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DUALITY IN DC-CONSTRAINED PROGRAMMING VIA
DUALITY IN REVERSE CONVEX PROGRAMMING

M. LAGHDIR, N. BENKENZA, AND N. NAJEH

Abstract. This paper establishes a duality theory associated with primal prob-
lem

inf{g1(x)− g2(x) : h1(x)− h2(x) /∈ Y+ }
where g1, g2 : X −→ IR ∪ {−∞, +∞} are two convex functions on the Hausdorff
locally convex real vector space X and h1, h2 : X −→ Y ∪{ +∞} are two convex
vector valued mappings taking their values in a real partially ordered topological
vector space Y . The partial order is induced by a convex cone Y+ ⊂ Y. The
approach for dealing with this duality is based on the use of an important formula
of nonconvex duality, due to B. Lemaire [2], associated with a reverse convex
programming problem.

1. Introduction

A wide class of constrained DC-programming problems has recently received
particular attention. It enables to study, in a general and unified way, a large
number of problems arising in economics, optimization and operations research.
That is minimizing a difference of two extended real-valued convex functions subject
to a DC-constraint i.e it concerns the primal problem

(P) inf{g1(x)− g2(x) : h1(x)− h2(x) < 0 }
where g1, g2, h1 and h2 are extended real-valued convex functions on the Hausdorff
locally convex real vector space X.

In a recent work [3], B. Lemaire and M. Volle presented a duality formula asso-
ciated with problem (P) by introducing a suitable dual problem defined from the
Legendre-Fenchel conjugates of the data functions g1, g2, h1 and h2. The approach
adopted by B. Lemaire and M. Volle for proving their formula is based on the use
of convex analysis theory and essentially the ” inf sup” Theorem of J. J. Moreau
[5]. Let us note that this large class contains an important subclass of programming
problems namely reverse convex optimization problems by taking g2 ≡ 0 and h1 ≡ 0
and B. Lemaire, in his recent paper [2], has established a duality theory associated
with this subclass.

In the present work, we address a main question, that is : how to obtain the du-
ality theory associated with constrained DC-programming problem (P) via duality
in reverse convex programming? Indeed, the answer of this question gives us a new
approach totaly different from the technique used by B. Lemaire and M. Volle for
obtaining the corresponding dual problem linked to (P) and allows to transform
the problem (P) into a reverse convex programming problem on some appropriate
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space. Our approach, also enables us to establish a similar duality result associated
with a broad class of constrained DC-programming problems including problem
(P). That is minimizing the difference of two convex functions subject to a vector
DC-constraint i.e.

(Q) α := inf{g1(x)− g2(x) : h1(x)− h2(x) /∈ Y+ }
where g1, g2 : X −→ IR∪{−∞,+∞} are two extended real-valued convex functions
and h1, h2 : X −→ Y ∪{ +∞} are two convex vector valued mappings taking values
in a real partially ordered topological vector space Y equipped with a preorder
induced by a convex cone Y+. Obviously, in the case when Y = IR and Y+ = IR+

we found the problem (P) as a particular case.
The approach that we will adopt for stating our main result is based on an equivalent
transformation of the problem (Q) into a minimization problem given by

α = inf
(x,y,x∗)∈X×Y×X∗

{G(x, y) + g∗2(x
∗) : H(x, y) > 0}

in which appears the following reverse convex programming problem

θ := inf
(x,y)∈X×Y

{G(x, y) : H(x, y) > 0}

where G and H are two auxiliary convex functions defined on the product space
X × Y expressed both by means of the data functions g1, g2, h1 and h2. This allow
to derive our desired result by applying directly Lemaire’s duality formula [2]. As
consequence, we recapture particularly in the case when Y = IR and Y+ = IR+, the
duality result due to B. Lemaire and M. Volle [3].

