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A NEW CHARACTERIZATION OF UNIFORMLY CONVEX
BANACH SPACES

TAKAYUKI TAMURA

Abstract. We will prove a new characterization of uniformly convex Banach
spaces and also we will give another proof of Khamsi’s characterization of uni-
formly convex Banach spaces.

1. Introduction

In 1936, Clarkson[5] introduced the concept of uniform convexity in Banach
spaces and proved that Lp(1 < p < ∞) is uniformly convex. Since then, uniformly
convex Banach spaces have played an important role in Banach space theory, fixed
point theory, approximation theory, ergodic theory, probability theory, differential
equation theory and so on. Therefore, it is very important to characterize uniformly
convex Banach spaces in such fields. Especially, some characterizations of uniformly
convex Banach spaces bring us fruitful results in ergodic theory and approximation
theory for nonexpansive mappings and accretive operators(cf. [7, 8] ).

Also Bruck[3, 4] obtained the following theorem.

Theorem 1.1 ([4]). Let E be a uniformly convex Banach space, d > 0 and ε > 0.
Then there exists δ > 0 such that coFδ(T ) ⊂ Fε(T ) for any nonempty closed convex
subset C of E with diam(C) = d and any nonexpansive mapping T of C into itself.

Theorem 1.2 ([3]). Let E be a uniformly convex Banach space and let d > 0. Then
there exists γ0 ∈ Γ such that any nonexpansive mapping T of C into itself is type
(γ) with γ0 for any nonempty closed convex subset C of E with diam(C) = d.

Using these results, Bruck[3, 4] proved nonlinear ergodic theorems for nonex-
pansive mappings in uniformly convex Banach spaces, which extended Baillon’s
nonlinear ergodic theorem[2] in Hilbert spaces to that in Banach spaces. On the
other hand, Khamsi[6] proved that Theorem 1.2 characterizes the uniform convexity
of Banach spaces.

In this paper, we first prove that Theorem 1.1 also characterizes the uniform
convexity of Banach spaces(Theorem 3.5). Using this result, we give another proof
of the above result of Khamsi[6].

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a Banach space and let C be a nonempty subset of E.
We denote by diam(C) the diameter of C. A mapping T of C into itself is said to
be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for every x, y ∈ C. Let T be a mapping
of C into itself and let ε > 0. Then we denote by F (T ) the set of fixed points of
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T and by Fε (T ) the set of ε-approximate fixed points of T, i.e. ‖x− Tx‖ ≤ ε for
every x ∈ Fε (T ) . Then, for every ε with 0 ≤ ε ≤ 2, the modulus of convexity δ(ε),
of E is defined by

δE (ε) = inf
{

1− ‖x + y‖
2

∣∣ ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE (ε) > 0 for every ε > 0.
A Banach space E is said to be strictly convex if

∥∥x+y
2

∥∥ < 1 for every x, y ∈
E with ‖x‖ = ‖y‖ = 1 and x 6= y. Uniformly convex Banach spaces are strictly
convex. We know that if E is a strictly convex Banach space and

‖x‖ = ‖y‖ = ‖(1− λ) x + λy‖ for x, y ∈ E and λ ∈ (0, 1) ,

then x = y.
Khamsi[6] proved the following theorem.

Theorem 2.1 ([6]). Let E be a Banach space. The following are equivalent.
(1) E is strictly convex;
(2) for any nonempty bounded closed and convex subset C of E and any nonex-

pansive mapping T of C into itself, F (T ) is closed convex.

3. Main Results

We need the following lemmas.

Lemma 3.1. Let E be a Banach space and let β, β0 be fixed numbers such that
0 ≤ β < 1/2 and β0 > β. Suppose that there exist x, y ∈ E such that ‖x‖ = ‖y‖ =
1, ‖x + y‖ /2 = 1− β and ‖x− y‖ /2 > β0. Then for every a, c ∈ R,

|c| ≤ β0 + β

(1− β)(β0 − β)

∥∥∥∥
a (x− y)

2
+

c (x + y)
2

∥∥∥∥ .

