Yokohama Publishers
ISSN 1880-5221 ONLINE JOURNAL

DUALITY IN DC-CONSTRAINED PROGRAMMING VIA DUALITY IN REVERSE CONVEX PROGRAMMING

M. LAGHDIR, N. BENKENZA, AND N. NAJEH

Abstract

This paper establishes a duality theory associated with primal problem $$
\inf \left\{g_{1}(x)-g_{2}(x): \quad h_{1}(x)-h_{2}(x) \notin Y_{+}\right\}
$$ where $g_{1}, g_{2}: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ are two convex functions on the Hausdorff locally convex real vector space X and $h_{1}, h_{2}: X \longrightarrow Y \cup\{+\infty\}$ are two convex vector valued mappings taking their values in a real partially ordered topological vector space Y. The partial order is induced by a convex cone $Y_{+} \subset Y$. The approach for dealing with this duality is based on the use of an important formula of nonconvex duality, due to B. Lemaire [2], associated with a reverse convex programming problem.

1. Introduction

A wide class of constrained DC-programming problems has recently received particular attention. It enables to study, in a general and unified way, a large number of problems arising in economics, optimization and operations research. That is minimizing a difference of two extended real-valued convex functions subject to a DC-constraint i.e it concerns the primal problem

$$
(\mathcal{P}) \quad \inf \left\{g_{1}(x)-g_{2}(x): \quad h_{1}(x)-h_{2}(x)<0\right\}
$$

where g_{1}, g_{2}, h_{1} and h_{2} are extended real-valued convex functions on the Hausdorff locally convex real vector space X.

In a recent work [3], B. Lemaire and M. Volle presented a duality formula associated with problem (\mathcal{P}) by introducing a suitable dual problem defined from the Legendre-Fenchel conjugates of the data functions g_{1}, g_{2}, h_{1} and h_{2}. The approach adopted by B. Lemaire and M. Volle for proving their formula is based on the use of convex analysis theory and essentially the "inf sup" Theorem of J. J. Moreau [5]. Let us note that this large class contains an important subclass of programming problems namely reverse convex optimization problems by taking $g_{2} \equiv 0$ and $h_{1} \equiv 0$ and B. Lemaire, in his recent paper [2], has established a duality theory associated with this subclass.

In the present work, we address a main question, that is : how to obtain the duality theory associated with constrained DC-programming problem (\mathcal{P}) via duality in reverse convex programming? Indeed, the answer of this question gives us a new approach totaly different from the technique used by B. Lemaire and M. Volle for obtaining the corresponding dual problem linked to (\mathcal{P}) and allows to transform the problem (\mathcal{P}) into a reverse convex programming problem on some appropriate

[^0]space. Our approach, also enables us to establish a similar duality result associated with a broad class of constrained DC-programming problems including problem (\mathcal{P}). That is minimizing the difference of two convex functions subject to a vector DC-constraint i.e.
$$
(\mathcal{Q}) \quad \alpha:=\inf \left\{g_{1}(x)-g_{2}(x): \quad h_{1}(x)-h_{2}(x) \notin Y_{+}\right\}
$$
where $g_{1}, g_{2}: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ are two extended real-valued convex functions and $h_{1}, h_{2}: X \longrightarrow Y \cup\{+\infty\}$ are two convex vector valued mappings taking values in a real partially ordered topological vector space Y equipped with a preorder induced by a convex cone Y_{+}. Obviously, in the case when $Y=\mathbb{R}$ and $Y_{+}=R_{+}$ we found the problem (\mathcal{P}) as a particular case.
The approach that we will adopt for stating our main result is based on an equivalent transformation of the problem (\mathcal{Q}) into a minimization problem given by
$$
\alpha=\inf _{\left(x, y, x^{*}\right) \in X \times Y \times X^{*}}\left\{G(x, y)+g_{2}^{*}\left(x^{*}\right): \quad H(x, y)>0\right\}
$$
in which appears the following reverse convex programming problem
$$
\theta:=\inf _{(x, y) \in X \times Y}\{G(x, y): \quad H(x, y)>0\}
$$
where G and H are two auxiliary convex functions defined on the product space $X \times Y$ expressed both by means of the data functions g_{1}, g_{2}, h_{1} and h_{2}. This allow to derive our desired result by applying directly Lemaire's duality formula [2]. As consequence, we recapture particularly in the case when $Y=\mathbb{R}$ and $Y_{+}=\mathbb{R}_{+}$, the duality result due to B. Lemaire and M. Volle [3].