2. Notations and definitions

Throughout this paper X and Y denote two topological real vector spaces with
respectives topological duals X∗ and Y ∗. For the sake of simplicity we use the same
symbol 〈 , 〉 to denote the bilinear pairing between X and X∗ (resp. Y and Y ∗).
Naturally, we obtain a duality between X∗ × Y ∗ and X × Y given by

〈(x∗, y∗), (x, y)〉 := 〈x∗, x〉+ 〈y∗, y〉
for every (x, y) ∈ X × Y and (x∗, y∗) ∈ X∗ × Y ∗. By Y+ we denote a convex cone
in Y which makes Y a partially ordered topological vector space given by

y ≤Y z ⇐⇒ z − y ∈ Y+.

By Y ∗
+ we denote the dual positive cone

Y ∗
+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+}.

We adjoint to Y a greatest abstract element denoted by +∞ i.e. for any y ∈ Y

y ≤Y +∞.

In what follows, we use the following extensions of the addition and the product in
IR ∪ {−∞,+∞}:

(+∞) + (−∞) = (−∞) + (+∞) = +∞, 0× (−∞) = 0, 0× (+∞) = +∞.

A mapping h : X −→ Y ∪ { +∞} is said to be Y+-convex if

h(λx1 + (1− λ)x2) ≤Y λh(x1) + (1− λ)h(x2)
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for each x1, x2 ∈ X and each λ ∈ [0, 1]. By

dom h := {x ∈ X : h(x) ∈ Y },

and

Epi h := {(x, y) ∈ X × Y : h(x) ≤Y y}
we denote respectively its effective domain and its epigrah. To each extended

real-valued function f : X −→ IR ∪ {−∞,+∞} corresponds its Legendre-Fenchel
transform f∗ defined on the topological dual X∗ by

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}

for any x∗ ∈ X∗. If C is a nonempty subset of X, then its indicator function
δC : X −→ IR ∪ {+∞} is defined for every x ∈ X by

δC(x) :=

{
0 if x ∈ C

+∞, otherwise

Given a function g : Y −→ IR ∪ {−∞, +∞} and a mapping h : X −→ Y ∪ { +∞},
by g ◦ h we set the composition function as

(2.1) (g ◦ h)(x) :=





g(h(x)) if x ∈ h−1(Y )
sup
y∈Y

g(y), otherwise.

In the sequel we denote by Γ(X) the set of lower semicontinuous proper convex real
functions plus the constants +∞ and −∞.

3. Primal problem and preliminary result

Let g1, g2 : X −→ IR∪ {−∞,+∞} be two extended real-valued convex functions
and h1, h2 : X −→ Y ∪ { +∞} be two Y+-convex mappings. We are interested in
finding the infimal value

(P) α := inf{g1(x)− g2(x) : h1(x)− h2(x) /∈ Y+}

In the case when Y = IR, Y+ = IR+, g2 ≡ 0 and h1 ≡ 0, we obtain a reverse
convex programming problem and B. Lemaire in his recent paper [2] established for
this scalar reverse convex minimization problem an important formula of duality
given by

Theorem 3.1. Let X be a Hausdorff locally convex vector space and g, h : X −→
IR ∪ {−∞,+∞} two convex functions with h ∈ Γ(X). Then

inf
h(x)>0

g(x) = inf
x∗∈X∗ max

λ≥0
{λh∗(x∗)− g∗(λx∗) : h∗(x∗)− δ∗domg(x

∗) < 0}
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4. The main result

In order to state a similar duality formula related to problem (Q), we start with
the following lemma

Lemma 4.1. If we set for any y ∈ Y

Ey := {x ∈ X : δ−Y+(h2(x)− y) > 0 and h1(x)− y ∈ −Y+ }
and we suppose that dom h1 = X then we have

{x ∈ X : h1(x)− h2(x) /∈ Y+ } =
⊔

y∈Y

Ey.

Proof. Let x ∈ X such that h1(x) − h2(x) /∈ Y+. By putting y = h1(x) we obtain
x ∈ Ey. Conversely, let x ∈ ⊔

y∈Y Ey, there exists some y ∈ Y satisfying h2(x)−y /∈
−Y+ and h1(x)− y ∈ −Y+. If we suppose h1(x)− h2(x) ∈ Y+ we get

h2(x)− y = h2(x)− h1(x) + h1(x)− y ∈ −Y+ − Y+ = −Y+

which contradicts the fact that h2(x)− y /∈ −Y+. ¤

By introducing the following minimization problem

γ := inf
(x,y)∈X×Y

{g1(x) + δ−Y+(h1(x)− y)− g2(x) : δ−Y+(h2(x)− y) > 0 }

which will play a crucial role for stating our main result, we get

Proposition 4.1. If we suppose that dom h1 = X then we have α = γ.

