ -functional relaxed of Fµ, i.e., F1,µ : W 1,p
µ (IRN ) → [0,+∞]

given by

F1,µ(u) := inf
{

lim inf
n→+∞ Fµ(un) : un ∈ C∞

c (IRN ), un ⇀ u in W 1,p
µ (IRN )

}
,

where W 1,p
µ (IRN ) is the first order µ-Sobolev space as defined in [1, Section 7] (cf.

§2.2 and §2.3). For this, we introduce a second order µ-Sobolev space that we denote
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by W 2,p
µ (IRN ) (cf. §2.4 and §2.5), and we prove that the W 2,p

µ -functional relaxed of
Fµ, i.e., F2,µ : W 2,p

µ (IRN ) → [0,+∞] given by

F2,µ(u) := inf
{

lim inf
n→+∞ Fµ(un) : un ∈ C∞

c (IRN ), un ⇀ u in W 2,p
µ (IRN )

}
,

has an integral representation as follows.

Theorem 1.1. If (C0), (C2) and (C3) hold, then

F2,µ(u) =
∫

IRN
inf

{
f
(∇2

µu(x) + ξ
)

: ξ ∈ N2,µ(x)
}

dµ(x)

for all u ∈ W 2,p
µ (IRN ).

Theorem 1.1 is proved in section 4 by the same method as in [5, 1, 6]. The distin-
guishing feature here is that F1,µ has, in general, a “non-local” representation which
can be computed from F2,µ by using the following result.

Theorem 1.2. If (C0) and (C1) hold, then

(1) F1,µ(u) = inf
{

F2,µ(v) : Θµ(v) = u
}

for all u ∈ W 1,p
µ (IRN ), (where Θµ : W 2,p

µ (IRN ) → W 1,p
µ (IRN ) is the bounded operator

defined in §2.6).

We thus have

Corollary 1.3. If (C0), (C1), (C2) and (C3) hold, then

F1,µ(u) = inf
{∫

IRN
inf

{
f
(∇2

µv(x) + ξ
)

: ξ ∈ N2,µ(x)
}

dµ(x) : Θµ(v) = u

}

for all u ∈ W 1,p
µ (IRN ).

Note that the “non-local” representation of F1,µ is only due to the fact that Θµ is,
in general, not injective. More precisely, the formula representing F1,µ in (1) comes
from a more general result which can be stated in the setting of Banach spaces
(cf. Theorem 3.1). Theorem 1.2, which is proved in section 5, is a consequence of
Theorem 3.1.

To complete the paper, in section 6 we show that the same method can be used
to prove Theorems 1.4 and 1.5 below. These theorems are consequences of Theorem
3.2 which is the analogue of Theorem 3.1 for compact operators.

Theorem 1.4. Let s-F1,µ : W 1,p
µ (IRN ) → [0,+∞] be defined by

s-F1,µ(u) := inf
{

lim inf
n→+∞ Fµ(un) : un ∈ C∞

c (IRN ), un → u in W 1,p
µ (IRN )

}
.

If (C0) and (C1) holds and if Θµ is compact, then

(2) s-F1,µ(u) = inf
{

F2,µ(v) : Θµ(v) = u
}

for all u ∈ W 1,p
µ (IRN ).

Consider the following p-Poincaré inequality:
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(C4) there exists C > 0 such that for every u ∈ C∞
c (IRN ),∫

IRN

∣∣u(x)
∣∣pdµ(x) ≤ C

∫

IRN

∣∣∇µu(x)
∣∣pdµ(x).

Note that (C4) implies (C0).

Theorem 1.5. Let Fµ : Lp
µ(IRN ) → [0,+∞] be defined by

Fµ(u) := inf
{

lim inf
n→+∞ Fµ(un) : un ∈ C∞

c (IRN ), un → u in Lp
µ(IRN )

}
.

If (C1) and (C4) hold and if the injection Iµ : W 1,p
µ (IRN ) → Lp

µ(IRN ) is compact,
then

(3) Fµ(u) = inf
{

F2,µ(v) :
(
Iµ o Θµ

)
(v) = u

}

for all u ∈ Lp
µ(IRN ).

