R Py, 6,/‘

%,

Journal of Nonlinear and Convex Analysis ;E: E ka Pﬂb"Shel'S
Volume 5, Number 2, 2004, 265-274 < WJ ISSN 1880-5221 ONLINE JOURNAL

COINCIDENCE THEORY FOR Uf MAPS AND INEQUALITIES

RAVI P. AGARWAL AND DONAL O'REGAN

ABSTRACT. Applying a new fixed point theorem for YUY maps in extension type
spaces we obtain new coincidence theorems and minimax inequalities.

1. INTRODUCTION

This paper establishes new minimax and quasi—variational inequalities for a gen-
eral class of maps, namely the UF maps of Park. Along the way new coincidence
results and analytic alternatives are also presented. Our results in particular im-
prove those in [2, 3, 4, 6, 7]; for example Theorem 2.13 is a generalization of von
Neumann’s minimax theorem. The theory relies on a new fixed point theorem [1]
in extension type spaces.

For the remainder of this section we present some definitions and known results
which will be needed throughout this paper. Of particular importance will be the
class UF. Suppose X and Y are Hausdorff topological spaces. Given a class X
of maps, X(X,Y) denotes the set of maps F : X — 2¥ (nonempty subsets of Y)
belonging to X', and X, the set of finite compositions of maps in X. A class U of
maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;
(ii). each F € U, is upper semicontinuous and compact valued; and
(iii). for any polytope P, F' € U.(P, P) has a fixed point, where the intermediate
spaces of composites are suitably chosen for each U.

Definition 1.1. F € UF(X,Y) if for any compact subset K of X, there is a
G €U (K,Y) with G(x) C F(z) for each z € K.

Recall that U is closed under compositions. We also discuss special examples
of UF maps. Let X and Y be subsets of Hausdorff topological vector spaces Ej
and Fs respectively. We will consider maps F : X — K(Y); here K(Y) denotes
the family of nonempty compact subsets of Y. We say F: X — K(Y) is Kakutani
if I’ is upper semicontinuous with convex values. A nonempty topological space is
said to be acyclic if all its reduced Cech homology groups over the rationales are
trivial. Now F : X — K(Y) is acyclic if F' is upper semicontinuous with acyclic
values. F': X — K(Y) is said to be an O’Neill map if F' is continuous and if the
values of F' consist of one or m acyclic components (here m is fixed).

Given two open neighborhoods U and V of the origins in £ and FE5 respec-
tively, a (U, V)—approximate continuous selection of F': X — K(Y') is a continuous
function s: X — Y satisfying

s(z)e (Flz+U)NX]|+V)NY forevery z € X.

We say F : X — K(Y) is approximable if it is upper semicontinuous and if its
restriction F|x to any compact subset K of X admits a (U, V)-approximate
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continuous selection for every open neighborhood U and V of the origins in FEj
and Fy respectively.

For our next definition let X and Y be metric spaces. A continuous single
valued map p:Y — X is called a Vietoris map if the following two conditions are
satisfied:

(i). for each x € X, the set p~1(x) is acyclic

(ii). p is a proper map i.e. for every compact A C X we have that p~!(A) is

compact.

Definition 1.2. A multifunction ¢ : X — K(Y) is admissible (strongly) in the
sense of Gorniewicz (and we write ¢ € Ad(X,Y)), if ¢ : X — K(Y) is upper
semicontinuous, and if there exists a metric space Z and two continuous maps
p:Z — X and ¢q: Z — Y such that

(i). p is a Vietoris map
and
(ii). ¢(z) = q(p~'(z)) for any z € X.

It should be noted that ¢ upper semicontinuous is redundant in Definition 1.2.
Notice the Kakutani maps, the acyclic maps, the O’Neill maps, the approximable
maps and the maps admissible in the sense of Gorniewicz are examples of U maps.

For a subset K of a topological space, we denote by Covx (K) the directed set
of all coverings of K by open sets of X (usually we write Cov (K) = Covx (K)).
Given two maps F, G : X — 2¥ and a € Cov(Y), F and G are said to be
a—close, if for any x € X there exists U, € a, y € F(z)NU, and w € G(z) N U,.

By a space we mean a Hausdorff topological space. A space Y 1is an
extension space for @ (written Y € ES(Q)) if for any pair (X, K) in @ with
K C X closed, any continuous function fy : K — Y extends to a continuous
function f: X — Y.

