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STRONG CONVERGENCE OF MANN’S TYPE SEQUENCES FOR
ONE-PARAMETER NONEXPANSIVE SEMIGROUPS IN

GENERAL BANACH SPACES

TOMONARI SUZUKI AND WATARU TAKAHASHI

Abstract. Let C be a compact convex subset of a Banach space E (which may
not be strictly convex) and let {T (t) : t ≥ 0} be a one-parameter nonexpansive
semigroup on C. The purpose of this paper is to study the strong convergence
of a sequence {xn} in C generated by x1 = x ∈ C and

xn+1 =
αn

tn

Z tn

0

T (s)xn ds + (1− αn)xn, n = 1, 2, · · · ,

where {αn} and {tn} are sequences in [0, 1] and (0,∞), respectively.

1. Introduction

In 1982, Miyadera and Kobayasi [5] proved the following nonlinear ergodic the-
orem for a one-parameter nonexpansive semigroup {T (t) : t ≥ 0} defined on a
bounded closed convex subset C of a uniformly convex Banach space E with a
Fréchet differentiable norm. For each x ∈ C,

(1)
1
t

∫ t

0
T (s)x ds

converges weakly to a common fixed point of {T (t) : t ≥ 0}; for a more general
result, see [3]. Recently, in the case when E is strictly convex and C is compact
and convex, Atsushiba and Takahashi [1] proved that (1) converges strongly to a
common fixed point of {T (t) : t ≥ 0}. However, we do not know whether this
theorem would hold without strict convexity; see [7].

In this paper, we define an iteration of Mann’s type for a one-parameter non-
expansive semigroup and then study the strong convergence of the sequence in a
Banach space without strict convexity. One of main results is as follows: Define a
sequence {xn} by x1 ∈ C and

xn+1 =
αn

tn

∫ tn

0
T (s)xn ds + (1− αn)xn, n = 1, 2, · · · ,

where {αn} ⊂ [0, 1] and {tn} ⊂ (0,∞) satisfy the following conditions:

0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < 1, lim

n→∞ tn = ∞, and lim
n→∞

tn+1

tn
= 1.

Then {xn} converges strongly to a common fixed point z0 of {T (t) : t ≥ 0}.
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2. Lemmas

Throughout this paper, we denote by N the set of positive integers. In this
section, we give two lemmas, which play important roles in the proofs of theorems
in Section 3.

Lemma 1 ([6]). Let {zn} and {wn} be bounded sequences in a Banach space E and
let {αn} be a sequence in (0, 1) with 0 < lim infn αn ≤ lim supn αn < 1. Suppose
that zn+1 = αnwn + (1− αn)zn for all n ∈ N and

lim sup
n→∞

(‖wn − wn+k‖ − ‖zn − zn+k‖
) ≤ 0

for all k ∈ N. Then lim infn ‖wn − zn‖ = 0.

Lemma 2. Let A and B be measurable subsets of [0,∞) and let {tn} be a sequence
in (0,∞) with limn tn = ∞. Suppose that

lim
n→∞

µ
(
[0, tn) ∩A

)

tn
= 1 and lim

n→∞
µ
(
[0, tn) ∩B

)

tn
= 1,

where µ is the Lebesgue measure. Then

lim
n→∞

µ
(
[0, tn) ∩A ∩B

)

tn
= 1

and [t,∞) ∩A ∩B 6= ∅ for all t > 0.

Proof. From the assumption, we have

lim inf
n→∞

µ
(
[0, tn) ∩A ∩B

)

tn

= lim inf
n→∞

µ
(
[0, tn) ∩A

)
+ µ

(
[0, tn) ∩B

)− µ
(
[0, tn) ∩ (A ∪B)

)

tn

≥ lim
n→∞

µ
(
[0, tn) ∩A

)
+ µ

(
[0, tn) ∩B

)− tn

tn
= 1.

It is obvious that

lim sup
n→∞

µ
(
[0, tn) ∩A ∩B

)

tn
≤ 1.

Fix t > 0. Then there exists n ∈ N such that tn ≥ 2t and
µ
(
[0, tn) ∩A ∩B

)

tn
>

1
2
.

From
µ
(
[0, tn) ∩A ∩B

)
>

1
2
tn ≥ t = µ

(
[0, t)

)
,

we have

0 < µ
((

[0, tn) ∩A ∩B
) \ [0, t)

)

= µ
(
[t, tn) ∩A ∩B

)

≤ µ
(
[t,∞) ∩A ∩B

)
.

