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COINCIDENCE THEORY FOR Uκ
c MAPS AND INEQUALITIES

RAVI P. AGARWAL AND DONAL O’REGAN

Abstract. Applying a new fixed point theorem for Uκ
c maps in extension type

spaces we obtain new coincidence theorems and minimax inequalities.

1. Introduction

This paper establishes new minimax and quasi–variational inequalities for a gen-
eral class of maps, namely the Uκ

c maps of Park. Along the way new coincidence
results and analytic alternatives are also presented. Our results in particular im-
prove those in [2, 3, 4, 6, 7]; for example Theorem 2.13 is a generalization of von
Neumann’s minimax theorem. The theory relies on a new fixed point theorem [1]
in extension type spaces.

For the remainder of this section we present some definitions and known results
which will be needed throughout this paper. Of particular importance will be the
class Uκ

c . Suppose X and Y are Hausdorff topological spaces. Given a class X
of maps, X (X, Y ) denotes the set of maps F : X → 2Y (nonempty subsets of Y )
belonging to X , and Xc the set of finite compositions of maps in X . A class U of
maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;
(ii). each F ∈ Uc is upper semicontinuous and compact valued; and
(iii). for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the intermediate

spaces of composites are suitably chosen for each U .

Definition 1.1. F ∈ Uκ
c (X, Y ) if for any compact subset K of X, there is a

G ∈ Uc(K, Y ) with G(x) ⊆ F (x) for each x ∈ K.

Recall that Uκ
c is closed under compositions. We also discuss special examples

of Uκ
c maps. Let X and Y be subsets of Hausdorff topological vector spaces E1

and E2 respectively. We will consider maps F : X → K(Y ); here K(Y ) denotes
the family of nonempty compact subsets of Y . We say F : X → K(Y ) is Kakutani
if F is upper semicontinuous with convex values. A nonempty topological space is
said to be acyclic if all its reduced C̆ech homology groups over the rationales are
trivial. Now F : X → K(Y ) is acyclic if F is upper semicontinuous with acyclic
values. F : X → K(Y ) is said to be an O’Neill map if F is continuous and if the
values of F consist of one or m acyclic components (here m is fixed).

Given two open neighborhoods U and V of the origins in E1 and E2 respec-
tively, a (U, V )–approximate continuous selection of F : X → K(Y ) is a continuous
function s : X → Y satisfying

s(x) ∈ (F [(x + U) ∩X] + V ) ∩ Y for every x ∈ X.

We say F : X → K(Y ) is approximable if it is upper semicontinuous and if its
restriction F |K to any compact subset K of X admits a (U, V )–approximate
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continuous selection for every open neighborhood U and V of the origins in E1

and E2 respectively.
For our next definition let X and Y be metric spaces. A continuous single

valued map p : Y → X is called a Vietoris map if the following two conditions are
satisfied:

(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is

compact.

Definition 1.2. A multifunction φ : X → K(Y ) is admissible (strongly) in the
sense of Gorniewicz (and we write φ ∈ Ad(X, Y )), if φ : X → K(Y ) is upper
semicontinuous, and if there exists a metric space Z and two continuous maps
p : Z → X and q : Z → Y such that

(i). p is a Vietoris map
and

(ii). φ(x) = q(p−1(x)) for any x ∈ X.

It should be noted that φ upper semicontinuous is redundant in Definition 1.2.
Notice the Kakutani maps, the acyclic maps, the O’Neill maps, the approximable
maps and the maps admissible in the sense of Gorniewicz are examples of Uκ

c maps.
For a subset K of a topological space, we denote by CovX (K) the directed set

of all coverings of K by open sets of X (usually we write Cov (K) = CovX (K)).
Given two maps F, G : X → 2Y and α ∈ Cov (Y ), F and G are said to be
α–close, if for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux and w ∈ G(x) ∩ Ux.

By a space we mean a Hausdorff topological space. A space Y is an
extension space for Q (written Y ∈ ES(Q)) if for any pair (X, K) in Q with
K ⊆ X closed, any continuous function f0 : K → Y extends to a continuous
function f : X → Y .

A space Y is an approximate extension space for Q (and we write Y ∈ AES(Q))
if for any α ∈ Cov(Y ) and any pair (X, K) in Q with K ⊆ X closed, and any
continuous function f0 : K → Y , there exists a continuous function f : X → Y
such that f |K is α–close to f0.