A space Y is an approximate extension space for ) (and we write Y € AES(Q))
if for any a € Cov(Y) and any pair (X,K) in @ with K C X closed, and any
continuous function fy : K — Y, there exists a continuous function f : X — Y
such that f|x is a—close to fo.

Definition 1.3. Let V be a subset of a Hausdorff topological vector space E. Then
we say V is Schauder admissible if for every compact subset K of V and every
covering a € Covy(K), there exists a continuous function (called the Schauder
projection) 7w, : K — V such that

(i). mq and i: K — V are a—close;
(ii). mo(K) is contained in a subset C' C V with C € AES(compact).

Remark 1.1. In Definition 1.3 we may replace £ a Hausdorff topological vector
space with F a uniform space.

Examples. Normed spaces, absolute retracts (AR’s) and complete metric topo-
logical vector spaces admissible in the sense of Klee are examples of F.S(compact)
spaces. Convex subsets of locally convex topological vector spaces are AFE.S(com-
pact). Spaces admissible in the sense of Klee and AFES(compact) spaces are
Schauder admissible.
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The following fixed point results were established in [1].

Theorem 1.1. Let V' be a Schauder admissible subset of a Hausdorff topological
vector space E and F € UF(V,V) a compact upper semicontinuous map with closed
valued. Then F has a fized point.

Theorem 1.2. Let V € ES(compact) and F € UF(V,V) a compact map. Then
F has a fized point.

Remark 1.2. Notice in Theorem 1.1 we could replace Hausdorff topological vector
space with uniform space. In Theorem 1.2 we only assume that V is a Hausdorff
topological space.

Next let Z and W be subsets of Hausdorff topological vector spaces Y7 and Y3
and F a multifunction. We say F' € PK(Z, W) if W is convex, and there exists
amap S:Z — W with

Z=U{intS(w): we W}, co(S(z)) C F(z) for x€ Z;
here S~'(w) = {z: w € S(2)}. We recall the following selection theorem [5].

Theorem 1.3. If Z is paracompact, W is convex, and F € PK(Z,W). Then
there exists a continuous (single valued) function f : Z — W with f(z) € F(x)
for each x € Z.

2. COINCIDENCE AND MINIMAX INEQUALITIES

We begin this section by presenting some coincidence theorems. These will then
be used to establish some analytic alternatives which in turn will be used to derive
new minimax inequalities. Four coincidence theorems will be presented and the
proof in each case relies on Theorem 1.1 (and sometimes Theorem 1.3).

Theorem 2.1. Let Q be a paracompact Schauder admissible subset of a Hausdorff
topological vector space and Y a convexr subset of a Hausdorff topological vector
space. Suppose F € UF(Y,Q) is a upper semicontinuous map with closed values
and G € PK(Q,Y) is a compact map. Then G and F~' have a coincidence.
That is there exists (zo,y0) € O x Y with yo € G(xg) N F~1(zg) (i.e. there ewists
(x0,%0) € QXY with yo € G(xo) and xo € F(yo)).

Proof. From Theorem 1.3 there exists a continuous selection g : 2 — Y of G. Now
since U} is closed under compositions we notice J = Fog € UF(2,2) is a compact
upper semicontinuous map with closed values. Now Theorem 1.1 guarantees that
there exists xzp € Q with g € F g(zp). Let yo = g(xo). Then xg € F(yp) and
Yo € G(xg). O

Theorem 2.2. Let Q be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Suppose F € UF(Y,Q)
and G € UF(Q,Y) are upper semicontinuous compact maps with closed values.
Then G and F~' have a coincidence.

Proof. Notice J = F oG € UF(Q,§) is a upper semicontinuous compact map
with closed values so Theorem 1.1 guarantees that there exists zg € ) with zg €
F G(zg). That is xg € Fyo for some yy € G xy. O
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Theorem 2.3. Let  be a convex Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Suppose F' € UF(,Y) is a upper semicontinuous compact map with closed values
and G € PK(Y,Q) is a compact maps. Then F and G~! have a coincidence i.e.
there exists (xo,y0) € Q@ XY with yo € F(xg) and xo € G(yp).

Proof. From Theorem 1.3 there exists a continuous selection g : ¥ — Q of G.
Notice J = goF € UF(Q,Q) is a compact map. Theorem 1.1 guarantees that there
exists xg € Q with xg € g F' (x¢). Thus there exists yo € F xg with xg = g(y9). O

Remark 2.1. In Theorems 2.1-2.3 we could replace €2 is a subset of a Hausdorff
topological vector space with € is a subset of a uniform space. If Q is E.S(compact)
then we need only assume (2 is a Hausdorff topological space in Theorems 2.1-2.3
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorems 2.2-2.3.

