STRONG CONVERGENCE OF MANN'S TYPE SEQUENCES FOR ONE-PARAMETER NONEXPANSIVE SEMIGROUPS IN GENERAL BANACH SPACES

TOMONARI SUZUKI AND WATARU TAKAHASHI

Abstract

Let C be a compact convex subset of a Banach space E (which may not be strictly convex) and let $\{T(t): t \geq 0\}$ be a one-parameter nonexpansive semigroup on C. The purpose of this paper is to study the strong convergence of a sequence $\left\{x_{n}\right\}$ in C generated by $x_{1}=x \in C$ and $$
x_{n+1}=\frac{\alpha_{n}}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s+\left(1-\alpha_{n}\right) x_{n}, \quad n=1,2, \cdots
$$ where $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences in $[0,1]$ and $(0, \infty)$, respectively.

1. Introduction

In 1982, Miyadera and Kobayasi [5] proved the following nonlinear ergodic theorem for a one-parameter nonexpansive semigroup $\{T(t): t \geq 0\}$ defined on a bounded closed convex subset C of a uniformly convex Banach space E with a Fréchet differentiable norm. For each $x \in C$,

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} T(s) x d s \tag{1}
\end{equation*}
$$

converges weakly to a common fixed point of $\{T(t): t \geq 0\}$; for a more general result, see [3]. Recently, in the case when E is strictly convex and C is compact and convex, Atsushiba and Takahashi [1] proved that (1) converges strongly to a common fixed point of $\{T(t): t \geq 0\}$. However, we do not know whether this theorem would hold without strict convexity; see [7].

In this paper, we define an iteration of Mann's type for a one-parameter nonexpansive semigroup and then study the strong convergence of the sequence in a Banach space without strict convexity. One of main results is as follows: Define a sequence $\left\{x_{n}\right\}$ by $x_{1} \in C$ and

$$
x_{n+1}=\frac{\alpha_{n}}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s+\left(1-\alpha_{n}\right) x_{n}, \quad n=1,2, \cdots,
$$

where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset(0, \infty)$ satisfy the following conditions:

$$
0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1, \quad \lim _{n \rightarrow \infty} t_{n}=\infty, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}}=1
$$

Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point z_{0} of $\{T(t): t \geq 0\}$.

[^0]
2. Lemmas

Throughout this paper, we denote by \mathbb{N} the set of positive integers. In this section, we give two lemmas, which play important roles in the proofs of theorems in Section 3.
Lemma 1 ([6]). Let $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ with $0<\liminf _{n} \alpha_{n} \leq \lim \sup _{n} \alpha_{n}<1$. Suppose that $z_{n+1}=\alpha_{n} w_{n}+\left(1-\alpha_{n}\right) z_{n}$ for all $n \in \mathbb{N}$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|w_{n}-w_{n+k}\right\|-\left\|z_{n}-z_{n+k}\right\|\right) \leq 0
$$

for all $k \in \mathbb{N}$. Then $\liminf _{n}\left\|w_{n}-z_{n}\right\|=0$.
Lemma 2. Let A and B be measurable subsets of $[0, \infty)$ and let $\left\{t_{n}\right\}$ be a sequence in $(0, \infty)$ with $\lim _{n} t_{n}=\infty$. Suppose that

$$
\lim _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A\right)}{t_{n}}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap B\right)}{t_{n}}=1
$$

where μ is the Lebesgue measure. Then

$$
\lim _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A \cap B\right)}{t_{n}}=1
$$

and $[t, \infty) \cap A \cap B \neq \emptyset$ for all $t>0$.
Proof. From the assumption, we have

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A \cap B\right)}{t_{n}} \\
& =\liminf _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A\right)+\mu\left(\left[0, t_{n}\right) \cap B\right)-\mu\left(\left[0, t_{n}\right) \cap(A \cup B)\right)}{t_{n}} \\
& \geq \lim _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A\right)+\mu\left(\left[0, t_{n}\right) \cap B\right)-t_{n}}{t_{n}} \\
& =1
\end{aligned}
$$

It is obvious that

$$
\limsup _{n \rightarrow \infty} \frac{\mu\left(\left[0, t_{n}\right) \cap A \cap B\right)}{t_{n}} \leq 1
$$

Fix $t>0$. Then there exists $n \in \mathbb{N}$ such that $t_{n} \geq 2 t$ and

$$
\frac{\mu\left(\left[0, t_{n}\right) \cap A \cap B\right)}{t_{n}}>\frac{1}{2}
$$

From

$$
\mu\left(\left[0, t_{n}\right) \cap A \cap B\right)>\frac{1}{2} t_{n} \geq t=\mu([0, t))
$$

we have

$$
\begin{aligned}
0 & <\mu\left(\left(\left[0, t_{n}\right) \cap A \cap B\right) \backslash[0, t)\right) \\
& =\mu\left(\left[t, t_{n}\right) \cap A \cap B\right) \\
& \leq \mu([t, \infty) \cap A \cap B)
\end{aligned}
$$

This completes the proof.

