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HEMIVARIATIONAL INEQUALITIES MODELING VISCOUS
INCOMPRESSIBLE FLUIDS

STANISÃLAW MIGÓRSKI

Abstract. In this paper we study a class of inequality problems for Navier-
Stokes equations related to the model of motion of a viscous incompressible fluid
in a bounded domain. It is assumed that on the boundary of the domain the
tangential components of the velocity vector are prescribed and there is a Clarke
subdifferential relation between the pressure and the normal components of the
velocity. We prove the existence and uniqueness of weak solutions to the model
by using the theories of pseudomonotone mappings and differential inclusions.

1. Introduction

This paper is an extended version of a talk presented by the author at The Third
International Conference on Nonlinear Analysis and Convex Analysis which held in
Tokyo, August 25-29, 2003. The goal is to report on the results of our recent studies
of a class of inequality problems for Navier-Stokes equations related to the model
of motion of a viscous incompressible fluid. We deal with the problem of stationary
flow of inhomogeneous viscous fluid in a regular bounded domain Ω ⊂ Rd, d = 2, 3.
The Navier-Stokes equations are the following

(1) −ν
d∑

j=1

∂2ui

∂x2
j

+
d∑

j=1

uj
∂ui

∂xj
+

∂p

∂xi
= fi for i = 1, . . . , d in Ω,

(2)
d∑

j=1

∂uj

∂xj
= 0 in Ω.

This system describes the flow of a viscous incompressible fluid which occupies the
domain Ω, u = {ui}, i = 1, . . . , d denotes the velocity of the fluid, p is the pressure,
f = {fi} is the volume density of external forces and ν is a positive constant repre-
senting the coefficient of kinematic viscosity. Using the standard Lamb formulation
we rewrite (1)-(2) in an equivalent form (see also (6)-(7) in Section 3):

(3) −ν rot rotu + rotu× u +∇h = f, div u = 0 in Ω,

where a function h = p + 1
2 |u|2 denotes the dynamic pressure. We consider this

problem under the following boundary conditions

(4) h ∈ ∂j(x, uN ) and uτ = 0 on ∂Ω.
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Here uN and uτ denote the normal and the tangential component of u on the
boundary, uN = u · n, uτ = u− uNn, n being the unit outward normal on ∂Ω and
∂j is the Clarke subdifferential of a locally Lipschitz function j(x, ·).

We emphasize that the subdifferential boundary condition in particular cases re-
duces to the classical boundary conditions (see [3, 14, 13]). If the function j(x, ·)
is assumed to be convex the problem has been studied in papers by Chebotarev
[3, 4]. Next, still in a convex setting, Chebotarev [5] considered the boundary con-
ditions (4) for the Boussinesq equations and Konovalova [9] studied the evolution
counterpart of (3)-(4). In all these papers the considered problems were formulated
as variational inequalities involving maximal monotone operators (recall that the
subdifferential of a convex function is a maximal monotone map, cf. e.g. [16, 7]).
In the present paper, due to the absence of convexity of the superpotential j, the
formulation of (3)-(4) is not longer a variational inequality and it leads to the ex-
pression called hemivariational inequality. The latter have been introduced and
studied by P.D. Panagiotopoulos in the early eighties as variational formulations
for several classes of mechanical problems with nonsmooth and nonconvex energy
superpotentials. Since that time the notion of hemivariational inequality proved to
be a useful and powerful tool for formulation and solving several problems coming
from mechanics and engineering. In mechanics the hemivariational inequalities ex-
press the principles of virtual work or power, see e.g. unilateral contact problems
in nonlinear elasticity and viscoelasticity, problems describing frictional and adhe-
sive effects, problem of delamination of plates, loading and unloading problems in
engineering structures in Panagiotopoulos [14], Naniewicz and Panagiotopoulos [13]
and Migorski [11].