Example. Suppose 2 € ES(compact) (for example suppose Q € AR), Y a
Hausdorff topological space and assume F € Ad(Y,Q?), G € Ad(),Y) are compact
maps. Then G and F~! have a coincidence.

Theorem 2.4. Let ) be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Suppose F € PK(Y,Q) and G € PK(Q,Y) are
compact maps. Then G and F~' have a coincidence.

Proof. From Theorem 1.2 there exists a continuous selection g : @ — Y of G
and a continuous selection f :Y — Q of F. Notice J = fog e UF(Q,Q) is a
continuous compact map. Theorem 1.1 guarantees that there exists xg €  with

zo = f g (zo). O

Next we present new analytic alternatives and minimax inequalities. Our results
in particular improve [3, 4, 6, 7]. We first establish four analytic alternatives.

Theorem 2.5. Let © be a paracompact Schauder admissible subset of a Hausdorff
topological vector space and Y a convexr subset of a Hausdorff topological vector
space. Let f, g: Q2 xY — R be such that

(2.1) g(x,y) < flx,y) forall (z,y) € QA xY.
Fiz o € R and let
G)={yeY: f(z,y) >a}
and
Fy)={z € Q: g(z,y) < a}.
Suppose F € UF(Y, Q) is upper semicontinuous with compact values. Also assume

if G(z) #0 for every x € Q then G € PK(Q,Y). If F and G are compact maps
then either

(A1). there exists zop € Q with f(z0,y) <« forall yeY
or
(A2). there exists (xo,yo) € 2 XY with g(xo,yo0) < a < f(x0,y0)

occur.
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Proof. Either G(x) # () for every x € Q or not. If G(z) # 0 for every = € Q
then G € PK(Q,Y) so Theorem 2.1 implies that there exists (zg,y9) € Q X Y
with 29 € F (yo) and yo € G (x0) i.e. (A2) occurs. If G(x) # () for every z € Q2
does not hold, then there exists 2z € Q with G(z9) = 0. That is f(z0,y) < « for
every y € Y so (Al) occurs. O

Remark 2.2. If g = f in Theorem 2.5 then (A2) cannot occur.
Remark 2.3. If we replace F' € UF(Y,§2) in Theorem 2.5 by
if F(y)#0 forevery y €Y then F eUr(Y,Q),

then the conclusion in Theorem 2.5 is that either (A1), (A2) or

(A3). there exists wp € Y with g(z,wp) > « for all z € Q
occur. We note in this case if there exists wy € Y with F(wg) =0 then G(x) # ()
for every x € €, since if there exists zp € Q with G(z9) = (0 then in particular

9(z0,wo) > a and f(zp,wo) < a, so f(z0,wp) < a < g(20,wp) which contradicts
(2.1).

Essentially the same reasoning as in Theorem 2.5 except now we use Theorem
2.3 gives the following result.

Theorem 2.6. Let © be a convex Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Let f,g:QxY — R be such that (2.1) occurs. Fiz o € R and let

Gly) ={z e Q: f(z,y) >}
and

F(z)={yeY: g(z,y) <a}
Suppose F € UF(Q,Y") is upper semicontinuous with compact values. Also assume
if G(y) #0 for every ye€Y then G € PK(Y,Q). If F and G are compact maps
then either

(A1). there exists wo € Y with f(z,wp) <« for all x €
or
(A2). there exists (xo,yo) € 2 XY with g(xo,yo) < a < f(x0,y0)

occur.

Remark 2.4. In Theorems 2.5-2.6 we could replace €2 is a subset of a Hausdorff
topological vector space with € is a subset of a uniform space. If Q is E.S(compact)
then we need only assume () is a Hausdorff topological space in Theorems 2.5-2.6
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorems 2.5-2.6.

Theorem 2.7. Let Q) be a paracompact conver Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g:Q xY — R be such that (2.1) occurs. Fizx
a € R and let

Glx)={yeY: f(z,y) <a}
and

Fly) ={z € Q: g(z,y) > a}.
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If G(z) £ 0 for every x € Q suppose G € PK(Q,Y). Also assume if F(y) # 0
for every y €Y then F € PK(Y,Q). If F' and G are compact maps then either
(A1). there exists zop € Q with f(zo,y) > « forall yeY
or
(A2). there exists wg € Y with g(x,wgy) < a for all x € Q

occur.