2. Notation and definitions

2.1. General notation. By IMsym
N we denote the space of symmetric real N ×N

matrices. If x ∈ IRN , then |x| is its Euclidean norm; if ξ ∈ IMsym
N , |ξ| is the norm

of ξ when regarded as a vector in IRN2
. For E = IR, IRN or IMsym

N , we write
C∞

c (IRN ;E) (C∞
c (IRN ) if E = IR) for the space of smooth functions from IRN to E

with compact support. By Lp
µ(IRN ;E) (Lp

µ(IRN ) if E = IR) we denote the Banach
space of measurable functions u : IRN → E such the norm

∥∥u
∥∥

p,µ
:=

(∫

IRN

∣∣u(x)
∣∣pdµ(x)

)1/p

is finite. When X is a Banach space, by un → u (resp. un ⇀ u) in X we mean that
un converges to u with respect to the strong (resp. weak) topology of X, and for
F : X → [0,+∞], dom

(F)
:=

{
u ∈ X : F(u) < +∞}

. Finally, the support of µ is
defined by

spt(µ) :=
{
x ∈ IRN : µ(Bρ(x)) > 0 for all ρ > 0

}
,

where Bρ(x) denotes the open ball centered at x with radius ρ.

2.2. Definition of N1;—(x) and T1;—(x). Let N1,µ be the vector subspace of
C∞

c (IRN ; IRN ) given by

N1,µ :=
{

w ∈ C∞
c (IRN ; IRN ) : ∃v ∈ N1,µ such that w = ∇v in spt(µ)

}

with N1,µ := {v ∈ C∞
c (IRN ) : v = 0 in spt(µ)}. Let N1,µ : IRN−→−→IRN be the

multifunction defined by

N1,µ(x) :=
{

w(x) : w ∈ N1,µ

}
.

Then N1,µ(x) is a vector subspace of IRN , called the first order normal space to µ
at x. The vector subspace T1,µ(x) given by the equality

IRN = T1,µ(x)
⊥⊕ N1,µ(x)

is said to be the first order tangent space to µ at x.
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2.3. Definition of ∇—u and W 1;p
— (IRN). Let P1,µ(x) : IRN → T1,µ(x) be the

orthogonal projection on T1,µ(x). The function ∇µu : IRN → IRN defined as the
orthogonal projection of ∇u(x) on T1,µ(x), i.e.,

∇µu(x) := P1,µ(x)
(∇u(x)

)
, u ∈ C∞

c (IRN ),

is called the µ-gradient of u. In fact,

∇µu(x) = argmin
ξ∈T1,µ(x)

∣∣∣∇u(x)− ξ
∣∣∣,

for all x ∈ IRN . The closed-valued multifunction N1,µ being obviously measurable,
we deduce that T1,µ is also measurable, which implies that the mapping ∇µu is
measurable, (see, e.g., [4]). By definition, for every (x, ξ) ∈ IRN×IRN , |P1,µ(x)(ξ)| ≤
|ξ|, and so ∇µu ∈ Lp

µ(IRN ; IRN ) for all u ∈ C∞
c (IRN ). Clearly, if u = v in spt(µ)

then ∇µu = ∇µv in spt(µ), which means that µ-gradient of u is compatible with
the equality µ-a.e.. In C∞

c (IRN ), we define an equivalence relation as follows: for all
u, v ∈ C∞

c (IRN ), we say that u ∼ v if u = v µ-a.e., and we denote by D1,µ(IRN ) the
corresponding quotient space. The first order µ-Sobolev space W 1,p

µ (IRN ) is then
defined as the completion of D1,µ(IRN ) with respect to the following norm:

∥∥u
∥∥

1,p,µ
:=

(∫

IRN

∣∣u(x)
∣∣pdµ(x)

)1/p

+
(∫

IRN

∣∣∇µu(x)
∣∣pdµ(x)

)1/p

,

where u :=
{
v ∈ C∞

c (IRN ) : v = u in spt(µ)
}

denotes the equivalence class of u

with respect to ∼. Since ‖∇µu‖p,µ ≤ ‖u‖1,p,µ for all u ∈ D1,µ(IRN ) the linear map

D1,µ(IRN ) 3 u 7→ ∇µu ∈ Lp
µ(IRN ; IRN )

has a unique extension to W 1,p
µ (IRN ) which will be still denoted by ∇µu.