Proof. To simplify the computation, we will denote
x + y

2
by ~j and

x− y

2
by ~i. By

the Hahn-Banach theorem there exists f ∈ E∗ such that ‖f‖ = 1 and (∗) f(~) =
1− β. Then we have

f(x) + f(y) = 2f(~)
= 2− 2β

> 1.

Since |f(x)| ≤ 1 and |f(y)| ≤ 1, f(x) and f(y) are positive. Therefore, there exist
non-negative numbers s, s′ such that s + s′ = 2β, f(x) = 1 − s and f(y) = 1 − s′.
Then, We have |f(~ı)| = |s− s′|/2 ≤ β and |a| < ‖a~ı‖/β0 for every a ∈ R. Since

|c| = |f(c~)|
1− β

≤ |f(a~ı + c~)|
1− β

+
|f(a~ı)|
1− β

and

|f(a~ı)| < |a|β ≤ β‖a~ı‖
β0

≤ β ‖a~ı + c~‖+ β ‖c~‖
β0

≤ β ‖a~ı + c~‖
β0

+
β(1− β) |c|

β0
,
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then we have

|c| ≤ ‖a~ı + c~‖
1− β

+
|f(a~ı)|
1− β

≤ ‖a~ı + c~‖
1− β

+
β ‖a~ı + c~‖
β0 (1− β)

+
β|c|
β0

≤ (β0 + β) ‖a~ı + c~‖
β0 (1− β)

+
β|c|
β0

.

Hence we get

|c| ≤ β0 + β

(1− β)(β0 − β)

∥∥∥∥
a (x− y)

2
+

c (x + y)
2

∥∥∥∥ .

This completes the proof. ¤

Lemma 3.2. Let E be a Banach space and let x, y ∈ E with ‖x‖ = ‖y‖ = 1 and
x 6= y. Then for every |c1|, |c2| ∈ [0, 1], it holds

∥∥∥∥
(
|c1|

(
x− y

2

)
+ c1

(
x + y

2

))
−

(
|c2|

(
x− y

2

)
+ c2

(
x + y

2

))∥∥∥∥ ≤ |c1 − c2|.

Proof. (i) Case of c1, c2 > 0. We have
∥∥∥∥
(
|c1|

(
x− y

2

)
+ c1

(
x + y

2

))
−

(
|c2|

(
x− y

2

)
+ c2

(
x + y

2

))∥∥∥∥

=
∥∥∥∥(|c1| − |c2|)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥

=
∥∥∥∥(c1 − c2)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥
= ‖(c1 − c2)x‖
= |c1 − c2|.

(ii) Case of c1, c2 < 0. We have
∥∥∥∥
(
|c1|

(
x− y

2

)
+ c1

(
x + y

2

))
−

(
|c2|

(
x− y

2

)
+ c2

(
x + y

2

))∥∥∥∥

=
∥∥∥∥(|c1| − |c2|)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥

=
∥∥∥∥(c2 − c1)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥
= ‖(c1 − c2)y‖
= |c1 − c2|.

(iii) Case of c1 > 0, c2 < 0. We have
∥∥∥∥
(
|c1|

(
x− y

2

)
+ c1

(
x + y

2

))
−

(
|c2|

(
x− y

2

)
+ c2

(
x + y

2

))∥∥∥∥
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=
∥∥∥∥(|c1| − |c2|)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥

=
∥∥∥∥(c1 + c2)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥
= ‖c1x− c2y‖
≤ |c1|+ |c2|
= c1 − c2

= |c1 − c2|.
(iv) Case of c1 < 0, c2 > 0. We have

∥∥∥∥
(
|c1|

(
x− y

2

)
+ c1

(
x + y

2

))
−

(
|c2|

(
x− y

2

)
+ c2

(
x + y

2

))∥∥∥∥

=
∥∥∥∥(|c1| − |c2|)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥

=
∥∥∥∥(−c1 − c2)

(
x− y

2

)
+ (c1 − c2)

(
x + y

2

)∥∥∥∥
= ‖c1y − c2x‖
≤ |c1|+ |c2|
= −c1 + c2

= |c1 − c2|.
This completes the proof. ¤

Using Lemma 3.1 and Lemma 3.2, we first obtain the following new characteri-
zation of uniformly convex Banach spaces.