This completes the proof. ¤
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3. Main results

In this section, we prove our main results. Let C be a subset of a Banach space
E. A family {T (t) : t ≥ 0} of mappings of C into itself is called a one-parameter
nonexpansive semigroup on C if the following hold:

(1) For each x ∈ C, the mapping T (·)x is continuous;
(2) T (0)x = x for all x ∈ C;
(3) T (s + t) = T (s) ◦ T (t) for all s, t ≥ 0;
(4) for each t ≥ 0, T (t) is nonexpansive.

Now, we put

M(t, x) =
1
t

∫ t

0
T (s)x ds

for t > 0 and x ∈ C. Note that a mapping M(t, ·) on C is nonexpansive for each
t > 0 because

‖M(t, x)−M(t, y)‖ =
1
t

∥∥∥∥
∫ t

0

(
T (s)x− T (s)y

)
ds

∥∥∥∥

≤ 1
t

∫ t

0

∥∥T (s)x− T (s)y
∥∥ds

≤ 1
t

∫ t

0

∥∥x− y
∥∥ds

= ‖x− y‖
for all x, y ∈ C.

Theorem 1. Let C be a compact convex subset of a Banach space E and let {T (t) :
t ≥ 0} be a one-parameter nonexpansive semigroup on C. If z ∈ C satisfies

lim inf
t→∞

∥∥∥∥
1
t

∫ t

0
T (s)z ds− z

∥∥∥∥ = 0,

then z ∈ ⋂
t≥0 F (T (t)).

Before proving Theorem 1, we prove one lemma. For z ∈ C, we put

` = lim sup
t→∞

‖T (t)z − z‖

and assume ` > 0. Further, put

A =
⋂

t>0

C(t),

where C(t) is the closure of {T (s)z : s ≥ t}. For u ∈ C, p ∈ [0,∞), q ∈ (0,∞] with
p < q, and ε ∈ (0, `), we also put

B(u, p, q, ε) = {t ∈ [p, q) : ‖T (t)z − u‖ ≥ `− ε}.
Lemma 3. Let U be a finite subset of A. Suppose

B(z, t,∞, ε) ∩
( ⋂

u∈U

B(u, t,∞, ε)

)
6= ∅
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for all t ∈ (0,∞) and ε ∈ (0, `). Then there exists v ∈ A such that ‖v − z‖ = ` and
‖v − u‖ ≥ ` for all u ∈ U .

Proof. For u ∈ {z} ∪ U and ε ∈ (0, `), define

B(u, ε) = {x ∈ C : ‖x− u‖ ≥ `− ε}.
Then, by the assumption, the family of closed subsets of C consisting of

{C(t) : t > 0} and
{
B(u, ε) : u ∈ {z} ∪ U, ε ∈ (0, `)

}

has the finite intersection property. So, there exists a point v ∈ C such that v ∈ A
and ‖v − u‖ ≥ ` for all u ∈ {z} ∪ U . We can also obtain a sequence {tn} such that
limn tn = ∞ and limn T (tn)z = v. Then we have

‖v − z‖ = lim
n→∞ ‖T (tn)z − z‖ ≤ `

and hence ‖v − z‖ = `. ¤

Proof of Theorem 1. Assume ` > 0. By the definition of `, there exists a sequence
{tn} such that limn tn = ∞ and limn ‖T (tn)z − z‖ = `. Since C is compact, there
exists a subsequence {tni} of {tn} such that {T (tni)z} converges strongly to u1 ∈ C.
Then, we get u1 ∈ A and ‖u1 − z‖ = `. We also have by the assumption that there
exists an increasing sequence {tn} in (0,∞) such that limn tn = ∞ and {M(tn, z)}
converges strongly to z. We first show

(2) lim
n→∞

µ
(
B(u, 0, tn, ε)

)

tn
= 1

for u ∈ A with ‖u − z‖ = ` and ε ∈ (0, `). Fix ε ∈ (0, `). For an arbitrary δ > 0,
from lim supt ‖T (t)z − z‖ = `, we obtain s0 ∈ [0,∞) such that ‖T (t)z − z‖ ≤ ` + δ
for all t ∈ [s0,∞). Further, from u ∈ A, we can choose s1 ∈ [s0,∞) such that
‖T (s1)z − u‖ ≤ δ. Then for t > 2s1, we have

‖T (t)z − u‖ ≤ ‖T (t)z − T (s1)z‖+ ‖T (s1)z − u‖
≤ ‖T (t− s1)z − z‖+ ‖T (s1)z − u‖
≤ ` + 2δ.