2.4. Definition of N2;—(x) and T2;—(x). Let N2,µ be the vector subspace of
C∞

c (IRN ; IMsym
N ) given by

N2,µ :=
{

w ∈ C∞
c (IRN ; IMsym

N ) : ∃v ∈ N2,µ such that w = ∇2v in spt(µ)
}

with N2,µ := {v ∈ C∞
c (IRN ) : (v,∇v) = (0, 0) in spt(µ)}. Let N2,µ : IRN−→−→IMsym

N
be the multifunction defined by

N2,µ(x) :=
{

w(x) : w ∈ N2,µ

}
.

Then N2,µ(x) is a vector subspace of IMsym
N , called the second order normal space

to µ at x. The vector subspace T2,µ(x) given by

IMsym
N = T2,µ(x)

⊥⊕ N2,µ(x)

is said to be the second order tangent space to µ at x.
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2.5. Definition of ∇2
—u and W 2;p

— (IRN). Let P2,µ(x) : IRN → T2,µ(x) be the
orthogonal projection on T2,µ(x). The function ∇2

µu : IRN → IMsym
N defined as the

orthogonal projection of ∇u(x) on T2,µ(x), i.e.,

∇2
µu(x) := P2,µ(x)

(∇2u(x)
)
, u ∈ C∞

c (IRN ),

is called the µ-Hessian of u. Analysis similar to that in §2.2 shows that for every
u ∈ C∞

c (IRn), ∇2
µu ∈ Lp

µ(IRN ; IMsym
N ). The only difference being that u = v in

spt(µ) does not imply∇2
µu = ∇2

µv in spt(µ). In fact, ∇2
µu = ∇2

µv in spt(µ) whenever
(u,∇u) = (v,∇v) in spt(µ), which leads us to introduce the following equivalence
relation: for all u, v ∈ C∞

c (IRN ), we say that u ≈ v if (u,∇u) = (v,∇v) µ-a.e..
We denote by D2,µ(IRN ) the corresponding quotient space. For each u ∈ C∞

c (IRN ),
u := u ∩ {

v ∈ C∞
c (IRN ) : ∇v = ∇u in spt(µ)

}
denotes the equivalence class of u

with respect to ≈.

Proposition 2.1. Under (C0), the map

(4) D2,µ(IRN ) 3 u 7→
∥∥u

∥∥
2,p,µ

:=
∥∥u

∥∥
1,p,µ

+
(∫

IRN

∣∣∇2
µu(x)

∣∣pdµ(x)
)1/p

is a norm on D2,µ(IRN ).

Proof. We only need to show that ∇u = 0 µ-a.e. whenever ‖u‖2,p,µ = 0. It is
clear that if ‖u‖2,p,µ = 0 then ∇2

µu = 0 µ-a.e., and so ∇2u(x) ∈ N2,µ(x) for all
x ∈ spt(µ) \N with µ(N) = 0. Fix any x ∈ spt(µ) \N and consider v ∈ N2,µ such
that ∇2v(x) = ∇2u(x). Thus ∇(∂v/∂xi)(x) = ∇(∂u/∂xi)(x) with ∂v/∂xi = 0 in
spt(µ) for all i ∈ {1, · · · , N}, hence ∇(∂u/∂xi)(x) ∈ N1,µ(x). It follows that

∇µ(∂u/∂xi) = 0 µ-a.e..

Since ∂u/∂xi ∈ C∞
c (IRN ), from (C0) we deduce that ∂u/∂xi = 0 µ-a.e., and the

proof is complete. ¤

The second order µ-Sobolev space W 2,p
µ (IRN ) is then defined as the completion of

D2,µ(IRN ) with respect to the norm defined in (4). Since ‖∇2
µu‖p,µ ≤ ‖u‖2,p,µ for

all u ∈ D2,µ(IRN ) the linear map

D2,µ(IRN ) 3 u 7→ ∇2
µu ∈ Lp

µ(IRN ; IMsym
N )

has a unique extension to W 2,p
µ (IRN ) which will be still denoted by ∇2

µu.