3. Main Results

In this section, we prove our main results. Let C be a subset of a Banach space E. A family $\{T(t): t \geq 0\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if the following hold:
(1) For each $x \in C$, the mapping $T(\cdot) x$ is continuous;
(2) $T(0) x=x$ for all $x \in C$;
(3) $T(s+t)=T(s) \circ T(t)$ for all $s, t \geq 0$;
(4) for each $t \geq 0, T(t)$ is nonexpansive.

Now, we put

$$
M(t, x)=\frac{1}{t} \int_{0}^{t} T(s) x d s
$$

for $t>0$ and $x \in C$. Note that a mapping $M(t, \cdot)$ on C is nonexpansive for each $t>0$ because

$$
\begin{aligned}
\|M(t, x)-M(t, y)\| & =\frac{1}{t}\left\|\int_{0}^{t}(T(s) x-T(s) y) d s\right\| \\
& \leq \frac{1}{t} \int_{0}^{t}\|T(s) x-T(s) y\| d s \\
& \leq \frac{1}{t} \int_{0}^{t}\|x-y\| d s \\
& =\|x-y\|
\end{aligned}
$$

for all $x, y \in C$.
Theorem 1. Let C be a compact convex subset of a Banach space E and let $\{T(t)$: $t \geq 0\}$ be a one-parameter nonexpansive semigroup on C. If $z \in C$ satisfies

$$
\liminf _{t \rightarrow \infty}\left\|\frac{1}{t} \int_{0}^{t} T(s) z d s-z\right\|=0
$$

then $z \in \bigcap_{t \geq 0} F(T(t))$.
Before proving Theorem 1, we prove one lemma. For $z \in C$, we put

$$
\ell=\limsup _{t \rightarrow \infty}\|T(t) z-z\|
$$

and assume $\ell>0$. Further, put

$$
A=\bigcap_{t>0} C(t)
$$

where $C(t)$ is the closure of $\{T(s) z: s \geq t\}$. For $u \in C, p \in[0, \infty), q \in(0, \infty]$ with $p<q$, and $\varepsilon \in(0, \ell)$, we also put

$$
B(u, p, q, \varepsilon)=\{t \in[p, q):\|T(t) z-u\| \geq \ell-\varepsilon\} .
$$

Lemma 3. Let U be a finite subset of A. Suppose

$$
B(z, t, \infty, \varepsilon) \cap\left(\bigcap_{u \in U} B(u, t, \infty, \varepsilon)\right) \neq \emptyset
$$

for all $t \in(0, \infty)$ and $\varepsilon \in(0, \ell)$. Then there exists $v \in A$ such that $\|v-z\|=\ell$ and $\|v-u\| \geq \ell$ for all $u \in U$.
Proof. For $u \in\{z\} \cup U$ and $\varepsilon \in(0, \ell)$, define

$$
B(u, \varepsilon)=\{x \in C:\|x-u\| \geq \ell-\varepsilon\} .
$$

Then, by the assumption, the family of closed subsets of C consisting of

$$
\{C(t): t>0\} \quad \text { and } \quad\{B(u, \varepsilon): u \in\{z\} \cup U, \varepsilon \in(0, \ell)\}
$$

has the finite intersection property. So, there exists a point $v \in C$ such that $v \in A$ and $\|v-u\| \geq \ell$ for all $u \in\{z\} \cup U$. We can also obtain a sequence $\left\{t_{n}\right\}$ such that $\lim _{n} t_{n}=\infty$ and $\lim _{n} T\left(t_{n}\right) z=v$. Then we have

$$
\|v-z\|=\lim _{n \rightarrow \infty}\left\|T\left(t_{n}\right) z-z\right\| \leq \ell
$$

and hence $\|v-z\|=\ell$.
Proof of Theorem 1. Assume $\ell>0$. By the definition of ℓ, there exists a sequence $\left\{t_{n}\right\}$ such that $\lim _{n} t_{n}=\infty$ and $\lim _{n}\left\|T\left(t_{n}\right) z-z\right\|=\ell$. Since C is compact, there exists a subsequence $\left\{t_{n_{i}}\right\}$ of $\left\{t_{n}\right\}$ such that $\left\{T\left(t_{n_{i}}\right) z\right\}$ converges strongly to $u_{1} \in C$. Then, we get $u_{1} \in A$ and $\left\|u_{1}-z\right\|=\ell$. We also have by the assumption that there exists an increasing sequence $\left\{t_{n}\right\}$ in $(0, \infty)$ such that $\lim _{n} t_{n}=\infty$ and $\left\{M\left(t_{n}, z\right)\right\}$ converges strongly to z. We first show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)}{t_{n}}=1 \tag{2}
\end{equation*}
$$