2. Notations and definitions

Throughout this paper X and Y denote two topological real vector spaces with respectives topological duals X^{*} and Y^{*}. For the sake of simplicity we use the same symbol \langle,$\rangle to denote the bilinear pairing between X$ and X^{*} (resp. Y and Y^{*}). Naturally, we obtain a duality between $X^{*} \times Y^{*}$ and $X \times Y$ given by

$$
\left\langle\left(x^{*}, y^{*}\right),(x, y)\right\rangle:=\left\langle x^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle
$$

for every $(x, y) \in X \times Y$ and $\left(x^{*}, y^{*}\right) \in X^{*} \times Y^{*}$. By Y_{+}we denote a convex cone in Y which makes Y a partially ordered topological vector space given by

$$
y \leq_{Y} z \Longleftrightarrow z-y \in Y_{+}
$$

By Y_{+}^{*} we denote the dual positive cone

$$
Y_{+}^{*}:=\left\{y^{*} \in Y^{*}:\left\langle y^{*}, y\right\rangle \geq 0, \quad \forall y \in Y_{+}\right\}
$$

We adjoint to Y a greatest abstract element denoted by $+\infty$ i.e. for any $y \in Y$

$$
y \leq_{Y}+\infty
$$

In what follows, we use the following extensions of the addition and the product in $\mathbb{R} \cup\{-\infty,+\infty\}:$

$$
(+\infty)+(-\infty)=(-\infty)+(+\infty)=+\infty, \quad 0 \times(-\infty)=0, \quad 0 \times(+\infty)=+\infty
$$

A mapping $h: X \longrightarrow Y \cup\{+\infty\}$ is said to be Y_{+}-convex if

$$
h\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq_{Y} \lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)
$$

for each $x_{1}, x_{2} \in X$ and each $\lambda \in[0,1]$. By

$$
\operatorname{dom} h:=\{x \in X: h(x) \in Y\}
$$

and

$$
\text { Epi } h:=\left\{(x, y) \in X \times Y: h(x) \leq_{Y} y\right\}
$$

we denote respectively its effective domain and its epigrah. To each extended real-valued function $f: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ corresponds its Legendre-Fenchel transform f^{*} defined on the topological dual X^{*} by

$$
f^{*}\left(x^{*}\right):=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}
$$

for any $x^{*} \in X^{*}$. If C is a nonempty subset of X, then its indicator function $\delta_{C}: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is defined for every $x \in X$ by

$$
\delta_{C}(x):= \begin{cases}0 & \text { if } x \in C \\ +\infty, & \text { otherwise }\end{cases}
$$

Given a function $g: Y \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ and a mapping $h: X \longrightarrow Y \cup\{+\infty\}$, by $g \circ h$ we set the composition function as

$$
(g \circ h)(x):= \begin{cases}g(h(x)) & \text { if } x \in h^{-1}(Y) \tag{2.1}\\ \sup _{y \in Y} g(y), & \text { otherwise }\end{cases}
$$

In the sequel we denote by $\Gamma(X)$ the set of lower semicontinuous proper convex real functions plus the constants $+\infty$ and $-\infty$.

3. Primal problem and preliminary Result

Let $g_{1}, g_{2}: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ be two extended real-valued convex functions and $h_{1}, h_{2}: X \longrightarrow Y \cup\{+\infty\}$ be two Y_{+}-convex mappings. We are interested in finding the infimal value

$$
(\mathcal{P}) \quad \alpha:=\inf \left\{g_{1}(x)-g_{2}(x): h_{1}(x)-h_{2}(x) \notin Y_{+}\right\}
$$

In the case when $Y=\mathbb{R}, \quad Y_{+}=\mathbb{R}_{+}, \quad g_{2} \equiv 0$ and $h_{1} \equiv 0$, we obtain a reverse convex programming problem and B. Lemaire in his recent paper [2] established for this scalar reverse convex minimization problem an important formula of duality given by

Theorem 3.1. Let X be a Hausdorff locally convex vector space and $g, h: X \longrightarrow$ $\mathbb{R} \cup\{-\infty,+\infty\}$ two convex functions with $h \in \Gamma(X)$. Then

$$
\inf _{h(x)>0} g(x)=\inf _{x^{*} \in X^{*}} \max _{\lambda \geq 0}\left\{\lambda h^{*}\left(x^{*}\right)-g^{*}\left(\lambda x^{*}\right): h^{*}\left(x^{*}\right)-\delta_{d o m g}^{*}\left(x^{*}\right)<0\right\}
$$