The goal of the paper is to show the results on the existence and uniqueness of
weak solutions to a hemivariational inequality corresponding to the problem (3)-(4).
The existence will be proved by employing a surjectivity result for a pseudomonotone
and coercive operator. The uniqueness is obtained under the relaxed monotonicity
condition imposed on the subdifferential of the associated integral superpotential.

The paper is organized as follows. In Section 2 we recall some notation and
present some auxiliary material. In Section 3 we present the formulation of the
boundary value problem for the stationary Navier-Stokes equation with a subdif-
ferential boundary condition as a hemivariational inequality. The results on the
existence and uniqueness of the weak solution to the hemivariational inequality are
delivered in Section 4.

2. Notation and preliminaries

In this section we introduce the notation and recall some definitions needed in
the sequel.

Let E be a Banach space. In what follows we denote by 〈·, ·〉 the duality map
between E and its dual E∗. Following Clarke [6] we recall

Definition 1. Let h : E → R be a locally Lipschitz function. The generalized
directional derivative of h at x ∈ E in the direction v ∈ E, denoted by h0(x; v), is
defined by

h0(x; v) = lim sup
y→x, t↓0

h(y + tv)− h(y)
t

.
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The generalized gradient of h at x, denoted by ∂h(x), is a subset of a dual space
E∗ given by

∂h(x) = {ζ ∈ E∗ : h0(x; v) ≥ 〈ζ, v〉 for all v ∈ E}.
The locally Lipschitz function h is called regular (in the sense of Clarke) at x ∈ E
if for all v ∈ E the one-sided directional derivative h′(x; v) exists and satisfies
h0(x; v) = h′(x; v) for all v ∈ E.

We state the chain rules theorem and for its proof we refer to Theorem 2.3.10 in
Clarke [6].

Proposition 1. Let X and Y be Banach spaces, L ∈ L(Y, X) and let f : X →
R ∪ {+∞} be a locally Lipschitz function. Then

(i) (f ◦ L)0(x; z) ≤ f0(Lx;Lz) and (ii) ∂(f ◦ L)(x) ⊆ L∗∂f(Lx)

for x, z ∈ Y , where L∗ ∈ L(X∗, Y ∗) denotes the adjoint operator to L. In in
addition either f or −f is regular, then in both (i) and (ii) the equalities hold.

Next, given a reflexive Banach space V we recall

Definition 2. An operator T : V → V ∗ is said to be pseudomonotone if
(i) it is bounded (i.e. it maps bounded subsets of V into bounded subsets

of V ∗);
(ii) if un → u weakly in V and lim sup〈Tun, un−u〉 ≤ 0, then Tun → Tu weakly

in V ∗ and lim〈Tun, un − u〉 = 0.

Definition 3. A multivalued operator T : V → 2V ∗ is said to be pseudomonotone
if the following conditions hold:

(i) the set Tv is nonempty, bounded, closed and convex for all v ∈ V ;
(ii) T is usc from each finite dimensional subspace of V into V ∗ endowed with

the weak topology;
(iii) if vn ∈ V , vn → v weakly in V and v∗n ∈ Tvn is such that lim sup〈v∗n, vn−v〉 ≤

0, then to each y ∈ V , there exists v∗(y) ∈ Tv such that 〈v∗(y), v − y〉 ≤
lim inf〈v∗n, vn − y〉.

Definition 4. An operator T : V → 2V ∗ is said to be generalized pseudomonotone
if for every sequences vn → v weakly in V , v∗n → v∗ weakly in V ∗, v∗n ∈ Tvn and
lim sup〈v∗n, vn − v〉 ≤ 0, we have v∗ ∈ Tv and 〈v∗n, vn〉 → 〈v∗, v〉.

Finally, we state a well known result, cf. Browder and Hess [1] and Zeidler [16].

Proposition 2. If T : V → 2V ∗ is a generalized pseudomonotone operator which is
bounded and has nonempty, closed and convex values, then T is pseudomonotone.