Definition 1.3. Let V be a subset of a Hausdorff topological vector space E. Then
we say V is Schauder admissible if for every compact subset K of V and every
covering α ∈ CovV (K), there exists a continuous function (called the Schauder
projection) πα : K → V such that

(i). πα and i : K → V are α–close;
(ii). πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

Remark 1.1. In Definition 1.3 we may replace E a Hausdorff topological vector
space with E a uniform space.

Examples. Normed spaces, absolute retracts (AR’s) and complete metric topo-
logical vector spaces admissible in the sense of Klee are examples of ES(compact)
spaces. Convex subsets of locally convex topological vector spaces are AES(com-
pact). Spaces admissible in the sense of Klee and AES(compact) spaces are
Schauder admissible.
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The following fixed point results were established in [1].

Theorem 1.1. Let V be a Schauder admissible subset of a Hausdorff topological
vector space E and F ∈ Uκ

c (V, V ) a compact upper semicontinuous map with closed
valued. Then F has a fixed point.

Theorem 1.2. Let V ∈ ES(compact) and F ∈ Uκ
c (V, V ) a compact map. Then

F has a fixed point.

Remark 1.2. Notice in Theorem 1.1 we could replace Hausdorff topological vector
space with uniform space. In Theorem 1.2 we only assume that V is a Hausdorff
topological space.

Next let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2

and F a multifunction. We say F ∈ PK(Z, W ) if W is convex, and there exists
a map S : Z → W with

Z = ∪ {
int S−1(w) : w ∈ W

}
, co (S(x)) ⊆ F (x) for x ∈ Z;

here S−1(w) = {z : w ∈ S(z)}. We recall the following selection theorem [5].

Theorem 1.3. If Z is paracompact, W is convex, and F ∈ PK(Z,W ). Then
there exists a continuous (single valued) function f : Z → W with f(x) ∈ F (x)
for each x ∈ Z.

2. Coincidence and minimax inequalities

We begin this section by presenting some coincidence theorems. These will then
be used to establish some analytic alternatives which in turn will be used to derive
new minimax inequalities. Four coincidence theorems will be presented and the
proof in each case relies on Theorem 1.1 (and sometimes Theorem 1.3).

Theorem 2.1. Let Ω be a paracompact Schauder admissible subset of a Hausdorff
topological vector space and Y a convex subset of a Hausdorff topological vector
space. Suppose F ∈ Uκ

c (Y, Ω) is a upper semicontinuous map with closed values
and G ∈ PK(Ω, Y ) is a compact map. Then G and F−1 have a coincidence.
That is there exists (x0, y0) ∈ Ω× Y with y0 ∈ G(x0) ∩ F−1(x0) (i.e. there exists
(x0, y0) ∈ Ω× Y with y0 ∈ G(x0) and x0 ∈ F (y0)).

Proof. From Theorem 1.3 there exists a continuous selection g : Ω → Y of G. Now
since Uκ

c is closed under compositions we notice J = F ◦g ∈ Uκ
c (Ω,Ω) is a compact

upper semicontinuous map with closed values. Now Theorem 1.1 guarantees that
there exists x0 ∈ Ω with x0 ∈ F g(x0). Let y0 = g(x0). Then x0 ∈ F (y0) and
y0 ∈ G(x0). ¤
Theorem 2.2. Let Ω be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Suppose F ∈ Uκ

c (Y, Ω)
and G ∈ Uκ

c (Ω, Y ) are upper semicontinuous compact maps with closed values.
Then G and F−1 have a coincidence.

Proof. Notice J = F ◦ G ∈ Uκ
c (Ω,Ω) is a upper semicontinuous compact map

with closed values so Theorem 1.1 guarantees that there exists x0 ∈ Ω with x0 ∈
F G(x0). That is x0 ∈ F y0 for some y0 ∈ Gx0. ¤
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Theorem 2.3. Let Ω be a convex Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Suppose F ∈ Uκ

c (Ω, Y ) is a upper semicontinuous compact map with closed values
and G ∈ PK(Y, Ω) is a compact maps. Then F and G−1 have a coincidence i.e.
there exists (x0, y0) ∈ Ω× Y with y0 ∈ F (x0) and x0 ∈ G(y0).