4. The main Result

In order to state a similar duality formula related to problem (\mathcal{Q}), we start with the following lemma

Lemma 4.1. If we set for any $y \in Y$

$$
E_{y}:=\left\{x \in X: \delta_{-Y_{+}}\left(h_{2}(x)-y\right)>0 \text { and } h_{1}(x)-y \in-Y_{+}\right\}
$$

and we suppose that dom $h_{1}=X$ then we have

$$
\left\{x \in X: h_{1}(x)-h_{2}(x) \notin Y_{+}\right\}=\bigsqcup_{y \in Y} E_{y}
$$

Proof. Let $x \in X$ such that $h_{1}(x)-h_{2}(x) \notin Y_{+}$. By putting $y=h_{1}(x)$ we obtain $x \in E_{y}$. Conversely, let $x \in \bigsqcup_{y \in Y} E_{y}$, there exists some $y \in Y$ satisfying $h_{2}(x)-y \notin$ $-Y_{+}$and $h_{1}(x)-y \in-Y_{+}$. If we suppose $h_{1}(x)-h_{2}(x) \in Y_{+}$we get

$$
h_{2}(x)-y=h_{2}(x)-h_{1}(x)+h_{1}(x)-y \in-Y_{+}-Y_{+}=-Y_{+}
$$

which contradicts the fact that $h_{2}(x)-y \notin-Y_{+}$.
By introducing the following minimization problem

$$
\gamma:=\inf _{(x, y) \in X \times Y}\left\{g_{1}(x)+\delta_{-Y_{+}}\left(h_{1}(x)-y\right)-g_{2}(x): \delta_{-Y_{+}}\left(h_{2}(x)-y\right)>0\right\}
$$

which will play a crucial role for stating our main result, we get
Proposition 4.1. If we suppose that dom $h_{1}=X$ then we have $\alpha=\gamma$.
Proof. According to Lemma 4.1, it follows that

$$
\begin{aligned}
\alpha & =\inf \left\{g_{1}(x)-g_{2}(x): x \in \bigsqcup_{y \in Y} E_{y}\right\} \\
& =\inf _{(x, y) \in X \times Y}\left\{g_{1}(x)-g_{2}(x): x \in E_{y}\right\} \\
& =\inf _{(x, y) \in X \times Y}\left\{g_{1}(x)-g_{2}(x)+\delta_{-Y_{+}}\left(h_{1}(x)-y\right): \delta_{-Y_{+}}\left(h_{2}(x)-y\right)>0\right\}=\gamma
\end{aligned}
$$

Let us consider the following auxiliary functions $G, H: X \times Y \longrightarrow \mathbb{R} \cup$ $\{-\infty,+\infty\}$ given by

$$
\begin{aligned}
H(x, y) & :=\delta_{-Y_{+}}\left(h_{2}(x)-y\right) \\
G(x, y) & :=g_{1}(x)+\delta_{-Y_{+}}\left(h_{1}(x)-y\right)-\left\langle x^{*}, x\right\rangle
\end{aligned}
$$

where $x^{*} \in X^{*}$ is arbitrary.
In the proof of the main theorem we will need the following lemma
Lemma 4.2. For any $\left(p^{*}, y^{*}\right) \in X^{*} \times Y^{*}$, we have

1) $G^{*}\left(p^{*}, y^{*}\right)=\left(g_{1}-y^{*} \circ h_{1}\right)^{*}\left(p^{*}+x^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)$.
2) $H^{*}\left(p^{*}, y^{*}\right)=\left(-y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)$.
3) $\delta_{\text {domG }}^{*}\left(p^{*}, y^{*}\right)=\left(\delta_{\text {domg }}^{1} \boldsymbol{}-y^{*} \circ h_{1}\right)^{*}\left(p^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)$.
4) Epi $H=E p i h_{2} \times[0,+\infty[$.