3. Classical model and variational formulation

In this section we present the classical stationary Navier-Stokes equations which
will be considered with a subdifferential boundary condition. We give a variational
formulation of this problem and applying a surjectivity result we establish the ex-
istence of weak solutions. Then we provide conditions under which the solution to
our problem is unique.
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Let Ω be a bounded simply connected domain in Rd, d = 2, 3 with connected
boundary Γ of class C2. We consider the following system of stationary Navier-
Stokes equations

(5) −ν∆u + (u · ∇)u +∇p = f, ∇ · u = 0 in Ω.

This system describes the steady state flow of incompressible viscous fluid occupying
the volume Ω subjected to given volume forces f . Here u = {ui(x)}d

i=1 is the velocity
field, p the pressure, ν > 0 the kinematic viscosity of the fluid (ν = 1/Re, where
Re is the Reynolds number), f = {fi(x)}d

i=1 the density of external forces. The

convective term (u ·∇)u in (5) is a symbolic notation for the vector {
d∑

j=1

uj
∂ui

∂xj
}d

i=1.

The divergence free condition in (5) is the equation for law of mass conservation and
it states that the motion is incompressible. By using the following two identities
(see Chapter I of Girault and Raviart [8])

(u · ∇)u = rot u× u +
1
2
∇(u · u), −∆u = rot rotu−∇ div u

and the incompressibility condition div u = 0 in Ω, from (5) we have

(6) ν rot rotu + rotu× u +∇h = f in Ω,

(7) div u = 0 in Ω,

where the total head of the fluid, sometimes referred to as ”total pressure” or
”Bernoulli pressure”, is given by h = p + 1

2 |u|2.
We suppose that on the boundary Γ the tangential components of the velocity

vector are known and without loss of generality we put them equal to zero (the
so-called nonslip boundary condition):

(8) uτ = u− uNn = 0 on Γ,

where n = {ni}d
i=1 is the unit outward normal on Γ and uN = u·n =

∑
uini denotes

the normal component of the vector u. Moreover, we assume on the boundary the
following subdifferential boundary condition

(9) h(x) ∈ ∂j(x, uN (x)) for x ∈ Γ.

Here j : Γ × R → R is called a superpotential and denotes the function which is
locally Lipschitz in the second variable and ∂j is the subdifferential of j(x, ·) in
the sense of Clarke. The dependence of j on the first argument means that the
subdifferential boundary condition can be of different character on different parts
of Γ (cf. [9, 12]).

In order to give the weak formulation of the problem (6)-(9) we introduce the
following notation

W = {w ∈ C∞(Ω;Rd) : div w = 0 in Ω, wτ = 0 on Γ}.
We denote by V and H the closure of W in the norms of H1(Ω;Rd) and L2(Ω;Rd),
respectively. Multiplying the equation of motion (6) by v ∈ V and applying the
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Green formula, we obtain

(10) ν

∫

Ω
rotu · rot vdx +

∫

Ω
(rotu× u) · vdx +

∫

Γ
hvNdσ(x) =

∫

Ω
f · vdx.

Let us introduce the following operators A : V → V ∗ and B[·] : V → V ∗ by

〈Au, v〉 = ν

∫

Ω
rotu · rot vdx,

〈B(u, v), w〉 =
∫

Ω
(rotu× v) · wdx, B[v] = B(v, v)

for u, v, w ∈ V and let 〈F, v〉 =
∫

Ω
f · vdx for v ∈ V . On the other hand, from (9),

by using the definition of the Clarke subdifferential we have∫

Γ
hvNdσ(x) ≤

∫

Γ
j0(x, uN (x); vN (x))dσ(x),

where j0(x, ξ; η) denotes the directional derivative of j(x, ·) at the point ξ ∈ R in the
direction η ∈ R. Hence and from (10) we arrive to the following weak formulation
of the problem: find u ∈ V such that

(11) 〈Au + B[u], v〉+
∫

Γ
j0(x, uN (x); vN (x))dσ(x) ≥ 〈F, v〉 for every v ∈ V.