Take tn with tn > 2s1 and put D = 2 · sup{‖y‖ : y ∈ C}. Then from

` = ‖z − u‖
≤ ‖z −M(tn, z)‖+ ‖M(tn, z)− u‖

= ‖z −M(tn, z)‖+
∥∥∥∥

1
tn

∫ tn

0

(
T (t)z − u

)
dt

∥∥∥∥

≤ ‖z −M(tn, z)‖+
1
tn

∫ tn

0
‖T (t)z − u‖ dt

≤ ‖z −M(tn, z)‖+
2s1

tn
D +

1
tn

∫ tn

2s1

‖T (t)z − u‖ dt
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and
1
tn

∫ tn

2s1

‖T (t)z − u‖ dt

=
1
tn

∫

B(u,2s1,tn,ε)
‖T (t)z − u‖ dt +

1
tn

∫

[2s1,tn)\B(u,2s1,tn,ε)
‖T (t)z − u‖ dt

≤ 1
tn

µ
(
B(u, 2s1, tn, ε)

)
(` + 2δ) +

1
tn

µ
(
[2s1, tn) \B(u, 2s1, tn, ε)

)
(`− ε)

≤ 1
tn

µ
(
B(u, 0, tn, ε)

)
(` + 2δ) +

1
tn

µ
(
[0, tn) \B(u, 0, tn, ε)

)
(`− ε)

=
1
tn

µ
(
B(u, 0, tn, ε)

)
(` + 2δ) +

1
tn

(
tn − µ

(
B(u, 0, tn, ε)

))
(`− ε)

= `− ε +
1
tn

µ
(
B(u, 0, tn, ε)

)
(ε + 2δ),

we have

` ≤ ‖z −M(tn, z)‖+
2s1

tn
D + `− ε +

µ
(
B(u, 0, tn, ε)

)

tn
(ε + 2δ).

So, we have

lim inf
n→∞

µ
(
B(u, 0, tn, ε)

)

tn
≥ lim

n→∞
−‖z −M(tn, z)‖ − 2s1D/tn + ε

ε + 2δ
=

ε

ε + 2δ
.

Since δ > 0 is arbitrary, we obtain (2). For each ε ∈ (0, `), there exists s2 ∈ [0,∞)
such that ‖T (s2)z − u1‖ ≤ ε/2. So, if tn > s2 and t ∈ B(u1, s2, tn, ε/2), we have

‖T (t− s2)z − z‖ ≥ ‖T (t)z − T (s2)z‖
≥ ‖T (t)z − u1‖ − ‖T (s2)z − u1‖
≥ `− ε

and hence

µ
(
B(z, 0, tn, ε)

) ≥ µ
({t− s2 : t ∈ B(u1, s2, tn, ε/2)})

= µ
(
B(u1, s2, tn, ε/2)

)

= µ
(
B(u1, 0, tn, ε/2) \ [0, s2)

)

≥ µ
(
B(u1, 0, tn, ε/2)

)− s2.

So, we obtain

lim inf
n→∞

µ
(
B(z, 0, tn, ε)

)

tn
≥ lim

n→∞
µ
(
B(u1, 0, tn, ε/2)

)− s2

tn
= 1

and hence limn µ
(
B(z, 0, tn, ε)

)
/tn = 1 for ε ∈ (0, `). We next find a sequence {um}

in A satisfying ‖ui−z‖ = ` and ‖ui−uj‖ ≥ ` for i 6= j. If we find u1, u2, . . . , um, then
we can find um+1 as follows: Since limn µ

(
B(ui, 0, tn, ε)

)
/tn = 1 for i ∈ {1, 2, . . . , m}

and ε ∈ (0, `), by Lemma 2, we have

lim
n→∞

µ
(
B(z, 0, tn, ε) ∩ (

⋂m
i=1 B(ui, 0, tn, ε))

)

tn
= 1
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and

B(z, t,∞, ε) ∩
(

m⋂

i=1

B(ui, t,∞, ε)

)
6= ∅

for all t ∈ [0,∞) and ε ∈ (0, `). By Lemma 3, we can find um+1 ∈ A such that
‖um+1 − z‖ = ` and ‖um+1 − ui‖ ≥ ` for i ∈ {1, 2, . . . , m}. Since {un} ⊂ A is a
sequence in a compact set C, there exists a convergent subsequence of {un}. This
is a contradiction. Hence we have ` = 0. So, we have

T (t)z = T (t)
(

lim
s→∞T (s)z

)
= lim

s→∞T (t + s)z = z

for all t ∈ [0,∞). This completes the proof. ¤

Using Theorem 1, we prove the following.