Proof. For any $\left(p^{*}, y^{*}\right) \in X^{*} \times Y^{*}$, we have
1)

$$
G^{*}\left(p^{*}, y^{*}\right)=\sup _{(x, y) \in X \times Y}\left\{\left\langle p^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle-g_{1}(x)-\delta_{-Y_{+}}\left(h_{1}(x)-y\right)+\left\langle x^{*}, x\right\rangle\right\} .
$$

If there exists some $x \in X$ such that $g_{1}(x)=-\infty$, then according to the previous conventions, we have obviously

$$
G^{*}\left(p^{*}, y^{*}\right)=\left(g_{1}-y^{*} \circ h_{1}\right)^{*}\left(p^{*}+x^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)=+\infty
$$

If we assume now that g_{1} does not take the value $-\infty$, then we get

$$
G^{*}\left(p^{*}, y^{*}\right)=\sup _{\substack{(x, y) \in X \times Y \\ h_{1}(x)-y \in-Y_{+}}}\left\{\left\langle p^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle-g_{1}(x)+\left\langle x^{*}, x\right\rangle\right\}
$$

By setting $z:=h_{1}(x)-y$, we obtain

$$
\begin{aligned}
G^{*}\left(p^{*}, y^{*}\right) & =\sup _{\substack{z \in-Y_{+} \\
x \in h_{1}^{-1}(Y)}}\left\{\left\langle p^{*}+x^{*}, x\right\rangle-g_{1}(x)+\left(y^{*} \circ h_{1}\right)(x)-\left\langle y^{*}, z\right\rangle\right\} \\
& =\sup _{x \in h_{1}^{-1}(Y)}\left\{\left\langle p^{*}+x^{*}, x\right\rangle-g_{1}(x)+\left(y^{*} \circ h_{1}\right)(x)\right\}+\delta_{-Y_{+}}^{*}\left(-y^{*}\right) \\
& =\sup _{x \in h_{1}^{-1}(Y)}\left\{\left\langle p^{*}+x^{*}, x\right\rangle-\left(g_{1}-y^{*} \circ h_{1}\right)(x)\right\}+\delta_{Y_{+}^{*}}\left(-y^{*}\right) .
\end{aligned}
$$

Now, we claim that

$$
\begin{equation*}
G^{*}\left(p^{*}, y^{*}\right)=\left(g_{1}-y^{*} \circ h_{1}\right)^{*}\left(p^{*}+x^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right) \tag{4.1}
\end{equation*}
$$

Indeed, if $-y^{*} \notin Y_{+}^{*}$ then $\delta_{Y_{+}^{*}}\left(-y^{*}\right)=+\infty$ and hence the equality (4.1) holds. If $y^{*} \equiv 0$ then by virtue of convention (2.1) we have $y^{*} \circ h_{1} \equiv 0$ and thus we get

$$
\begin{aligned}
G^{*}\left(p^{*}, 0\right) & =\sup _{x \in X}\left\{\left\langle p^{*}+x^{*}, x\right\rangle-g_{1}(x)\right\} \\
& =g_{1}^{*}\left(p^{*}+x^{*}\right)
\end{aligned}
$$

If $-y^{*} \in Y_{+}^{*} \backslash\{0\}$ then there exists some $y_{0} \in Y_{+}$such that $\left\langle-y^{*}, y_{0}\right\rangle>0$ and since

$$
\lambda\left\langle-y^{*}, y_{0}\right\rangle \leq \sup _{y \in Y}\left\langle-y^{*}, y\right\rangle, \quad \forall \lambda>0
$$

it follows from convention (2.1), by letting $\lambda \longrightarrow+\infty$, that

$$
\left(-y^{*} \circ h_{1}\right)(x)=+\infty, \quad \text { if } h_{1}(x)=+\infty
$$

which yields

$$
\left(g_{1}-y^{*} \circ h_{1}\right)(x)=+\infty, \quad \text { if } h_{1}(x)=+\infty
$$

and therefore we get the required result (4.1).
2) By taking in the above result 1) $g_{1} \equiv 0, x^{*} \equiv 0$ and replacing h_{1} by h_{2} we obtain

$$
H^{*}\left(p^{*}, y^{*}\right)=\left(-y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)
$$

3) At first, it is easy to see that

$$
\operatorname{dom} G=\left(\operatorname{dom} g_{1} \times Y\right) \cap E p i h_{1}
$$

and therefore for any $\left(p^{*}, y^{*}\right) \in X^{*} \times Y^{*}$ we have

$$
\begin{aligned}
\delta_{\text {domG }}^{*}\left(p^{*}, y^{*}\right) & =\sup _{(x, y) \in X \times Y}\left\{\left\langle p^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle-\delta_{\left(d o m g_{1} \times Y\right) \cap E p i h_{1}}(x, y)\right\} \\
& =\sup _{(x, y) \in X \times Y}\left\{\left\langle p^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle-\delta_{\text {domg }_{1} \times Y}(x, y)-\delta_{E p i h_{1}}(x, y)\right\} \\
& =\sup _{(x, y) \in X \times Y}\left\{\left\langle p^{*}, x\right\rangle+\left\langle y^{*}, y\right\rangle-\delta_{d o m g_{1}}(x)-\delta_{-Y_{+}}\left(h_{1}(x)-y\right)\right\} .
\end{aligned}
$$