The relation (11) is called the hemivariational inequality. We have shown that the
hemivariational inequality (11) is derived from (6)-(9). The following remark states
that in some sense the converse statement also holds.

Remark 1. If u ∈ V is a solution to the hemivariational inequality (11) and u is
sufficiently smooth, then there exists a distribution h such that the conditions (6)-
(9) hold. Indeed, since u ∈ V from the definition of V we have div u = 0 in Ω and
uτ = 0 on Γ. Let us now take v = ±w, w ∈ V ∩ C∞

0 (Ω;Rd) in (11). Since w is
arbitrary and j0(x, uN ; 0) = 0, we obtain 〈Au+B[u], w〉 = 〈F, w〉. From Proposition
1.1 in Chapter I of Temam [15] it follows that Au + B[u] +∇h = F which implies
(6). Next let v ∈ V . After multiplying the last equation by v and integrating by
parts over Ω we have

〈Au + B[u], v〉+
∫

Γ
hvNdσ(x) = 〈F, w〉.

Comparing this equality with (11) entails
∫

Γ

[
j0(x, uN (x); vN (x))− hvN

]
dσ(x) ≥ 0

for every v ∈ V . Hence we deduce j0(x, uN (x); vN (x)) ≥ hvN on Γ. This shows
that the subdifferential condition (9) holds.

4. Main results

The aim of this section is to provide the main result of the paper on the existence
of solutions to the hemivariational inequality (11). This result will be a consequence
of a theorem in which we establish the existence of solutions to an abstract inclusion
associated to (11).
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First we recall that since Ω is supposed to be simply connected domain, by a
result of Bykhovski and Smirnov [2], the bilinear form

((u, v))V =
∫

Ω
rotu · rot vdx

generates a norm in V , ‖u‖V = ((u, u))1/2
V , which is equivalent to the H1(Ω;Rd)-

norm. Therefore it is easy to deduce that the operator A satisfies the following
condition:
H(A) : A : V → V ∗ is a linear, bounded, symmetric operator such that

〈Av, v〉 ≥ α‖v‖2
V for v ∈ V with α > 0.

Since the above mentioned norms are equivalent, it is clear that α = νk with some
k > 0. Then we introduce the trilinear form b : [H1(Ω;Rd)]3 → R defined by

b(u, v, w) = 〈B(u, v), w〉 for u, v, w ∈ H1(Ω;Rd).

Similarly as in Lemmas 1.1, 1.3 and 1.5 in Chapter II of Temam [15], we can show
that the form b is continuous, b(u, v, w) = −b(u,w, v), b(u, v, v) = 0 for u, v, w ∈
H1(Ω;Rd) and that if un → u weakly in V , then

b(un, un, v) → b(u, u, v) for all v ∈ V.

This means that the bilinear operator B : V × V → V ∗ satisfies:
H(B) : B[v] = B(v, v), B : V × V → V ∗ is a bilinear continuous operator such
that 〈B(u, v), v〉 = 0 for u, v ∈ V and the map B[·] : V → V ∗ is weakly continuous.

Concerning the superpotential let us consider the functional J : L2(Γ;Rd) → R
defined by

(12) J(v) =
∫

Γ
j(x, vN (x))dσ(x) for v ∈ L2(Γ;Rd)

and for its integrand j let us assume the following hypothesis:
H(j) : j : Γ× R→ R is a function such that

(i) j(·, ξ) is measurable on Γ for each ξ ∈ R and j(·, 0) ∈ L1(Γ);
(ii) j(x, ·) is locally Lipschitz on R for each x ∈ Γ;
(iii) |η| ≤ c1 (1 + |ξ|ρ) for all η ∈ ∂j(x, ξ), (x, ξ) ∈ Γ × R with c1 > 0 and

0 ≤ ρ < 1.
To continue the formulation of the problem in the form of an operator inclusion,

we need to introduce an operator of the subdifferential type. To this end we define
the space Z to be the closure of W in the norm of Hδ(Ω;Rd) with δ ∈ (1

2 , 1). We
have

V ⊂ Z ⊂ H ' H∗ ⊂ Z∗ ⊂ V ∗

with all embeddings being dense and compact. Denoting by i : V → Z the em-
bedding injection and by γ : Z → L2(Γ;Rd) and γ0 : H1(Ω;Rd) → H1/2(Γ;Rd) ⊂
L2(Γ;Rd) the trace operators, for all v ∈ V we get γ0v = γ(iv). For simplicity we
omit the notation of the embedding i and we write γ0v = γv for v ∈ V .