Proof. From Theorem 1.3 there exists a continuous selection g : Y → Ω of G.
Notice J = g ◦F ∈ Uκ

c (Ω,Ω) is a compact map. Theorem 1.1 guarantees that there
exists x0 ∈ Ω with x0 ∈ g F (x0). Thus there exists y0 ∈ F x0 with x0 = g(y0). ¤
Remark 2.1. In Theorems 2.1–2.3 we could replace Ω is a subset of a Hausdorff
topological vector space with Ω is a subset of a uniform space. If Ω is ES(compact)
then we need only assume Ω is a Hausdorff topological space in Theorems 2.1–2.3
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorems 2.2–2.3.

Example. Suppose Ω ∈ ES(compact) (for example suppose Ω ∈ AR), Y a
Hausdorff topological space and assume F ∈ Ad(Y, Ω), G ∈ Ad(Ω, Y ) are compact
maps. Then G and F−1 have a coincidence.

Theorem 2.4. Let Ω be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Suppose F ∈ PK(Y, Ω) and G ∈ PK(Ω, Y ) are
compact maps. Then G and F−1 have a coincidence.

Proof. From Theorem 1.2 there exists a continuous selection g : Ω → Y of G
and a continuous selection f : Y → Ω of F . Notice J = f ◦ g ∈ Uκ

c (Ω,Ω) is a
continuous compact map. Theorem 1.1 guarantees that there exists x0 ∈ Ω with
x0 = f g (x0). ¤

Next we present new analytic alternatives and minimax inequalities. Our results
in particular improve [3, 4, 6, 7]. We first establish four analytic alternatives.

Theorem 2.5. Let Ω be a paracompact Schauder admissible subset of a Hausdorff
topological vector space and Y a convex subset of a Hausdorff topological vector
space. Let f, g : Ω× Y → R be such that

(2.1) g(x, y) ≤ f(x, y) for all (x, y) ∈ Ω× Y.

Fix α ∈ R and let
G(x) = {y ∈ Y : f(x, y) > α}

and
F (y) = {x ∈ Ω : g(x, y) ≤ α}.

Suppose F ∈ Uκ
c (Y,Ω) is upper semicontinuous with compact values. Also assume

if G(x) 6= ∅ for every x ∈ Ω then G ∈ PK(Ω, Y ). If F and G are compact maps
then either
(A1). there exists z0 ∈ Ω with f(z0, y) ≤ α for all y ∈ Y

or
(A2). there exists (x0, y0) ∈ Ω× Y with g(x0, y0) ≤ α < f(x0, y0)

occur.
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Proof. Either G(x) 6= ∅ for every x ∈ Ω or not. If G(x) 6= ∅ for every x ∈ Ω
then G ∈ PK(Ω, Y ) so Theorem 2.1 implies that there exists (x0, y0) ∈ Ω × Y
with x0 ∈ F (y0) and y0 ∈ G (x0) i.e. (A2) occurs. If G(x) 6= ∅ for every x ∈ Ω
does not hold, then there exists z0 ∈ Ω with G(z0) = ∅. That is f(z0, y) ≤ α for
every y ∈ Y so (A1) occurs. ¤
Remark 2.2. If g ≡ f in Theorem 2.5 then (A2) cannot occur.

Remark 2.3. If we replace F ∈ Uκ
c (Y, Ω) in Theorem 2.5 by

if F (y) 6= ∅ for every y ∈ Y then F ∈ Uκ
c (Y, Ω),

then the conclusion in Theorem 2.5 is that either (A1), (A2) or
(A3). there exists w0 ∈ Y with g(x,w0) > α for all x ∈ Ω

occur. We note in this case if there exists w0 ∈ Y with F (w0) = ∅ then G(x) 6= ∅
for every x ∈ Ω, since if there exists z0 ∈ Ω with G(z0) = ∅ then in particular
g(z0, w0) > α and f(z0, w0) ≤ α, so f(z0, w0) ≤ α < g(z0, w0) which contradicts
(2.1).

Essentially the same reasoning as in Theorem 2.5 except now we use Theorem
2.3 gives the following result.