Now, we are in a position to apply 1) by replacing g_{1} by $\delta_{d o m g_{1}}$ and taking $x^{*} \equiv 0$ and hence we obtain the result

$$
\delta_{d o m G}^{*}\left(p^{*}, y^{*}\right)=\left(\delta_{d o m g_{1}}-y^{*} \circ h_{1}\right)^{*}\left(p^{*}\right)+\delta_{Y_{+}^{*}}\left(-y^{*}\right)
$$

4) It is obvious.

Remark 4.1. If we authorise the mapping h_{2} taking at some points the value $-\infty$, then according to definitions of Epi h_{2} and the mapping H we obtain

$$
\text { Epi } H=\left(E p i h_{2} \backslash\left(h_{2}^{-1}(-\infty) \times Y\right)\right) \times[0,+\infty[
$$

which is not closed in general although $E p i h_{2}$ is closed.
Now, we are in position to state and prove the main result of this paper.
Theorem 4.1. Let X and Y be two Hausdorff locally convex vector spaces, g_{1}, g_{2} : $X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ are two convex functions and $h_{1}: X \longrightarrow Y, h_{2}: X \longrightarrow$ $Y \cup\{+\infty\}$ are two Y_{+}-convex mappings. We assume that $g_{2} \in \Gamma(X)$ and h_{2} has a closed epigraph. Then we have

$$
\begin{array}{r}
\alpha=\inf _{\substack{\left(x^{*}, p^{*}\right) \in X^{*} \times X^{*} \\
y^{*} \in Y_{+}^{*} \backslash\{0\}}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\lambda\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\left(g_{1}+\lambda y^{*} \circ h_{1}\right)^{*}\left(x^{*}+\lambda p^{*}\right):\right. \\
\left.\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\left(\delta_{d o m g_{1}}+y^{*} \circ h_{1}\right)^{*}\left(p^{*}\right)<0\right\} .
\end{array}
$$

Proof. Since $g_{2} \in \Gamma(X)$, we have for any $x \in X$

$$
g_{2}(x)=g_{2}^{* *}(x)=\sup _{x^{*} \in X^{*}}\left\{\left\langle x^{*}, x\right\rangle-g_{2}^{*}\left(x^{*}\right)\right\}
$$

and hence it follows, according to Proposition 4.1, that

$$
\begin{equation*}
\alpha=\inf _{\left(x, y, x^{*}\right) \in X \times Y \times X^{*}}\left\{G(x, y)+g_{2}^{*}\left(x^{*}\right): H(x, y)>0\right\} \tag{4.2}
\end{equation*}
$$

Let us observe that in the above minimization problem appears the following reverse convex programming problem

$$
\theta:=\inf _{(x, y) \in X \times Y}\{G(x, y): H(x, y)>0\}
$$

defined on the product space $X \times Y$ and as Epi H is closed (using Lemma 4.2 and the fact that Epi h_{2} is closed), it follows from Lemaire's duality Theorem 3.1 that $\theta=\inf _{\left(p^{*}, y^{*}\right) \in X^{*} \times Y^{*}} \max _{\lambda \geq 0}\left\{\lambda H^{*}\left(p^{*}, y^{*}\right)-G^{*}\left(\lambda p^{*}, \lambda y^{*}\right): H^{*}\left(p^{*}, y^{*}\right)-\delta_{d o m G}^{*}\left(p^{*}, y^{*}\right)<0\right\}$. If we combine the above equality with Lemma 4.2 and by noticing that $\lambda \delta_{Y_{+}^{*}}=\delta_{Y_{+}^{*}}$ and $-y^{*} \in Y_{+}^{*}$ then we obtain

$$
\begin{array}{r}
\alpha=\inf _{\substack{\left(x^{*}, p^{*}\right) \in X^{*} \times X^{*} \\
y^{*} \in Y_{+}^{*}}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\lambda\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\left(g_{1}+\lambda y^{*} \circ h_{1}\right)^{*}\left(x^{*}+\lambda p^{*}\right):\right. \\
\left.\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\left(y^{*} \circ h_{1}+\delta_{d o m g_{1}}\right)^{*}\left(p^{*}\right)<0\right\} .
\end{array}
$$