Proof. There are three cases to consider,
Case (a). G(z) # 0 for every x € Q and F(y) # 0 for every y € Y.

In this case Theorem 2.4 guarantees that there exists (xo,y0) € © x Y with
f(zo,y0) < o and g(xo,y0) > «. This contradicts (2.1).
Case (b). Suppose G(x) # () for every x € Q does not hold.

Then there exists zp € Q with G(z9) = 0. That is f(z0,y) > « forall y € Y
i.e. (Al) occurs.
Case (c). Suppose F(y) # 0 for every y € Y does not hold.

Then there exists wo € Y with F(wg) =0 i.e. (A2) occurs. O

It is also easy to see that the analytic alternative Theorem 2.7 has a “dual ver-
sion”.

Theorem 2.8. Let Q) be a paracompact convexr Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g:Q xY — R be such that (2.1) occurs. Fizx
a€R and let

G(x)={yeY: g(z,y) > a}
and

Fly)={ze€Q: f(z,y) < a}.
If G(x) £ 0 for every x € Q suppose G € PK(Q,Y). Also assume if F(y) # 0
for every y €Y then F € PK(Y,Q). If F' and G are compact maps then either

(A1). there exists zo € Q with g(zo,y) <« forall yeyY
or

(A2). there exists wo € Y with f(z,wg) > a for all x € Q
occur.

Remark 2.5. It is also easy to construct an analytic alternative modelled off Theorem
2.2. We leave the details to the reader.

We now indicate how our analytic alternatives (or even our coincidence theorems)
generate minimax inequalities. Our first result is modelled off Theorem 2.6.

Theorem 2.9. Let Q) be a conver Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Let f:QxY — R and a =sup,cq infyecy f(x,y). Also let

Gly) ={zeQ: f(z,y)>a}
and

F(x)={yeY: f(x,y) <a}.



COINCIDENCE THEORY FOR uf MAPS AND INEQUALITIES 271

Suppose F € UF(Q,Y") is upper semicontinuous with closed values. Also assume if
G(y) £ 0 for every y € Y then G € PK(Y,Q). If F and G are compact maps
then

inf sup f(z,y) =sup inf f(z,y

YEY 2€Q (=) z€Q YEY ().
Proof. Let 8 = infyey sup,cq f(z,y). Clearly a < 8. Also from Theorem 2.6
(note (A2) cannot occur since g = f) that there exists wy € Y with f(z,wp) < «
for all z € Q. As aresult sup,cq f(z,wy) < a,so < a. O

Remark 2.6. In Theorem 2.9 we could replace € is a subset of a Hausdorff topolog-
ical vector space with ) is a subset of a uniform space. If Q is ES(compact) then
we need only assume ) is a Hausdorff topological space in Theorem 2.9 and any
mention of upper semicontinuous with closed values can be deleted in the statement
of Theorem 2.9.

It is also possible to generalize Theorem 2.9 using f and ¢. In addition it
is possible to construct an analogue of Theorem 2.9 off Theorem 2.5. Instead of
presenting these results we show the technique involved by establishing a minimax
inequality modelled off Theorem 2.7.

Theorem 2.10. Let Q be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g:Q xY — R be such that (2.1) occurs. For
each a € R let

Go(r) ={y €Y : f(z,y) <a}
and
Fo(y) ={z€Q: g(z,y) > a}.

For each a € R, if Go(x) # 0 for every x € Q assume G, € PK(Q,Y) and if
Fo(y) # 0 for every y € Y assume F, € PK(Y,Q). For each a« € R if F, and
G are compact maps then

fo = inf sup g(z,y) <sup inf f(z,y) = ao.
YEY e zeQ YEY

Proof. Let ap < co and fy > —oo. Suppose [y > «g. Then there exists a € R
with
(2.2) ap < a < fo.