Theorem 2.6. Let Ω be a convex Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Let f, g : Ω× Y → R be such that (2.1) occurs. Fix α ∈ R and let

G(y) = {x ∈ Ω : f(x, y) > α}
and

F (x) = {y ∈ Y : g(x, y) ≤ α}.
Suppose F ∈ Uκ

c (Ω, Y ) is upper semicontinuous with compact values. Also assume
if G(y) 6= ∅ for every y ∈ Y then G ∈ PK(Y, Ω). If F and G are compact maps
then either
(A1). there exists w0 ∈ Y with f(x,w0) ≤ α for all x ∈ Ω

or
(A2). there exists (x0, y0) ∈ Ω× Y with g(x0, y0) ≤ α < f(x0, y0)

occur.

Remark 2.4. In Theorems 2.5–2.6 we could replace Ω is a subset of a Hausdorff
topological vector space with Ω is a subset of a uniform space. If Ω is ES(compact)
then we need only assume Ω is a Hausdorff topological space in Theorems 2.5–2.6
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorems 2.5–2.6.

Theorem 2.7. Let Ω be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g : Ω× Y → R be such that (2.1) occurs. Fix
α ∈ R and let

G(x) = {y ∈ Y : f(x, y) < α}
and

F (y) = {x ∈ Ω : g(x, y) > α}.
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If G(x) 6= ∅ for every x ∈ Ω suppose G ∈ PK(Ω, Y ). Also assume if F (y) 6= ∅
for every y ∈ Y then F ∈ PK(Y, Ω). If F and G are compact maps then either
(A1). there exists z0 ∈ Ω with f(z0, y) ≥ α for all y ∈ Y

or
(A2). there exists w0 ∈ Y with g(x,w0) ≤ α for all x ∈ Ω

occur.

Proof. There are three cases to consider,
Case (a). G(x) 6= ∅ for every x ∈ Ω and F (y) 6= ∅ for every y ∈ Y .

In this case Theorem 2.4 guarantees that there exists (x0, y0) ∈ Ω × Y with
f(x0, y0) < α and g(x0, y0) > α. This contradicts (2.1).
Case (b). Suppose G(x) 6= ∅ for every x ∈ Ω does not hold.

Then there exists z0 ∈ Ω with G(z0) = ∅. That is f(z0, y) ≥ α for all y ∈ Y
i.e. (A1) occurs.
Case (c). Suppose F (y) 6= ∅ for every y ∈ Y does not hold.

Then there exists w0 ∈ Y with F (w0) = ∅ i.e. (A2) occurs. ¤

It is also easy to see that the analytic alternative Theorem 2.7 has a “dual ver-
sion”.

Theorem 2.8. Let Ω be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g : Ω× Y → R be such that (2.1) occurs. Fix
α ∈ R and let

G(x) = {y ∈ Y : g(x, y) > α}
and

F (y) = {x ∈ Ω : f(x, y) < α}.
If G(x) 6= ∅ for every x ∈ Ω suppose G ∈ PK(Ω, Y ). Also assume if F (y) 6= ∅
for every y ∈ Y then F ∈ PK(Y,Ω). If F and G are compact maps then either
(A1). there exists z0 ∈ Ω with g(z0, y) ≤ α for all y ∈ Y

or
(A2). there exists w0 ∈ Y with f(x,w0) ≥ α for all x ∈ Ω

occur.

Remark 2.5. It is also easy to construct an analytic alternative modelled off Theorem
2.2. We leave the details to the reader.

We now indicate how our analytic alternatives (or even our coincidence theorems)
generate minimax inequalities. Our first result is modelled off Theorem 2.6.

Theorem 2.9. Let Ω be a convex Schauder admissible subset of a Hausdorff topo-
logical vector space and Y a paracompact subset of a Hausdorff topological space.
Let f : Ω× Y → R and α = supx∈Ω infy∈Y f(x, y). Also let

G(y) = {x ∈ Ω : f(x, y) > α}
and

F (x) = {y ∈ Y : f(x, y) ≤ α}.
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Suppose F ∈ Uκ
c (Ω, Y ) is upper semicontinuous with closed values. Also assume if

G(y) 6= ∅ for every y ∈ Y then G ∈ PK(Y, Ω). If F and G are compact maps
then

inf
y∈Y

sup
x∈Ω

f(x, y) = sup
x∈Ω

inf
y∈Y

f(x, y).