Now, it remains to show that the infimum over $y^{*} \in Y_{+}^{*}$ is, in fact, taken over $Y_{+}^{*} \backslash\{0\}$ i.e. the following strict inequality

$$
\begin{equation*}
\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\left(\delta_{d o m g_{1}}+y^{*} \circ h_{1}\right)^{*}\left(p^{*}\right)<0 \tag{4.3}
\end{equation*}
$$

does not hold for $y^{*}=0$. Suppose the contrary and by using the convention (2.1), the strict inequality (4.3) becomes

$$
\delta_{\{0\}}\left(p^{*}\right)-\delta_{d o m g_{1}}^{*}\left(p^{*}\right)<0
$$

i.e

$$
\delta_{d o m g_{1}}^{*}(0)=\sup _{x \in X}\left\{-\delta_{d o m g_{1}}(x)\right\}>0
$$

This contradicts the fact that $\delta_{d o m g_{1}}^{*}(0) \leq 0$ since $\delta_{d o m g_{1}}(x) \geq 0$ for any $x \in X$. The proof is complete.

Remark 4.2. 1) The right-hand side in the formula given by Theorem 4.1 can be expressed by means of each datum Legendre-Fenchel conjugate by developing the expressions $\left(g_{1}+\lambda y^{*} \circ h_{1}\right)^{*}$ and $\left(\delta_{d o m g_{1}}+y^{*} \circ h_{1}\right)^{*}$ as infimal convolution under additional constraint qualification (see [1]).
2) Let us observe that the transformation (4.2) allows us to reduce the problem (\mathcal{Q}) to a reverse convex programming problem on the product space $X \times Y \times X^{*}$. For this, it suffices to set $\left(x, y, x^{*}\right) \rightarrow \tilde{G}\left(x, y, x^{*}\right):=G(x, y)+g_{2}^{*}\left(x^{*}\right)$ and $\left(x, y, x^{*}\right) \rightarrow$ $\tilde{H}\left(x, y, x^{*}\right):=H(x, y)$ which are obviously both convex, and hence according to (4.2) we may rewrite

$$
\alpha=\inf \left\{\tilde{G}\left(x, y, x^{*}\right): \quad \tilde{H}\left(x, y, x^{*}\right)>0\right\}
$$

Let us consider now the case when h_{1} is identically equal to zero. In such a case, we get the problem of minimizing a DC-function subject to a vector reverse convex constraint

$$
\alpha=\inf \left\{g_{1}(x)-g_{2}(x): h_{2}(x) \notin-Y_{+}\right\}
$$

and hence we deduce from Theorem 4.1
Corollary 4.1. Let X and Y be two Hausdorff locally convex vector spaces, g_{1}, g_{2} : $X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ are two convex functions and $h_{2}: X \longrightarrow Y \cup\{+\infty\}$ is a Y_{+}-convex mapping. We assume that $g_{2} \in \Gamma(X)$ and h_{2} with closed epigraph. Then

$$
\begin{aligned}
& \alpha=\inf _{\substack{\left(x^{*}, p^{*}\right) \in X^{*} \times X^{*} \\
y^{*} \in Y_{+}^{*} \backslash\{0\}}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\lambda\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-g_{1}^{*}\left(x^{*}+\lambda p^{*}\right):\right. \\
& \\
& \left.\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\delta_{d o m g_{1}}^{*}\left(p^{*}\right)<0\right\}
\end{aligned}
$$

Recently, M. Laghdir and N. Benkenza studied in [4] the following vector reverse programming problem