Proof. According to Lemma 4.1, it follows that

α = inf{g1(x)− g2(x) : x ∈
⊔

y∈Y

Ey }

= inf
(x,y)∈X×Y

{g1(x)− g2(x) : x ∈ Ey }

= inf
(x,y)∈X×Y

{g1(x)− g2(x) + δ−Y+(h1(x)− y) : δ−Y+(h2(x)− y) > 0 } = γ. ¤

Let us consider the following auxiliary functions G, H : X × Y −→ IR ∪
{−∞,+∞} given by

H(x, y) := δ−Y+(h2(x)− y)

G(x, y) := g1(x) + δ−Y+(h1(x)− y)− 〈x∗, x〉
where x∗ ∈ X∗ is arbitrary.

In the proof of the main theorem we will need the following lemma

Lemma 4.2. For any (p∗, y∗) ∈ X∗ × Y ∗, we have
1) G∗(p∗, y∗) = (g1 − y∗ ◦ h1)∗(p∗ + x∗) + δY ∗+(−y∗).
2) H∗(p∗, y∗) = (−y∗ ◦ h2)∗(p∗) + δY ∗+(−y∗).
3) δ∗domG(p∗, y∗) = (δdomg1 − y∗ ◦ h1)∗(p∗) + δY ∗+(−y∗).
4) Epi H = Epi h2 × [0,+∞[.
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Proof. For any (p∗, y∗) ∈ X∗ × Y ∗, we have
1)

G∗(p∗, y∗) = sup
(x,y)∈X×Y

{〈p∗, x〉+ 〈y∗, y〉 − g1(x)− δ−Y+(h1(x)− y) + 〈x∗, x〉}.

If there exists some x ∈ X such that g1(x) = −∞, then according to the previous
conventions, we have obviously

G∗(p∗, y∗) = (g1 − y∗ ◦ h1)∗(p∗ + x∗) + δY ∗+(−y∗) = +∞.

If we assume now that g1 does not take the value −∞, then we get

G∗(p∗, y∗) = sup
(x,y)∈X×Y

h1(x)−y∈−Y+

{〈p∗, x〉+ 〈y∗, y〉 − g1(x) + 〈x∗, x〉}.

By setting z := h1(x)− y, we obtain

G∗(p∗, y∗) = sup
z∈−Y+

x∈h−1
1 (Y )

{〈p∗ + x∗, x〉 − g1(x) + (y∗ ◦ h1)(x)− 〈y∗, z〉}

= sup
x∈h−1

1 (Y )

{〈p∗ + x∗, x〉 − g1(x) + (y∗ ◦ h1)(x)}+ δ∗−Y+
(−y∗)

= sup
x∈h−1

1 (Y )

{〈p∗ + x∗, x〉 − (g1 − y∗ ◦ h1)(x)}+ δY ∗+(−y∗).

Now, we claim that

(4.1) G∗(p∗, y∗) = (g1 − y∗ ◦ h1)∗(p∗ + x∗) + δY ∗+(−y∗).

Indeed, if −y∗ /∈ Y ∗
+ then δY ∗+(−y∗) = +∞ and hence the equality (4.1) holds.

If y∗ ≡ 0 then by virtue of convention (2.1) we have y∗ ◦ h1 ≡ 0 and thus we get

G∗(p∗, 0) = sup
x∈X

{〈p∗ + x∗, x〉 − g1(x)}

= g∗1(p
∗ + x∗).