2.6. Definition of Θ—. Let Θµ : D2,µ(IRN ) → W 1,p
µ (IRN ) be defined by

Θµ

(
u
)

:= u.

Clearly, Θµ is a linear map which satisfies
∥∥Θµ

(
u
)∥∥

1,p,µ
≤

∥∥u
∥∥

2,p,µ

for all u ∈ C∞
c (IRN ), and consequently, it has a unique extension to W 2,p

µ (IRN )
which will be still denoted by Θµ.
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3. General theorems for non-local relaxation

Let (X1, ‖ · ‖1) and (X2, ‖ · ‖2) be two Banach spaces, and let Ψ : X2 → X1 be a
bounded operator. For i = 1, 2, denote by w-cli the sequential lower semicontinuous
envelope with respect to the weak topology of Xi. The following two theorems are
more useful versions of [5, Theorem 3.1].

Theorem 3.1. Let F : X1 → [0,+∞] be satisfying the following two conditions:
(A1) dom

(F) ⊂ Ψ
(
X2

)
;

(A2) there exist α, β > 0 such that
[F(Ψ(v))

]α +‖Ψ(v)‖1 ≥ β‖v‖2 for all v ∈ X2.
If X2 is reflexive, then

(5) w-cl1
(F)

(u) = inf
{
w-cl2

(F o Ψ
)
(v) : Ψ(v) = u

}

for all u ∈ X1.

Proof. Fix u ∈ X2 and denote by F(u) the right-hand side of (5). We have to show
that

inf
{

lim sup
n→+∞

F(un) : un ⇀ u in X1

}
≤ F(u) ≤ inf

{
lim inf
n→+∞ F(un) : un ⇀ u in X1

}
.

We first prove the upper bound. Without loss of generality we can assume that
u ∈ Ψ(X2). Given any v ∈ Ψ−1({u}), there exists vn ⇀ v in X2 such that

lim sup
n→+∞

F(
Ψ(vn)

) ≤ w-cl2
(F o Ψ

)
(v).

As Ψ is bounded, we have Ψ(vn) ⇀ u in X1. It follows that

inf
{

lim sup
n→+∞

F(un) : un ⇀ u in X1

}
≤ cl2

(F o Ψ
)
(v)

for all v ∈ Ψ−1({u}), and the upper bound follows.
Consider now {un}n≥1 ⊂ X1 such that un ⇀ u in X1. There is no loss of

generality in assuming that {F(un)}n≥1 is bounded. Thus {un}n≥1 ⊂ dom(F), and
from (A1) and (A2), we see that there exists a bounded sequence {vn}n≥1 ⊂ X2 such
that Ψ(vn) = un. As X2 is reflexive, we have vn ⇀ v in X2 for some v ∈ Ψ−1({u}).
Hence,

F(u) ≤ w-cl2
(F o Ψ

)
(v) ≤ lim inf

n→+∞ F(
Ψ(vn)

)
= lim inf

n→+∞ F(un),

and the lower bound follows. ¤
In the following theorem, s-cl1 denotes the sequential lower semicontinuous enve-

lope with respect to the strong topology of X1.

Theorem 3.2. Let F : X1 → [0,+∞] be satisfying (A1) and (A2). If X2 is reflexive
and if Ψ is compact, then

s-cl1
(F)

(u) = inf
{
w-cl2

(F o Ψ
)
(v) : Ψ(v) = u

}

for all u ∈ X1.

Proof. Replace the argument “Ψ is bounded” by “Ψ is compact” and “· ⇀ · in X1”
by “· → · in X1” in the proof of Theorem 3.1. ¤
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4. Proof of Theorem 1.1

Let F2,µ : C∞
c (IRN ) → [0,+∞] be defined by

F2,µ(u) := inf
{

Fµ(v) : v ∈ u
}

.

The following proposition makes clear the link between F2,µ and F2,µ.

Proposition 4.1. For every u ∈ C∞
c (IRN ),

(6) F2,µ(u) = inf
{

lim inf
n→+∞ F2,µ(un) : un ∈ C∞

c (IRN ), un ⇀ u in W 2,p
µ (IRN )

}
.