Proof. Let β = infy∈Y supx∈Ω f(x, y). Clearly α ≤ β. Also from Theorem 2.6
(note (A2) cannot occur since g = f) that there exists w0 ∈ Y with f(x,w0) ≤ α
for all x ∈ Ω. As a result supx∈Ω f(x,w0) ≤ α, so β ≤ α. ¤

Remark 2.6. In Theorem 2.9 we could replace Ω is a subset of a Hausdorff topolog-
ical vector space with Ω is a subset of a uniform space. If Ω is ES(compact) then
we need only assume Ω is a Hausdorff topological space in Theorem 2.9 and any
mention of upper semicontinuous with closed values can be deleted in the statement
of Theorem 2.9.

It is also possible to generalize Theorem 2.9 using f and g. In addition it
is possible to construct an analogue of Theorem 2.9 off Theorem 2.5. Instead of
presenting these results we show the technique involved by establishing a minimax
inequality modelled off Theorem 2.7.

Theorem 2.10. Let Ω be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g : Ω× Y → R be such that (2.1) occurs. For
each α ∈ R let

Gα(x) = {y ∈ Y : f(x, y) < α}
and

Fα(y) = {x ∈ Ω : g(x, y) > α}.
For each α ∈ R, if Gα(x) 6= ∅ for every x ∈ Ω assume Gα ∈ PK(Ω, Y ) and if
Fα(y) 6= ∅ for every y ∈ Y assume Fα ∈ PK(Y, Ω). For each α ∈ R if Fα and
Gα are compact maps then

β0 ≡ inf
y∈Y

sup
x∈Ω

g(x, y) ≤ sup
x∈Ω

inf
y∈Y

f(x, y) ≡ α0.

Proof. Let α0 < ∞ and β0 > −∞. Suppose β0 > α0. Then there exists α ∈ R
with

(2.2) α0 < α < β0.

Apply Theorem 2.7. If (A1) occurs then there exists z0 ∈ Ω with f(z0, y) ≥ α
for all y ∈ Y , so infy∈Y f(z0, y) ≥ α. Consequently α0 ≥ α, and this contradicts
(2.2). If (A2) occurs then there exists w0 ∈ Y with g(x,w0) ≤ α for all x ∈ Ω,
so supx∈Ω g(x,w0) ≤ α. Consequently β0 ≤ α, and this contradicts (2.2). In both
cases we have a contradiction, so β0 ≤ α0. ¤

Remark 2.7. If g = f in Theorem 2.10 then

inf
y∈Y

sup
x∈Ω

f(x, y) = sup
x∈Ω

inf
y∈Y

f(x, y).

We also have a “dual version” of Theorem 2.10 if we use Theorem 2.8.



272 RAVI P. AGARWAL AND DONAL O’REGAN

Theorem 2.11. Let Ω be a paracompact convex Schauder admissible subset of a
Hausdorff topological vector space and Y a paracompact convex subset of a Haus-
dorff topological vector space. Let f, g : Ω× Y → R be such that (2.1) occurs. For
each α ∈ R let

Gα(x) = {y ∈ Y : g(x, y) > α}
and

Fα(y) = {x ∈ Ω : f(x, y) < α}.
For each α ∈ R, if Gα(x) 6= ∅ for every x ∈ Ω assume Gα ∈ PK(Ω, Y ) and if
Fα(y) 6= ∅ for every y ∈ Y assume Fα ∈ PK(Y, Ω). For each α ∈ R if Fα and
Gα are compact maps then

inf
x∈Ω

sup
y∈Y

g(x, y) ≤ sup
y∈Y

inf
x∈Ω

f(x, y).

Finally we obtain a minimax theorem modelled off our coincidence Theorem 2.2.

Theorem 2.12. Let Ω be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Let f, g : Ω×Y → R
be such that (2.1) occurs. For each α ∈ R let

Gα(x) = {y ∈ Y : g(x, y) ≥ α}
and for each β ∈ R let

Fβ(y) = {x ∈ Ω : f(x, y) ≤ β}.
For each α ∈ R, if Gα(x) 6= ∅ for every x ∈ Ω assume Gα ∈ Uκ

c (Ω, Y ) and
for each β ∈ R, if Fβ(y) 6= ∅ for every y ∈ Y assume Fβ ∈ Uκ

c (Y, Ω). For each
α, β ∈ R if Gα and Fβ are upper semicontinuous compact maps with closed values
then

β0 ≡ inf
x∈Ω

sup
y∈Y

g(x, y) ≤ sup
y∈Y

inf
x∈Ω

f(x, y) ≡ α0.