Apply Theorem 2.7. If (A1) occurs then there exists zp € Q with f(z0,y) > «
for all y € Y, so infycy f(20,y) > a. Consequently ay > «, and this contradicts
(2.2). If (A2) occurs then there exists wy € Y with g(x,wg) < a for all z € Q,
SO sup,eq 9(z,wp) < a. Consequently [y < a, and this contradicts (2.2). In both
cases we have a contradiction, so [y < ag. O

Remark 2.7. If ¢ = f in Theorem 2.10 then

inf sup f(z,y) =sup inf f(x,y).
YEY zcQ zeQ yeY

We also have a “dual version” of Theorem 2.10 if we use Theorem 2.8.
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Theorem 2.11. Let Q be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g:Q xY — R be such that (2.1) occurs. For
each a € R let

Ga(z)={y €Y : g(z,y) > o}
and
Foly)={z€Q: f(z,y) < a}.
For each a € R, if Go(x) # 0 for every x € Q assume G, € PK(Q,Y) and if

Fo(y) # 0 for every y € Y assume F, € PK(Y,Q). For each a« € R if F, and
G, are compact maps then

inf sup g(z,y) <sup inf f(z,y).
z€Qd yey yey =€l

Finally we obtain a minimax theorem modelled off our coincidence Theorem 2.2.

Theorem 2.12. Let  be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Let f, g: 2xY — R
be such that (2.1) occurs. For each o € R let

Ga(z)={y €Y : g(z,y) > a}
and for each B € R let

Fg(y) ={x € Q: f(z,y) <p}.

For each a € R, if Go(x) # 0 for every x € Q assume G, € UF(Q,Y) and
for each B € R, if Fg(y) # 0 for every y € Y assume Fg € UF(Y,Q). For each
a, € R if Go and Fg are upper semicontinuous compact maps with closed values
then

Bo = inf sup g(z,y) < sup inf f(z,y) = ao.
e yey yey e

Proof. Let ag < oo and [y > —oo. Suppose Gy > ag. Then there exists 3 € R
with ag < 8 < Gp. In addition there exists € > 0 with

(2.3) ap < B<PBH+e=a<f.

There are three cases to consider.
Case (a). Go(x) # 0 for every x € Q and Fa(y) # 0 for every y € Y.
Now Theorem 2.2 guarantees that there exists (zg,y0) € QXY with f(zg,y0) <
B and g(zo,y0) > a. This together with (2.1) gives
a < g(z0,90) < f(z0,%0) < B,

which contradicts (2.3).
Case (b). Fg(y) # 0 for every y € Y does not hold.
Then there exists wog € Y with f(z,wg) > for all x € Q, so

inf f(@,wo) = B.

Consequently «g > (3, which contradicts (2.3).
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Case (c). Go(x) £ for every x € Q does not hold.
Then there exists zp € Q with g(zp,y) < a for all y € Y, so

sup g(z0,y) < a.
yey

As a result By < a, which contradicts (2.3).
In all cases we have a contradiction, so Gy < ap. O

We now present a “dual version” of Theorem 2.12; in particular it is a general-
ization of von Neumann’s minimax theorem.

Theorem 2.13. Let  be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Let f, g: 2xY — R
be such that (2.1) occurs. For each € R let

Ga(z)={y €Y : flz,y) < B}
and for each o € R let

Fo(y) ={z € Q: g(z,y) = a}.

For each 8 € R, if Gg(xz) # 0 for every z € Q assume Gg € UF(Q,Y) and
for each a € R, if Fo(y) # 0 for every y € Y assume F, € UF(Y,Q). For each
a, € R if Gg and F, are upper semicontinuous compact maps with closed values
then
inf sup g9(z,y) < sup inf flz,y).

Remark 2.8. In Theorems 2.12-2.13 we could replace €) is a subset of a Hausdorff
topological vector space with € is a subset of a uniform space. If Q is ES(compact)
then we need only assume () is a Hausdorff topological space in Theorems 2.12-13
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorem 2.9.

Example. Let Q be a Schauder admissible subset of a Hausdorff topological vector
space and Y a subset of a Hausdorff topological vector space with 2 and Y
compact. Suppose f, g:Q xY — R are continuous and (2.1) holds. Also assume

(i). for each S € R and z € Q theset {y €Y : f(x,y) < B} is acyclic
and

(ii). for each a € R and y € Y theset {z € Q: g(x,y) > a} is acyclic.
Then

inf sup g(z,y) < sup inf f(z,y).

First notice for each «, 8 € R that the maps F,, and Gp (defined in Theorem
2.13) are compact. Also since f is continuous we see that if 5 € R and Gg(x) # 0
for every z € Q then Gg: Q — K(Y) is an acyclic map (this is clear since Gg has
closed graph). Alsoif o € R and F,(y) # 0 for every y € Y then F,:Y — K(Q)
is an acyclic map. The result now follows from Theorem 2.13.
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