We consider the following operator inclusion:

(13) find u ∈ V such that Au + B[u] + γ∗ (∂J(γu)) 3 F.
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We say that an element u ∈ V is a solution to (13) if and only if there exists
η ∈ Z∗ such that Au + B[u] + η = F and η ∈ γ∗ (∂J(γu)).

Some properties of the nonconvex integral functional (12) are collected below (for
the proof see Migorski and Ochal [12]).

Lemma 1. Assume that the function j : Γ × R → R satisfies H(j). Then the
functional J defined by (12) has the following properties:
H(J) : J : L2(Γ;Rd) → R is a functional such that

(i) J is well defined and Lipschitz on bounded subsets of L2(Γ;Rd);
(ii) ‖ζ‖L2(Γ;Rd) ≤ c̃

(
1 + ‖v‖ρ

L2(Γ;Rd)

)
for all ζ ∈ ∂J(v), v ∈ L2(Γ;Rd) with

c̃ > 0;
(iii) for all u, v ∈ L2(Γ;Rd), we have

(14) J0(u; v) ≤
∫

Γ
j0(x, uN (x); vN (x))dσ(x),

where J0(u; v) denotes the directional derivative of J at a point u ∈ L2(Γ;Rd)
in the direction v ∈ L2(Γ;Rd).

Moreover, if additionally either j or −j is regular in the sense of Clarke, then J or
−J is regular, respectively and the inequality (14) becomes equality.

Remark 2. If the functional J is of the form (12) and H(j) holds, then every solution
to (13) is also a solution to the inequality (11). Moreover, if j or −j is regular, then
the converse is also true. Indeed, if u ∈ V solves (13), then for every v ∈ V , we
have 〈Au + B[u], v〉+ 〈η, v〉Z∗×Z = 〈F, v〉 with η = γ∗ζ and ζ ∈ ∂J(γu). From the
definition of the subdifferential we obtain 〈ζ, z〉L2(Γ;Rd) ≤ J0(γu; z) for all z ∈ Z

and therefore by using H(J)(iii) we get

〈η, v〉Z∗×Z = 〈γ∗ζ, v〉Z∗×Z = 〈ζ, γv〉L2(Γ;Rd) ≤

≤ J0(γu; γv) ≤
∫

Γ
j0(x, uN (x); vN (x))dσ(x) for every v ∈ V.

Hence u is also a solution to (11). Now we will show that under regularity of j
or −j every solution to (11) solves also (13). From Lemma 1 we have

〈F −Au−B[u], v〉 ≤
∫

Γ
j0(x, uN (x); vN (x))dσ(x) = J0(γu; γv).

By the chain rule (see Proposition 1) we get ∂(J ◦ γ)(v) = γ∗ ◦ ∂J(γv) so

F −Au−B[u] ∈ ∂(J ◦ γ)(v) = γ∗(∂J(γv))

which implies (13).

The main result of this paper reads now as follows.

Theorem 1. Under hypothesis H(j) and f ∈ V ∗, the hemivariational inequality
(11) admits a solution.

Proof. It follows from Remark 2 that in order to establish the existence of solutions
to (11), it is enough to obtain the existence result for the inclusion (13). The
existence result for the latter is based on a surjectivity theorem (cf. Theorem 1.3.70



224 STANISÃLAW MIGÓRSKI

of Denkowski et al. [7]) for a multivalued coercive and pseudomonotone operator
between a reflexive Banach space and its dual. To this end we define the operator
F : V → 2V ∗ by

Fv = Av + B[v] + γ∗ (∂J(γv)) for v ∈ V.