$$
\alpha=\inf \left\{g_{1}(x): h_{2}(x) \notin-Y_{+}\right\}
$$

from the point of view of duality and they stated

Theorem 4.2. [4] Let X and Y be two Hausdorff locally convex vector spaces, $g_{1}: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ is a convex function and $h_{2}: X \longrightarrow Y \cup\{+\infty\}$ is a Y_{+}-convex mapping with closed epigraph. If there exists some point $\bar{x} \in X$ such that $h_{2}(\bar{x}) \in-$ int Y_{+}where "int Y_{+}" stands for topological interior of the cone Y_{+}, then we have
$\alpha=\inf _{p^{*} \in X^{*}} \max _{\lambda \geq 0} \min _{y^{*} \in Y_{+}^{*} \backslash\{0\}}\left\{\lambda\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-g_{1}^{*}\left(\lambda p^{*}\right):\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\delta_{d o m g_{1}}^{*}\left(p^{*}\right)<0\right\}$
By dropping the constraint qualification " $\exists \bar{x} \in X$ such that $h_{2}(\bar{x}) \in-$ int Y_{+}" in the above Theorem 4.2 we obtain consequently from Corollary 4.1
Corollary 4.2. Let X and Y be two Hausdorff locally convex vector spaces, g_{1} : $X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ is a convex function and $h_{2}: X \longrightarrow Y \cup\{+\infty\}$ is a Y_{+}-convex mapping. We assume that h_{2} with closed epigraph. Then

$$
\alpha=\inf _{\substack{p^{*} \in X^{*} \\ y^{*} \in Y_{+}^{*} \backslash\{0\}}} \max _{\lambda \geq 0}\left\{\lambda\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-g_{1}^{*}\left(\lambda p^{*}\right):\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)-\delta_{d o m g_{1}}^{*}\left(p^{*}\right)<0\right\}
$$

Another consequence of Theorem 4.1, that is the case when we consider h_{2} identically equal to zero, then the problem (\mathcal{Q}) becomes

$$
\alpha=\inf \left\{g_{1}(x)-g_{2}(x): h_{1}(x) \notin Y_{+}\right\}
$$

and hence we get
Corollary 4.3. Let X and Y be two Hausdorff locally convex vector spaces, g_{1}, g_{2} : $X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ are two convex functions and $h_{1}: X \longrightarrow Y$ is an Y_{+}-convex mapping. If we assume that $g_{2} \in \Gamma(X)$, then

$$
\alpha=\inf _{\substack{x^{*} \in X * * \\ y^{*} \in Y_{+}^{*} \backslash\{0\}}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)-\left(g_{1}+\lambda y^{*} \circ h_{1}\right)^{*}\left(x^{*}\right):\left(\delta_{d o m g_{1}}+y^{*} \circ h_{1}\right)^{*}(0)>0\right\}
$$

Proof. In the formula of Theorem 4.1, it suffices to observe that when $h_{2} \equiv 0$ we have $\left(y^{*} \circ h_{2}\right)^{*}\left(p^{*}\right)=\delta_{\{0\}}\left(p^{*}\right)$ and hence we take necessarily $p^{*}=0$.

In the case when $Y=\mathbb{R}$ and $Y_{+}=\mathbb{R}_{+}$, we recapture as consequence from Theorem 4.1 a result by B. Lemaire and M. Volle ([3] Theorem 3.1) given by
Corollary 4.4. Let X be a Hausdorff locally convex vector space, $g_{1}, g_{2}: X \longrightarrow$ $\mathbb{R} \cup\{-\infty,+\infty\}$ are convex functions and $h_{1}: X \longrightarrow \mathbb{R} \cup\{+\infty\}, h_{2}: X \longrightarrow$ $\mathbb{R} \cup\{-\infty,+\infty\}$ are two others convex functions. We assume that g_{2} and h_{2} are in $\Gamma(X)$. Then we have

$$
\begin{aligned}
\inf (\mathcal{P})= & \inf _{\left(x^{*}, p^{*}\right) \in X^{*} \times X^{*}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\lambda h_{2}^{*}\left(p^{*}\right)-\left(g_{1}+\lambda h_{1}\right)^{*}\left(x^{*}+\lambda p^{*}\right):\right. \\
& \left.h_{2}^{*}\left(p^{*}\right)-\left(\delta_{d o m g_{1}}+h_{1}\right)^{*}\left(p^{*}\right)<0\right\}
\end{aligned}
$$

Proof. At first, let us notice that when $Y=\mathbb{R}$ and $Y_{+}=\mathbb{R}_{+}$we have obviously $Y_{+}^{*}=\mathbb{R}_{+}$and according to Theorem 4.1, if $\operatorname{dom} h_{1}=X$ and $h_{2}: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ we obtain

$$
\begin{aligned}
\inf (\mathcal{P})=\inf _{\substack{\left(x^{*}, p^{*}\right) \in X^{*} \times X^{*} \\
\beta>0}} \max _{\lambda \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\right. & \lambda\left(\beta h_{2}\right)^{*}\left(p^{*}\right)-\left(g_{1}+\lambda \beta h_{1}\right)^{*}\left(x^{*}+\lambda p^{*}\right): \\
& \left.\left.\left(\beta h_{2}\right)^{*}\left(p^{*}\right)-\left(\delta_{d o m g_{1}}+\beta h_{1}\right)^{*}\right)\left(p^{*}\right)<0\right\}
\end{aligned}
$$