Theorem 3.3. Let E be a Banach space. The following are equivalent.
(1) E is uniformly convex;
(2) for each ε > 0, then there exists δ > 0 such that λFδ(T ) + (1 − λ)Fδ(T ) ⊂

Fε(T ) for any λ ∈ [0, 1], nonempty closed convex subset C of E with
diam(C) = 1 and any nonexpansive mapping T of C into itself.

Proof. Bruck[4] proved that (1) implies (2). So, we shall prove that (2) implies (1).
We assume that E is not uniformly convex. Then, there exist a real number β0 > 0,
{βn} ⊂ (0, 1) and {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and

∥∥∥∥
xn − yn

2

∥∥∥∥ > β0,

∥∥∥∥
xn + yn

2

∥∥∥∥ = 1− βn and βn ≤ β0

(2 + β0)n
.

for all n ∈ N. We define sequences {Cn} and {Dn} of closed convex subsets of E by

Cn =
{

a

(
xn − yn

2

)
+ c

(
xn + yn

2

)
: a ∈ [0, 1], |c| ∈ [0, 1]

}

and

Dn =
Cn

M
, M = diam(Cn)
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for all n ∈ N and we also define a sequence {Tn} of mappings of Dn into itself by,
for every a, |c| ∈ [0, 1],

Tn

(
a

M

(
xn − yn

2

)
+

c

M

(
xn + yn

2

))

=
|c|
M

(
xn − yn

2

)
+

c

M

(
xn + yn

2

)
for all n ∈ N.

By the definiton of {Dn}, we have 0 ∈ Dn for all n ∈ N. Further we define a
sequence {Ln} of mappings of Dn into itself by

Ln =
(1− βn)(β0 − βn)

β0 + βn
Tn

for all n ∈ N. By Lemma 3.1 and Lemma 3.2, we obtain that Ln is a nonexpansive
mapping of Dn into itself for each n ∈ N. Let n ∈ N and x ∈ F (Tn). Since

‖Lnx− x‖ =
∥∥∥∥
(1− βn)(β0 − βn)

β0 + βn
Tnx− x

∥∥∥∥

=
∥∥∥∥
(

(1− βn)(β0 − βn)− (β0 + βn)
β0 + βn

)
x

∥∥∥∥

=
∣∣∣∣
(1− βn)(β0 − βn)− (β0 + βn)

β0 + βn

∣∣∣∣ ‖x‖

≤
∣∣∣∣∣

(−2βn − βnβ0 + (βn)2
)

β0 + βn

∣∣∣∣∣

=
∣∣∣∣
(−2− β0 + βn) βn

β0 + βn

∣∣∣∣

≤
∣∣∣∣
(2 + β0) βn

β0

∣∣∣∣

≤ 1
n

,

we have x ∈ F 1
n
(Ln), i.e. F (Tn) ⊂ F 1

n
(Ln) for each n ∈ N. Put

u =
1
2

(
xn − yn

2

)
+

1
2

(
xn + yn

2

)
and v =

1
2

(
xn − yn

2

)
− 1

2

(
xn + yn

2

)
.

Then, we have that u, v ∈ F (Tn) ⊂ F 1
n
(Ln) and

1
2

(
xn − yn

2

)
=

u + v

2
∈ 1

2
F 1

n
(Ln) +

1
2
F 1

n
(Ln).

Since ∥∥∥∥Ln

(
1
2

(
xn − yn

2

))
− 1

2

(
xn − yn

2

)∥∥∥∥ =
∥∥∥∥
1
2

(
xn − yn

2

)∥∥∥∥ >
β0

2

for each n ∈ N, we have
1
2

(
xn − yn

2

)
6∈ Fβ0

2

(Ln)
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for each n ∈ N. Since
1
2

(
xn − yn

2

)
=

u + v

2
∈ 1

2
F 1

n
(Ln) +

1
2
F 1

n
(Ln)

for each n ∈ N, this contradicts (2). This completes the proof. ¤
By Theorem 1.1 and Theorem 3.4, we have the following theorem and we obtain

the affirmative answer to our question, i.e. the converse of Theorem 3.1 is true.