We will show that F is coercive and pseudomonotone. We begin with the prop-
erties of the operator T : Z → 2Z∗ given by

(15) Tz = γ∗ (∂J(γz)) for z ∈ Z.

Claim: The operator T satisfies the following
(i) The values of T are nonempty, convex and weakly compact subsets of Z∗;
(ii) The graph of T is closed in Z × (w–Z∗) topology;
(iii) ‖Tz‖Z∗ ≤ c

(
1 + ‖z‖ρ

Z

)
for all z ∈ Z with c > 0,

where (w–Z∗) denotes the space Z∗ equipped with the weak topology.
Indeed, the nonemptiness and convexity of values of T follow immediately from

the analogous properties of the Clarke subdifferential. It can be also easily proved
that the values of T are weakly compact.

Let {zn} ⊂ Z, {z∗n} ⊂ Z∗ be such that z∗n ∈ Tzn, zn → z in Z and z∗n → z∗
weakly in Z∗. We will show that z∗ ∈ Tz. By assumption we have z∗n = γ∗wn

and wn ∈ ∂J(γzn). Using the fact that ∂J : L2(Γ;Rd) → 2L2(Γ;Rd) is a bounded
map (cf. H(J)(ii)), we may assume that wn → w0 weakly in L2(Γ;Rd). Hence
z∗n = γ∗wn → γ∗w0 = z∗ weakly in Z∗. From the closedness of the graph of ∂J
in L2(Γ;Rd)× (w–L2(Γ;Rd)) topology (cf. [6]), passing to the limit in the relation
wn ∈ ∂J(γzn) we obtain w0 ∈ ∂J(γz). This together with z∗ = γ∗w0 implies
z∗ ∈ γ∗(∂J(γz)) = Tz and proves the closedness of the graph of T in Z × (w–Z∗)
topology.

By using H(J)(ii), for all z ∈ Z we have

‖Tz‖Z∗ ≤ ‖γ∗‖‖∂J(γz)‖L2(Γ;Rd) ≤ ‖γ∗‖c̃
(
1 + ‖γz‖ρ

L2(Γ;Rd)

)
≤

≤ c̃‖γ∗‖ (
1 + ‖γ‖ρ‖z‖ρ

Z

) ≤ ĉ
(
1 + ‖z‖ρ

Z

)

with a positive constant ĉ > 0, where ‖γ‖ = ‖γ∗‖ = ‖γ‖L(Z;L2(Γ;Rd)). This shows
that (iii) holds and completes the proof of the claim.

Next, for the proof of coerciveness of F , we observe that by H(A) and H(B), we
have

〈Fv, v〉 = 〈Av, v〉+ 〈B(v, v), v〉+ 〈ζ, v〉Z∗×Z ≥ α‖v‖2
V + 〈ζ, v〉Z∗×Z for all v ∈ V

with ζ ∈ Tv. By the condition (iii) of Claim, we easily get

|〈ζ, v〉Z∗×Z | ≤ ‖ζ‖Z∗‖v‖Z ≤ c
(
1 + ‖v‖ρ

Z

) ‖v‖Z =

= c‖v‖Z + c‖v‖ρ+1
Z ≤ cβ‖v‖V + cβρ+1‖v‖ρ+1

V ,

where β > 0 is such that ‖ · ‖Z ≤ β‖ · ‖V . Hence

〈ζ, v〉Z∗×Z ≥ −cβ‖v‖V − cβρ+1‖v‖ρ+1
V .