Proof. Fix u ∈ W 2,p
µ (IRN ), and denote by F̂2,µ(u) the right-side of (6). As Fµ(v) ≥

F2,µ(v) for all v ∈ C∞
c (IRN ), it is clear that F2,µ(u) ≥ F̂2,µ(u). Fix any ε > 0, and

consider {un}n≥1 ⊂ C∞
c (IRN ) with un ⇀ u in W 2,p

µ (IRN ) such that

F̂2,µ(u) +
ε

2
≥ lim inf

n→+∞ F2,µ(un).

To every n ≥ 1, there corresponds vn ∈ C∞
c (IRN ) with vn = un such that F2,µ(un)+

ε
2 ≥ Fµ(vn). Hence,

F̂2,µ(u) + ε ≥ lim inf
n→+∞ Fµ(vn)

with vn ⇀ u in W 2,p
µ (IRN ), and (6) follows by letting ε → 0. ¤

4.1. Integral representation of F2;—. For every u ∈ C∞
c (IRN ),

(7) F2,µ(u) = inf
w∈H2,u

∫

IRN
f(w(x))dµ(x)

with H2,u :=
{
w ∈ C∞

c (IRN ; IMsym
N ) : ∃v ∈ u such that w = ∇2v in spt(µ)

}
. More-

over,

Lemma 4.2. Every H2,u is C∞
c (IRN ; [0, 1])-decomposable (see definition in §A.3).

Proof. Fix w, ŵ ∈ H2,u and φ ∈ C∞
c (IRN ; [0, 1]). Choose v, v̂ ∈ u such that w = ∇2v

(resp. ŵ = ∇2v̂) in spt(µ). Then,∇(φv+(1−φ)v̂) = φ∇v+(1−φ)∇v̂+(v−v̂)∇φ and
∇2(φv+(1−φ)v̂) = φ∇v+(1−φ)∇v̂+∇φ⊗(∇v−∇v̂)+(∇v−∇v̂)⊗∇φ+(v−v̂)∇φ,
and so ∇(φv +(1−φ)v̂) = ∇u (resp. ∇2(φv +(1−φ)v̂) = φw +(1−φ)ŵ) in spt(µ).
As φv + (1− φ)v̂ = u in spt(µ), we conclude that φw + (1− φ)ŵ ∈ H2,u. ¤

For u ∈ C∞
c (IRN ), we let Λ2,u : IRN−→−→IMsym

N be defined by

Λ2,u(x) :=
{
w(x) : w ∈ H2,u

}
.

According to the notation in §2.3, we have Λ2,0 = N2,µ. Here is the link between
Λ2,u and N2,µ.

Lemma 4.3. For every u ∈ C∞
c (IRN ) and every x ∈ spt(µ),

Λ2,u(x) = N2,µ(x) +
{∇2

µu(x)
}
.
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Proof. Fix u ∈ C∞
c (IRN ) and x ∈ spt(µ). Given ξ ∈ Λ2,u(x), there exists v ∈ u

such that ξ = ∇2v(x), and ξ = ∇2v(x)− P2,µ(x)(∇2v(x)) +∇2
µu(x). Noticing that

∇2v(x)−P2,µ(x)(∇2v(x)) ∈ N2,µ(x), we deduce that Λ2,u(x) ⊂ N2,µ(x)+
{∇2

µu(x)
}
.

Consider now ξ ∈ N2,µ(x) + {∇2
µu(x)}. As ∇2

µu(x) = P2,µ(x)(∇2u(x)) we have
P2,µ(x)(ξ−∇2u(x)) = 0, and so ξ−∇2u(x) ∈ N2,µ(x). Hence, there exists v ∈ N2,µ

such that ξ = ∇2(v + u)(x), which gives N2,µ(x) + {∇2
µu(x)} ⊂ Λ2,u(x). ¤

Here is our integral representation for F2,µ.

Proposition 4.4. If (C2) holds, then

(8) F2,µ(u) =
∫

IRN
inf

{
f
(∇2

µu(x) + ξ
)

: ξ ∈ N2,µ(x)
}

dµ(x)

for all u ∈ C∞
c (IRN ).