If −y∗ ∈ Y ∗
+\{0} then there exists some y0 ∈ Y+ such that 〈−y∗, y0〉 > 0 and since

λ〈−y∗, y0〉 ≤ sup
y∈Y

〈−y∗, y〉, ∀λ > 0

it follows from convention (2.1), by letting λ −→ +∞, that

(−y∗ ◦ h1)(x) = +∞, if h1(x) = +∞
which yields

(g1 − y∗ ◦ h1)(x) = +∞, if h1(x) = +∞
and therefore we get the required result (4.1).

2) By taking in the above result 1) g1 ≡ 0, x∗ ≡ 0 and replacing h1 by h2 we
obtain

H∗(p∗, y∗) = (−y∗ ◦ h2)∗(p∗) + δY ∗+(−y∗).

3) At first, it is easy to see that

dom G = (dom g1 × Y ) ∩ Epi h1
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and therefore for any (p∗, y∗) ∈ X∗ × Y ∗ we have

δ∗domG(p∗, y∗) = sup
(x,y)∈X×Y

{〈p∗, x〉+ 〈y∗, y〉 − δ(domg1×Y )∩Epih1
(x, y) }

= sup
(x,y)∈X×Y

{〈p∗, x〉+ 〈y∗, y〉 − δdomg1×Y (x, y)− δEpih1(x, y) }

= sup
(x,y)∈X×Y

{〈p∗, x〉+ 〈y∗, y〉 − δdomg1(x)− δ−Y+(h1(x)− y) }.

Now, we are in a position to apply 1) by replacing g1 by δdomg1 and taking x∗ ≡ 0
and hence we obtain the result

δ∗domG(p∗, y∗) = (δdomg1 − y∗ ◦ h1)∗(p∗) + δY ∗+(−y∗).

4) It is obvious. ¤
Remark 4.1. If we authorise the mapping h2 taking at some points the value −∞,
then according to definitions of Epi h2 and the mapping H we obtain

Epi H = (Epi h2\(h−1
2 (−∞)× Y ))× [0,+∞[

which is not closed in general although Epi h2 is closed.

Now, we are in position to state and prove the main result of this paper.

Theorem 4.1. Let X and Y be two Hausdorff locally convex vector spaces, g1, g2 :
X −→ IR ∪ {−∞,+∞} are two convex functions and h1 : X −→ Y , h2 : X −→
Y ∪ {+∞} are two Y+-convex mappings. We assume that g2 ∈ Γ(X) and h2 has a
closed epigraph. Then we have

α = inf
(x∗,p∗)∈X∗×X∗

y∗∈Y ∗+\{0}

max
λ≥0

{g∗2(x∗) + λ(y∗ ◦ h2)∗(p∗)− (g1 + λy∗ ◦ h1)∗(x∗ + λp∗) :

(y∗ ◦ h2)∗(p∗)− (δdomg1 + y∗ ◦ h1)∗(p∗) < 0}.
Proof. Since g2 ∈ Γ(X), we have for any x ∈ X

g2(x) = g∗∗2 (x) = sup
x∗∈X∗

{〈x∗, x〉 − g∗2(x
∗) }

and hence it follows, according to Proposition 4.1, that

(4.2) α = inf
(x,y,x∗)∈X×Y×X∗

{G(x, y) + g∗2(x
∗) : H(x, y) > 0 }.

Let us observe that in the above minimization problem appears the following reverse
convex programming problem

θ := inf
(x,y)∈X×Y

{G(x, y) : H(x, y) > 0 }.

defined on the product space X × Y and as Epi H is closed (using Lemma 4.2 and
the fact that Epi h2 is closed), it follows from Lemaire’s duality Theorem 3.1 that

θ = inf
(p∗,y∗)∈X∗×Y ∗

max
λ≥0

{λH∗(p∗, y∗)−G∗(λp∗, λy∗) : H∗(p∗, y∗)−δ∗domG(p∗, y∗) < 0}.

If we combine the above equality with Lemma 4.2 and by noticing that λδY ∗+ = δY ∗+
and −y∗ ∈ Y ∗

+ then we obtain
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α = inf
(x∗,p∗)∈X∗×X∗

y∗∈Y ∗+

max
λ≥0

{g∗2(x∗) + λ(y∗ ◦ h2)∗(p∗)− (g1 + λy∗ ◦ h1)∗(x∗ + λp∗) :

(y∗ ◦ h2)∗(p∗)− (y∗ ◦ h1 + δdomg1)
∗(p∗) < 0}.