Proof. Let α0 < ∞ and β0 > −∞. Suppose β0 > α0. Then there exists β ∈ R
with α0 < β < β0. In addition there exists ε > 0 with

(2.3) α0 < β < β + ε ≡ α < β0.

There are three cases to consider.
Case (a). Gα(x) 6= ∅ for every x ∈ Ω and Fβ(y) 6= ∅ for every y ∈ Y .

Now Theorem 2.2 guarantees that there exists (x0, y0) ∈ Ω×Y with f(x0, y0) ≤
β and g(x0, y0) ≥ α. This together with (2.1) gives

α ≤ g(x0, y0) ≤ f(x0, y0) ≤ β,

which contradicts (2.3).
Case (b). Fβ(y) 6= ∅ for every y ∈ Y does not hold.

Then there exists w0 ∈ Y with f(x,w0) > β for all x ∈ Ω, so

inf
x∈Ω

f(x,w0) ≥ β.

Consequently α0 ≥ β, which contradicts (2.3).
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Case (c). Gα(x) 6= ∅ for every x ∈ Ω does not hold.
Then there exists z0 ∈ Ω with g(z0, y) < α for all y ∈ Y , so

sup
y∈Y

g(z0, y) ≤ α.

As a result β0 ≤ α, which contradicts (2.3).
In all cases we have a contradiction, so β0 ≤ α0. ¤

We now present a “dual version” of Theorem 2.12; in particular it is a general-
ization of von Neumann’s minimax theorem.

Theorem 2.13. Let Ω be a Schauder admissible subset of a Hausdorff topological
vector space and Y a subset of a Hausdorff topological space. Let f, g : Ω×Y → R
be such that (2.1) occurs. For each β ∈ R let

Gβ(x) = {y ∈ Y : f(x, y) ≤ β}
and for each α ∈ R let

Fα(y) = {x ∈ Ω : g(x, y) ≥ α}.
For each β ∈ R, if Gβ(x) 6= ∅ for every x ∈ Ω assume Gβ ∈ Uκ

c (Ω, Y ) and
for each α ∈ R, if Fα(y) 6= ∅ for every y ∈ Y assume Fα ∈ Uκ

c (Y, Ω). For each
α, β ∈ R if Gβ and Fα are upper semicontinuous compact maps with closed values
then

inf
y∈Y

sup
x∈Ω

g(x, y) ≤ sup
x∈Ω

inf
y∈Y

f(x, y).

Remark 2.8. In Theorems 2.12–2.13 we could replace Ω is a subset of a Hausdorff
topological vector space with Ω is a subset of a uniform space. If Ω is ES(compact)
then we need only assume Ω is a Hausdorff topological space in Theorems 2.12–13
and any mention of upper semicontinuous with closed values can be deleted in the
statement of Theorem 2.9.

Example. Let Ω be a Schauder admissible subset of a Hausdorff topological vector
space and Y a subset of a Hausdorff topological vector space with Ω and Y
compact. Suppose f, g : Ω× Y → R are continuous and (2.1) holds. Also assume

(i). for each β ∈ R and x ∈ Ω the set {y ∈ Y : f(x, y) ≤ β} is acyclic

and

(ii). for each α ∈ R and y ∈ Y the set {x ∈ Ω : g(x, y) ≥ α} is acyclic.

Then
inf
y∈Y

sup
x∈Ω

g(x, y) ≤ sup
x∈Ω

inf
y∈Y

f(x, y).

First notice for each α, β ∈ R that the maps Fα and Gβ (defined in Theorem
2.13) are compact. Also since f is continuous we see that if β ∈ R and Gβ(x) 6= ∅
for every x ∈ Ω then Gβ : Ω → K(Y ) is an acyclic map (this is clear since Gβ has
closed graph). Also if α ∈ R and Fα(y) 6= ∅ for every y ∈ Y then Fα : Y → K(Ω)
is an acyclic map. The result now follows from Theorem 2.13.
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