Proof. Fix u ∈ C∞
c (IRN ) and denote by Γ2,u : IRN−→−→IMsym

N the µ-essential supre-
mum of H2,u (see definition in §A.2). Taking (7), Lemma 4.2 and (C2) into account,
from Theorem A.2 we obtain

F2,µ(u) =
∫

IRN
inf

ξ∈Γ2,u(x)
f(ξ) dµ(x).

Since H2,u ⊂ C∞
c (IRN ), Γ2,u(x) = cl{w(x) : w ∈ H2,u} µ-a.e. from Lemma A.1(ii).

Hence Γ2,u(x) = N2,µ(x) + {∇2
µu(x)} µ-a.e. by Lemma 4.3, and (8) follows. ¤

4.2. Proof of Theorem 1.1. Since µ is finite and (C2) holds, Vitali’s theorem
shows that the functional

W 2,p
µ (IRN ) 3 u 7→ F̂2,µ(u) :=

∫

IRN
inf

{
f
(∇2

µu(x) + ξ
)

: ξ ∈ N2,µ(x)
}

dµ(x)

is strongly continuous. By Proposition 4.4, (8) is satisfied for all u ∈ C∞
c (IRN ),

and taking Proposition 4.1 into account, we deduce that F̂2,µ ≥ F2,µ. From (C3) we
see that F̂2,µ is convex, which implies that F̂2,µ is weakly lower semicontinuous. It
follows that F̂2,µ ≤ F2,µ, and the proof is complete. ¤

5. Proof of Theorem 1.2

Let F1,µ : C∞
c (IRN ) → [0,+∞] be defined by

(9) F1,µ(u) := inf
{

Fµ(v) : v ∈ u
}

.

Similarly to Proposition 4.1, we have

Proposition 5.1. For every u ∈ C∞
c (IRN ),

F1,µ(u) = inf
{

lim inf
n→+∞ F1,µ(un) : un ∈ C∞

c (IRN ), un ⇀ u in W 1,p
µ (IRN )

}
.
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5.1. Representation of F1;—. The functional F1,µ has, in general, a “nonlocal”
representation which can be computed from F2,µ by using the following result.

Proposition 5.2. For every u ∈ C∞
c (IRN ),

(10) F1,µ(u) = inf
{

F2,µ(v) : v ∈ u
}

.

Proof. Fix u ∈ C∞
c (IRN ) and denote by F̂1,µ(u) the right-hand side of (10). Of

course, Fµ(v) ≥ F2,µ(v) for all v ∈ C∞
c (IRN ), and so F1,µ(u) ≥ F̂1,µ(u). Given any

v ∈ u, it is clear that if ϕ ∈ v then ϕ ∈ u, hence Fµ(ϕ) ≥ F1,µ(u) for all ϕ ∈ v.
Thus, for every v ∈ u, F2,µ(v) ≥ F1,µ(u), and (10) follows. ¤

The following lemma is a direct consequence of Proposition 5.2.

Lemma 5.3. For i = 1, 2, define Fi,µ : W i,p
µ (IRN ) → [0,+∞] by

(11) Fi,µ(u) :=
{

Fi,µ(v) with v ∈ u if u ∈ Di,µ(IRN )
+∞ otherwise.

Then:
(i) F1,µ(u) = inf

{F2,µ(v) : Θµ(v) = u
}

for all u ∈ W 1,p
µ (IRN );

(ii) F2,µ = F1,µ o Θµ.

5.2. Proof of Theorem 1.2. According to Proposition 5.1, it is easy to see that
for i = 1, 2, Fi,µ is the sequential lower semicontinuous envelope with respect to the
weak topology of W i,p

µ (IRN ) of the functional Fi,µ defined in (11). From (C1) we
deduce that for every u ∈ C∞

c (IRN ),
(F1,µ(u)

)1/p +
∥∥u

∥∥
1,p,µ

≥ min
{
1, r1/p

}∥∥u
∥∥

2,p,µ
.