Now, it remains to show that the infimum over y∗ ∈ Y ∗
+ is, in fact, taken over

Y ∗
+\{0} i.e. the following strict inequality

(4.3) (y∗ ◦ h2)∗(p∗)− (δdomg1 + y∗ ◦ h1)∗(p∗) < 0,

does not hold for y∗ = 0. Suppose the contrary and by using the convention (2.1),
the strict inequality (4.3) becomes

δ{0}(p∗)− δ∗domg1
(p∗) < 0

i.e
δ∗domg1

(0) = sup
x∈X

{−δdomg1(x)} > 0.

This contradicts the fact that δ∗domg1
(0) ≤ 0 since δdomg1(x) ≥ 0 for any x ∈ X. The

proof is complete. ¤
Remark 4.2. 1) The right-hand side in the formula given by Theorem 4.1 can be
expressed by means of each datum Legendre-Fenchel conjugate by developing the
expressions (g1 + λy∗ ◦ h1)∗ and (δdomg1 + y∗ ◦ h1)∗ as infimal convolution under
additional constraint qualification (see [1]).

2) Let us observe that the transformation (4.2) allows us to reduce the problem
(Q) to a reverse convex programming problem on the product space X×Y ×X∗. For
this, it suffices to set (x, y, x∗) → G̃(x, y, x∗) := G(x, y) + g∗2(x

∗) and (x, y, x∗) →
H̃(x, y, x∗) := H(x, y) which are obviously both convex, and hence according to
(4.2) we may rewrite

α = inf{G̃(x, y, x∗) : H̃(x, y, x∗) > 0}.
Let us consider now the case when h1 is identically equal to zero. In such a case,

we get the problem of minimizing a DC-function subject to a vector reverse convex
constraint

α = inf{g1(x)− g2(x) : h2(x) /∈ −Y+ }
and hence we deduce from Theorem 4.1

Corollary 4.1. Let X and Y be two Hausdorff locally convex vector spaces, g1, g2 :
X −→ IR ∪ {−∞,+∞} are two convex functions and h2 : X −→ Y ∪ { +∞} is a
Y+-convex mapping. We assume that g2 ∈ Γ(X) and h2 with closed epigraph. Then

α = inf
(x∗,p∗)∈X∗×X∗

y∗∈Y ∗+\{0}

max
λ≥0

{g∗2(x∗) + λ(y∗ ◦ h2)∗(p∗)− g∗1(x
∗ + λp∗) :

(y∗ ◦ h2)∗(p∗)− δ∗domg1
(p∗) < 0}.

Recently, M. Laghdir and N. Benkenza studied in [4] the following vector reverse
programming problem

α = inf{g1(x) : h2(x) /∈ −Y+ }
from the point of view of duality and they stated
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Theorem 4.2. [4] Let X and Y be two Hausdorff locally convex vector spaces,
g1 : X −→ IR ∪ {−∞,+∞} is a convex function and h2 : X −→ Y ∪ { +∞} is
a Y+-convex mapping with closed epigraph. If there exists some point x̄ ∈ X such
that h2(x̄) ∈ −int Y+ where ”int Y+” stands for topological interior of the cone Y+,
then we have

α = inf
p∗∈X∗ max

λ≥0
min

y∗∈Y ∗+\{0}
{λ(y∗ ◦h2)∗(p∗)−g∗1(λp∗) : (y∗ ◦h2)∗(p∗)− δ∗domg1

(p∗) < 0}

By dropping the constraint qualification “∃x̄ ∈ X such that h2(x̄) ∈ −int Y+” in
the above Theorem 4.2 we obtain consequently from Corollary 4.1

Corollary 4.2. Let X and Y be two Hausdorff locally convex vector spaces, g1 :
X −→ IR ∪ {−∞,+∞} is a convex function and h2 : X −→ Y ∪ {+∞} is a
Y+-convex mapping. We assume that h2 with closed epigraph. Then