Theorem 3.4. Let E be a Banach space. The following are equivalent.
(1) E is uniformly convex;
(2) for each ε > 0 and d > 0, then there exists δ > 0 such that coFδ(T ) ⊂

Fε(T ) for any nonempty closed convex subset C of E with diam(C) = d and
nonexpansive mapping T of C into itself.

Proof. It is trivial that (2) implies (2) in Theorem 3.3. By Theorem 1.1, we have
that (1) implies (2). This completes the proof. ¤

We need the following definitions.

Definition 3.5. A function γ : [0,∞) → [0,∞) belongs to class Γ if γ satisfies
(1) γ(0) = 0,
(2) γ is a continuous convex function,
(3) s < t implies γ(s) < γ(t).

Definition 3.6. Let C be a convex subset of a Banach space E. A mapping T of
C into E is said to be of type(γ) if there exists γ ∈ Γ such that for all x, y ∈ C and
all λ ∈ [0, 1],

γ(‖λT (x) + (1− λ)T (y)− T (λx + (1− λ)y)‖) ≤ ‖x− y‖ − ‖T (x)− T (y)‖.
Definition 3.7. Let C be a convex subset of a Banach space E and γ0 ∈ Γ. A
mapping T of C into E is said to be of type(γ) with γ0 if for all x, y ∈ C and all
λ ∈ [0, 1],

γ0(‖λT (x) + (1− λ)T (y)− T (λx + (1− λ)y)‖) ≤ ‖x− y‖ − ‖T (x)− T (y)‖.
Finally, by this theorem and Theorem 3.3, we can obtain the following Khamsi’s

theorem.

Theorem 3.8 ([6]). Let E be a Banach space. The following are equivalent.
(1) E is uniformly convex;
(2) there exists γ0 ∈ Γ such that any nonexpansive mapping T of C into itself

is of type (γ) with γ0 for any nonempty closed convex subset C of E with
diam(C) = 1.

Proof. By Theorem 1.2, we have that (1) implies (2). By Theorem 3.3, it suffices to
show that (2) implies (2) in Theorem 3.3. By our assumption, there exists γ0 ∈ Γ
such that any nonexpansive mapping T of C into itself is type (γ) with γ0 for any
nonempty closed convex subset C of E with diam(C) = 1. Let ε > 0 and let δ be a
positive number such that

δ + γ−1
0 (2δ) ≤ ε.
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Let C be a nonempty closed convex subset of E with diam(C) = 1, let T be a
nonexpansive mapping of C into itself, let x, y ∈ Fδ(T ) and let λ ∈ [0, 1]. Since

‖λx + (1− λ)y − T (λx + (1− λ)y)‖ ≤ ‖λx + (1− λ)y − [λTx + (1− λ)Ty])‖
+ ‖λTx + (1− λ)Ty − T (λx + (1− λ)y)‖

≤ λ ‖x− Tx‖+ (1− λ) ‖y − Ty‖
+ γ−1

0 (‖x− y‖ − ‖Tx− Ty‖)
≤ λ ‖x− Tx‖+ (1− λ) ‖y − Ty‖

+ γ−1
0 (‖x− Tx‖+ ‖y − Ty‖)

≤ δ + γ−1
0 (2δ)

≤ ε,

then we have that λx+(1−λ)y ∈ Fε(T ). Therefore we obtain λFδ(T )+(1−λ)Fδ(T ) ⊂
Fε(T ) for any λ ∈ [0, 1], nonempty closed convex subset C of E with diam(C) = 1
and nonexpansive mapping T of C into itself. This completes the proof. ¤
Acknowledgment. The author thanks the editor and the referee for their valuable
comments.
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