Theorem 2. Let C be a compact convex subset of a Banach space E and let {T (t) :
t ≥ 0} be a one-parameter nonexpansive semigroup on C. Let x1 ∈ C and define a
sequence {xn} in C by

xn+1 =
αn

tn

∫ tn

0
T (s)xn ds + (1− αn)xn

for n ∈ N, where {αn} ⊂ [0, 1] and {tn} ⊂ (0,∞) satisfy the following conditions:

0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < 1, lim

n→∞ tn = ∞, and lim
n→∞

tn+1

tn
= 1.

Then {xn} converges strongly to a common fixed point z0 of {T (t) : t ≥ 0}.
Proof. We know by [2, 8] that

⋂
t≥0 F (T (t)) is nonempty. Fix w ∈ ⋂

t≥0 F (T (t)).
Since

‖xn+1 − w‖ ≤ αn‖M(tn, xn)− w‖+ (1− αn)‖xn − w‖(3)

≤ αn‖xn − w‖+ (1− αn)‖xn − w‖
= ‖xn − w‖

for n ∈ N. So, we have that limn ‖xn − w‖ exists. Fix k, n ∈ N, and put

a = min{tn, tn+k}, b = max{tn, tn+k}, and D = sup
y∈C

‖y‖ < ∞.

Then we have

‖M(tn, xn)−M(tn+k, xn+k)‖ − ‖xn − xn+k‖
≤ ‖M(tn, xn)−M(tn, xn+k)‖+ ‖M(tn, xn+k)−M(tn+k, xn+k)‖ − ‖xn − xn+k‖
≤ ‖xn − xn+k‖+ ‖M(tn, xn+k)−M(tn+k, xn+k)‖ − ‖xn − xn+k‖
= ‖M(tn, xn+k)−M(tn+k, xn+k)‖

=
∥∥∥∥

1
tn

∫ tn

0
T (s)xn+k ds− 1

tn+k

∫ tn+k

0
T (s)xn+k ds

∥∥∥∥

≤
(

1
a
− 1

b

) ∥∥∥∥
∫ a

0
T (s)xn+k ds

∥∥∥∥ +
1
b

∥∥∥∥
∫ b

a
T (s)xn+k ds

∥∥∥∥
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≤
(

a

a
− a

b
+

b− a

b

)
D

=
(

2− 2
min{tn, tn+k}
max{tn, tn+k}

)
D.

By the assumption and induction, we get that

lim
n→∞

min{tn, tn+k}
max{tn, tn+k} = 1

for all k ∈ N. So, we have

lim sup
n→∞

(‖M(tn, xn)−M(tn+k, xn+k)‖ − ‖xn − xn+k‖
) ≤ 0

for all k ∈ N. By Lemma 1, we obtain lim infn ‖M(tn, xn) − xn‖ = 0. It follows
from the compactness of C that there exists a subsequence {xnk

} of {xn} such that
limk ‖M(tnk

, xnk
) − xnk

‖ = 0 and {xnk
} converges strongly to some point z0 ∈ C.

Since

lim sup
k→∞

‖M(tnk
, z0)− z0‖

≤ lim sup
k→∞

(‖M(tnk
, z0)−M(tnk

, xnk
)‖+ ‖M(tnk

, xnk
)− xnk

‖+ ‖xnk
− z0‖

)

≤ lim sup
k→∞

(
2‖xnk

− z0‖+ ‖M(tnk
, xnk

)− xnk
‖) = 0,

we obtain
lim inf
t→∞ ‖M(t, z0)− z0‖ = lim

k→∞
‖M(tnk

, z0)− z0‖ = 0.

So, by Theorem 1, we have z0 ∈
⋂

t≥0 F (T (t)). Since ‖xn+1 − z0‖ ≤ ‖xn − z0‖
for n ∈ N, we obtain limn ‖xn − z0‖ = limk ‖xnk

− z0‖ = 0. This completes the
proof. ¤
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