Since 0 ≤ ρ < 1 it follows that the map F is coercive.
We will show now the pseudomonotonicity of F . This will be done by applying

Proposition 2. From (i) of Claim, it is clear that F has nonempty, closed and convex
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values. Moreover, from the condition (iii) of Claim, H(A) and H(B), we conclude
that F is a bounded map. In order to prove the theorem, it is sufficient to show that
F is a generalized pseudomonotone operator. For this, let us assume vn → v weakly
in V , v∗n → v∗ weakly in V ∗, v∗n ∈ Fvn and lim sup〈v∗n, vn − v〉 ≤ 0. We will show
that v∗ ∈ Fv and 〈v∗n, vn〉 → 〈v∗, v〉. Since v∗n ∈ Fvn we have v∗n = Avn +B[vn]+ ζn

with ζn ∈ Tvn. The continuity of the embedding V ⊂ Z implies that

(16) vn → v in Z.

Hence and from the boundedness of T (see again (iii) of Claim), we may suppose,
by passing to a subsequence if necessary, that

(17) ζn → ζ weakly in Z∗ with ζ ∈ Z∗.

So the property (ii) of Claim implies ζ ∈ Tv. Next, by the equality

〈v∗n, vn − v〉 = 〈Avn, vn − v〉+ 〈B[vn], vn − v〉+ 〈ζn, vn − v〉Z∗×Z

by using (17) and (16), we obtain

(18) lim (〈Avn, vn − v〉+ 〈B[vn], vn − v〉) = lim〈v∗n, vn − v〉 ≤ 0.

On the other hand by H(B) we have

〈B[vn], vn − v〉 = 〈B[vn], vn〉 − 〈B[vn], v〉 = −〈B[vn], v〉 → −〈B[v], v〉 = 0.

Hence and from (18) we deduce

lim sup〈Avn, vn − v〉 = lim sup〈Avn, vn − v〉+ lim〈B[vn], vn − v〉 =

= lim sup〈Avn + B[vn], vn − v〉 ≤ 0.

This clearly yields (cf. (ii) of Definition 2)

(19) Avn → Av weakly in V ∗

and lim〈Avn, vn − v〉 = 0. Exploiting (17) and (19), and passing to the limit in the
equality v∗n = Avn + B[vn] + ζn we have v∗ = Av + B[v] + ζ which together with
ζ ∈ Tv implies that v∗ ∈ Tv.

Finally, from (17)–(19), we deduce

lim〈v∗n, vn〉 = lim〈Avn, vn〉+ lim〈B[vn], vn〉+ lim〈ζn, vn〉Z∗×Z =

= 〈Av + B[v], v〉+ 〈ζ, v〉Z∗×Z = 〈v∗, v〉
which completes the proof of the generalized pseudomonotonicity of F . The proof
of the theorem is finished. ¤

We now comment on the uniqueness of solutions to the inclusion (13). We need
an additional hypothesis on the functional J .

H(J)1 : J : L2(Γ;Rd) → R satisfies H(J) and the following relaxed monotonicity
condition: (z1 − z2, w1 − w2)L2(Γ;Rd) ≥ −m‖w1 − w2‖2

L2(Γ;Rd) for all zi ∈ ∂J(wi),
wi ∈ L2(Γ;Rd), i = 1, 2 with m > 0.
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Proposition 3. Let the operators A and B satisfy H(A) and H(B), let H(J) hold,
f ∈ V ∗ and let u ∈ V be a solution to (13). Then there exists a constant C > 0
such that ‖u‖V ≤ C. Moreover, if H(J)1 holds and α−mβ2‖γ‖2 − cbC > 0, where
cb > 0 is the continuity constant of the form b associated to the operator B, then
the solution to problem (13) is unique.

We remark that when J ≡ 0, the uniqueness of solutions was obtained in Theorem
1.3, p.167 of Temam [15]

Finally, we mention that the existence and uniqueness results can be obtained also
in the case when ρ = 1 in H(j)(iii). For these results, the examples of functionals
which satisfy hypothesis H(J)1 and for the issues concerning the stability of the
solution set of the hemivariational inequality with respect to perturbations in the
boundary conditions, we refer to Migorski and Ochal [12].
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