Since dom(F1,µ) = Θµ(D2,µ(IRN )) = D1,µ(IRN ), (A1) and (A2) are satisfied with
X1 = W 1,p

µ (IRN ), X2 = W 2,p
µ (IRN ), F = F1,µ and Ψ = Θµ. Denote by w-cl2,p,µ

the sequential lower semicontinuous envelope with respect to the weak topology of
W 2,p

µ (IRN ). As W 2,p
µ (IRN ) is reflexive (see §A.1), from Theorem 3.1 we have

(12) F1,µ(u) = inf
{

w-cl2,p,µ

(F1,µ o Θµ

)
(v) : Θµ(v) = u

}

for all u ∈ W 1,p
µ (IRN ), and (1) follows by Lemma 5.3(ii). ¤

6. Proof of Theorems 1.4 and 1.5

6.1. Proof of Theorem 1.4. Similarly to Proposition 5.1, we have

s-F1,µ(u) = inf
{

lim inf
n→+∞ F1,µ(un) : un ∈ C∞

c (IRN ), un → u in W 1,p
µ (IRN )

}

for all u ∈ W 1,p
µ (IRN ), with F1,µ : C∞

c (IRN ) → [0,+∞] given by (9). Thus, s-F1,µ

is the sequential lower semicontinuous envelope with respect to the strong topology
of W 1,p

µ (IRN ) of the functional F1,µ defined in (11). Analysis similar to that in the
proof of Theorem 1.2 shows that (A1) and (A2) are satisfied with X1 = W 1,p

µ (IRN ),
X2 = W 2,p

µ (IRN ), F = F1,µ and Ψ = Θµ. As W 2,p
µ (IRN ) is reflexive and Θµ is

compact, from Theorem 3.2 we deduce that s-F1,µ(u) is equal to the right side of
(12) for all u ∈ W 1,p

µ (IRN ), and (2) follows by Lemma 5.3(ii). ¤
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6.2. Proof of Theorem 1.5. Again, we have

Fµ(u) = inf
{

lim inf
n→+∞ F1,µ(un) : un ∈ C∞

c (IRN ), un → u in Lp
µ(IRN )

}

for all u ∈ W 1,p
µ (IRN ), with F1,µ : C∞

c (IRN ) → [0,+∞] given by (9). Thus, Fµ is
the sequential lower semicontinuous envelope with respect to the strong topology of
Lp

µ(IRN ) of the functional Fµ : Lp
µ(IRN ) → [0,+∞] defined by

Fµ(u) :=
{

F1,µ(v) with v ∈ u if u ∈ D1,µ(IRN )
+∞ otherwise.

We claim that (A1) and (A2) are satisfied with X1 = Lp
µ(IRN ), X2 = W 2,p

µ (IRN ),
F = Fµ and Ψ = Iµ o Θµ. Indeed, By (C4) there exists C > 0 such that for every
u ∈ C∞

c (IRN ) and every i ∈ {1, · · · , N},

(13)
∫

IRN

∣∣(∂u/∂xi)(x)
∣∣pdµ(x) ≤ C

∫

IRN

∣∣∇µ(∂u/∂xi)(x)
∣∣pdµ(x).

As γ|ξ|p ≤ ∑N
i=1 |ξi|p for all ξ ∈ IRN and some γ > 0 (which does not depend on

ξ), and as |∇µu(x)| ≤ |∇u(x)| and |∇µ(∂u/∂xi)(x)| ≤ |∇(∂u/∂xi)(x)| ≤ |∇2u(x)|,
from (13) we have

∫

IRN

∣∣∇2u(x)
∣∣pdµ(x) ≥ (

γ/NC
) ∫

IRN

∣∣∇µu(x)
∣∣pdµ(x).

Using (C1), we deduce that for every u ∈ C∞
c (IRN ),

(Fµ(u)
)1/p +

∥∥u
∥∥

p,µ
≥ min

{
1,

(
rγ/2pNC

)1/p
,
(
r/2p

)1/p
}∥∥u

∥∥
2,p,µ

and the claim follows because dom
(Fµ

)
= (Iµ o Θµ)

(
D2,µ(IRN )

)
= D1,µ(IRN ).