As $\left(\beta h_{2}\right)^{*}\left(p^{*}\right)=\beta h_{2}^{*}\left(\frac{p^{*}}{\beta}\right)$ and

$$
\left(\delta_{d o m g_{1}}+\beta h_{1}\right)^{*}\left(p^{*}\right)=\beta\left(\delta_{d o m g_{1}}+h_{1}\right)^{*}\left(\frac{p^{*}}{\beta}\right)
$$

hence by setting $z^{*}:=\frac{p^{*}}{\beta}$ and $\rho:=\lambda \beta$, we recapture the duality result due to B . Lemaire and M. Volle given by

$$
\begin{array}{r}
\inf (\mathcal{P})=\inf _{\left(x^{*}, z^{*}\right) \in X^{*} \times X^{*}} \max _{\rho \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\rho h_{2}^{*}\left(z^{*}\right)-\left(g_{1}+\rho h_{1}\right)^{*}\left(x^{*}+\rho z^{*}\right):\right. \\
\left.\left.h_{2}^{*}\left(z^{*}\right)-\left(\delta_{d o m g_{1}}+h_{1}\right)^{*}\right)\left(z^{*}\right)<0\right\} .
\end{array}
$$

If dom $h_{1}=X$ and $h_{2} \equiv-\infty\left(\right.$ resp. $h_{1} \equiv+\infty$ and $h_{2}: X \longrightarrow \mathbb{R} \cup\{-\infty,+\infty\}$), then we have

$$
\left\{x \in X: h_{1}(x)-h_{2}(x)<0\right\}=\left\{z^{*} \in X^{*}: h_{2}^{*}\left(z^{*}\right)-\left(\delta_{d o m g_{1}}+h_{1}\right)^{*}\left(z^{*}\right)<0\right\}=\emptyset
$$

which yields

$$
\begin{aligned}
\inf (\mathcal{P})= & \inf _{\left(x^{*}, z^{*}\right) \in X^{*} \times X^{*}} \max _{\rho \geq 0}\left\{g_{2}^{*}\left(x^{*}\right)+\rho h_{2}^{*}\left(z^{*}\right)-\left(g_{1}+\rho h_{1}\right)^{*}\left(x^{*}+\rho z^{*}\right):\right. \\
& \left.\left.h_{2}^{*}\left(z^{*}\right)-\left(\delta_{d o m g_{1}}+h_{1}\right)^{*}\right)\left(z^{*}\right)<0\right\}
\end{aligned}
$$

$$
=+\infty
$$

The proof is complete.
Acknowledgment. The author would like to thank an anonymous referee for his valuable remarks and suggestions.

References

[1] C. Combari, M. Laghdir and L. Thibault, Sous différentiel de fonctions convexes composées, Ann. Sci. Math. Quebec 18 (1994), 119-148.
[2] B. Lemaire, Duality in reverse convex programming, Siam J. Optim. 8 (1998), 1029-1037.
[3] B. Lemaire and M.Volle, Duality in DC-programming, in Generalized Convexity, Generalized Monotonicity: Recent results, J.P. Crouzeix et al.(eds), Kluwer Academic Publishers, 1998, 331-345.
[4] M. Laghdir and N. Benkenza, A note on duality in reverse programming, Septièmes Journées d'Analyse Numérique et d'Optimisation, JANO 7. Université Abdelmalek Essaadi, faculté des Sciences et Techniques, Tanger 17, 18 et 19 Avril 2002.
[5] J. J. Moreau, Théorèmes inf-sup, C. R. Acad. Sc. Paris, t. 258 (1964), 2720-2722.
M.LAGHDIR

Département de Mathématiques, Faculté des Sciences, B.P. 20, El-Jadida, Maroc.
E-mail address: laghdir@ucd.ac.ma
N. Benkenza

Département de Mathématiques, Faculté des Sciences, B.P. 20, El-Jadida, Maroc.
N. NAJEH

Département de Mathématiques, Faculté des Sciences, B.P. 20, El-Jadida, Maroc.

[^0]: 2000 Mathematics Subject Classification. 90C48, 49N15, 90C26.
 Key words and phrases. Conjugate, duality, reverse convex constraint, DC-optimization.