α = inf
p∗∈X∗

y∗∈Y ∗+\{0}

max
λ≥0

{λ(y∗ ◦ h2)∗(p∗)− g∗1(λp∗) : (y∗ ◦ h2)∗(p∗)− δ∗domg1
(p∗) < 0}

Another consequence of Theorem 4.1, that is the case when we consider h2 iden-
tically equal to zero, then the problem (Q) becomes

α = inf{g1(x)− g2(x) : h1(x) /∈ Y+ }
and hence we get

Corollary 4.3. Let X and Y be two Hausdorff locally convex vector spaces, g1, g2 :
X −→ IR∪{−∞,+∞} are two convex functions and h1 : X −→ Y is an Y+-convex
mapping. If we assume that g2 ∈ Γ(X), then

α = inf
x∗∈X∗

y∗∈Y ∗+\{0}

max
λ≥0

{g∗2(x∗)− (g1 + λy∗ ◦ h1)∗(x∗) : (δdomg1 + y∗ ◦ h1)∗(0) > 0}

Proof. In the formula of Theorem 4.1, it suffices to observe that when h2 ≡ 0 we
have (y∗ ◦ h2)∗(p∗) = δ{0}(p∗) and hence we take necessarily p∗ = 0. ¤

In the case when Y = IR and Y+ = IR+, we recapture as consequence from
Theorem 4.1 a result by B. Lemaire and M. Volle ([3] Theorem 3.1) given by

Corollary 4.4. Let X be a Hausdorff locally convex vector space, g1, g2 : X −→
IR ∪ {−∞,+∞} are convex functions and h1 : X −→ IR ∪ {+∞}, h2 : X −→
IR ∪ {−∞, +∞} are two others convex functions. We assume that g2 and h2 are
in Γ(X). Then we have

inf (P) = inf
(x∗,p∗)∈X∗×X∗

max
λ≥0

{g∗2(x∗) + λh∗2(p
∗)− (g1 + λh1)∗(x∗ + λp∗) :

h∗2(p
∗)− (δdomg1 + h1)∗(p∗) < 0}

Proof. At first, let us notice that when Y = IR and Y+ = IR+ we have obviously
Y ∗

+ = IR+ and according to Theorem 4.1, if dom h1 = X and h2 : X −→ IR∪{+∞}
we obtain

inf (P) = inf
(x∗,p∗)∈X∗×X∗

β>0

max
λ≥0

{g∗2(x∗) + λ(βh2)∗(p∗)− (g1 + λβh1)∗(x∗ + λp∗) :

(βh2)∗(p∗)− (δdomg1 + βh1)∗)(p∗) < 0}.
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As (βh2)∗(p∗) = βh∗2(
p∗
β ) and

(δdomg1 + βh1)∗(p∗) = β(δdomg1 + h1)∗(
p∗

β
)

hence by setting z∗ := p∗
β and ρ := λβ, we recapture the duality result due to B.

Lemaire and M. Volle given by

inf (P) = inf
(x∗,z∗)∈X∗×X∗

max
ρ≥0

{g∗2(x∗) + ρh∗2(z
∗)− (g1 + ρh1)∗(x∗ + ρz∗) :

h∗2(z
∗)− (δdomg1 + h1)∗)(z∗) < 0}.

If dom h1 = X and h2 ≡ −∞ (resp. h1 ≡ +∞ and h2 : X −→ IR ∪ {−∞,+∞}),
then we have

{x ∈ X : h1(x)− h2(x) < 0} = {z∗ ∈ X∗ : h∗2(z
∗)− (δdomg1 + h1)∗(z∗) < 0} = ∅

which yields

inf (P) = inf
(x∗,z∗)∈X∗×X∗

max
ρ≥0

{g∗2(x∗) + ρh∗2(z
∗)− (g1 + ρh1)∗(x∗ + ρz∗) :

h∗2(z
∗)− (δdomg1 + h1)∗)(z∗) < 0}

= +∞.

The proof is complete. ¤
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