As Iµ is compact, so is Iµ o Θµ. Since W 2,p
µ (IRN ) is reflexive (see §A.1), from

Theorem 3.2 we obtain

Fµ(u) = inf
{

w-cl2,p,µ

(Fµ o Iµ o Θµ

)
(v) :

(
Iµ o Θµ

)
(v) = u

}

for all u ∈ Lp
µ(IRN ), where w-cl2,p,µ denotes the sequential lower semicontinuous

envelope with respect to the weak topology of W 2,p
µ (IRN ). Using Proposition 5.2, it

is easily seen that Fµ o Iµ o Θµ = F2,µ with F2,µ : W 2,p
µ (IRN ) → [0,+∞] given by

(11), and (3) follows because F2,µ = w-cl2,p,µ

(F2,µ

)
by Proposition 4.1. ¤

Appendix A. Auxiliary results

A.1. Reflexivity of W 2;p
— (IRN). Since the linear map

D2,µ(IRN ) 3 u 7→ (u,∇µu,∇2
µu) ∈ X := Lp

µ(IRN )× Lp
µ(IRN ; IRN )× Lp

µ(IRN ; IMsym
N )

is an isometry, it has an extension to W 2,p
µ (IRN ) which is still an isometry. We

denote it by Φ. Thus Φ
(
W 2,p

µ (IRN )
)

is a closed vector subspace of X. As p > 1, the
product space X is reflexive, and so is Φ

(
W 2,p

µ (IRN )
)
. It follows that W 2,p

µ (IRN ) is
reflexive.
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A.2. The µ-essential supremum of a set of measurable functions. Denote
by M the class of all closed-valued measurable multifunctions from IRN to IMsym

N ,
and set M∗ :=

{
Γ ∈M : ∀x ∈ IRN , Γ(x) 6= ∅}.

Following Valadier [7, Proposition 14], if F ⊂M∗ is nonempty, then there exists
Γ ∈M∗ satisfying the following two properties:

• ∀Λ ∈ F , Λ(x) ⊂ Γ(x) µ-a.e.;
• Γ′ ∈M and ∀Λ ∈ F , Λ(x) ⊂ Γ′(x) µ-a.e. ⇒ Γ(x) ⊂ Γ′(x) µ-a.e..

Note that Γ is unique with respect to the equality µ-a.e. Valadier called it the
µ-essential upper bound of F .

In this paper, by the µ-essential supremum of a set H of measurable functions
from IRN to IMsym

N , we mean the µ-essential upper bound of {{w} : w ∈ H} , where
{w} : IRN−→−→IMsym

N is defined by {w}(x) = {w(x)}. Thus, if we denote by Γ the
µ-essential supremum of H, we have:

• ∀w ∈ H, w(x) ∈ Γ(x) µ-a.e.;
• Γ′ ∈M and ∀w ∈ H, w(x) ∈ Γ′(x) µ-a.e. ⇒ Γ(x) ⊂ Γ′(x) µ-a.e..

The following lemma gives (classical) representations of the µ-essential supremum.
For a proof we refer the reader to [3, §2.2].

Lemma A.1. Let Γ denote the µ-essential supremum of H ⊂ Lp
µ(IRN ; IMsym

N ).
Then:

(i) There exists a countable subset D ⊂ H such that Γ(x) = cl{w(x) : w ∈ D}
µ-a.e., where cl denotes the closure in IMsym

N .
(ii) If H ⊂ C∞

c (IRN ; IMsym
N ), then Γ(x) = cl{w(x) : w ∈ H} µ-a.e..

A.3. Interchange of infimum and integral. A set H ⊂ Lp
µ(IRN ; IMsym

N ) is said
to be C∞

c (IRN ; [0, 1])-decomposable if for all w, ŵ ∈ H and all φ ∈ C∞
c (IRN ; [0, 1]),

φw+(1−φ)ŵ ∈ H. The following result is a consequence of [1, Theorem 1.1] where
we refer the reader for a proof.

Theorem A.2. Let H ⊂ Lp
µ(IRN ; IMsym

N ) be a C∞
c (IRN ; [0, 1])-decomposable set. If

(C2) holds, then

inf
w∈H

∫

IRN
f(w(x))dµ(x) =

∫

IRN
inf

ξ∈Γ(x)
f(ξ) dµ(x)

with Γ : IRN−→−→IMsym
N given by the µ-essential supremum of H.
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