for $u \in A$ with $\|u-z\|=\ell$ and $\varepsilon \in(0, \ell)$. Fix $\varepsilon \in(0, \ell)$. For an arbitrary $\delta>0$, from $\lim \sup _{t}\|T(t) z-z\|=\ell$, we obtain $s_{0} \in[0, \infty)$ such that $\|T(t) z-z\| \leq \ell+\delta$ for all $t \in\left[s_{0}, \infty\right)$. Further, from $u \in A$, we can choose $s_{1} \in\left[s_{0}, \infty\right)$ such that $\left\|T\left(s_{1}\right) z-u\right\| \leq \delta$. Then for $t>2 s_{1}$, we have

$$
\begin{aligned}
\|T(t) z-u\| & \leq\left\|T(t) z-T\left(s_{1}\right) z\right\|+\left\|T\left(s_{1}\right) z-u\right\| \\
& \leq\left\|T\left(t-s_{1}\right) z-z\right\|+\left\|T\left(s_{1}\right) z-u\right\| \\
& \leq \ell+2 \delta .
\end{aligned}
$$

Take t_{n} with $t_{n}>2 s_{1}$ and put $D=2 \cdot \sup \{\|y\|: y \in C\}$. Then from

$$
\begin{aligned}
\ell & =\|z-u\| \\
& \leq\left\|z-M\left(t_{n}, z\right)\right\|+\left\|M\left(t_{n}, z\right)-u\right\| \\
& =\left\|z-M\left(t_{n}, z\right)\right\|+\left\|\frac{1}{t_{n}} \int_{0}^{t_{n}}(T(t) z-u) d t\right\| \\
& \leq\left\|z-M\left(t_{n}, z\right)\right\|+\frac{1}{t_{n}} \int_{0}^{t_{n}}\|T(t) z-u\| d t \\
& \leq\left\|z-M\left(t_{n}, z\right)\right\|+\frac{2 s_{1}}{t_{n}} D+\frac{1}{t_{n}} \int_{2 s_{1}}^{t_{n}}\|T(t) z-u\| d t
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{t_{n}} \int_{2 s_{1}}^{t_{n}}\|T(t) z-u\| d t \\
& =\frac{1}{t_{n}} \int_{B\left(u, 2 s_{1}, t_{n}, \varepsilon\right)}\|T(t) z-u\| d t+\frac{1}{t_{n}} \int_{\left[2 s_{1}, t_{n}\right) \backslash B\left(u, 2 s_{1}, t_{n}, \varepsilon\right)}\|T(t) z-u\| d t \\
& \leq \frac{1}{t_{n}} \mu\left(B\left(u, 2 s_{1}, t_{n}, \varepsilon\right)\right)(\ell+2 \delta)+\frac{1}{t_{n}} \mu\left(\left[2 s_{1}, t_{n}\right) \backslash B\left(u, 2 s_{1}, t_{n}, \varepsilon\right)\right)(\ell-\varepsilon) \\
& \leq \frac{1}{t_{n}} \mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)(\ell+2 \delta)+\frac{1}{t_{n}} \mu\left(\left[0, t_{n}\right) \backslash B\left(u, 0, t_{n}, \varepsilon\right)\right)(\ell-\varepsilon) \\
& =\frac{1}{t_{n}} \mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)(\ell+2 \delta)+\frac{1}{t_{n}}\left(t_{n}-\mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)\right)(\ell-\varepsilon) \\
& =\ell-\varepsilon+\frac{1}{t_{n}} \mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)(\varepsilon+2 \delta)
\end{aligned}
$$

we have

$$
\ell \leq\left\|z-M\left(t_{n}, z\right)\right\|+\frac{2 s_{1}}{t_{n}} D+\ell-\varepsilon+\frac{\mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)}{t_{n}}(\varepsilon+2 \delta)
$$

So, we have

$$
\liminf _{n \rightarrow \infty} \frac{\mu\left(B\left(u, 0, t_{n}, \varepsilon\right)\right)}{t_{n}} \geq \lim _{n \rightarrow \infty} \frac{-\left\|z-M\left(t_{n}, z\right)\right\|-2 s_{1} D / t_{n}+\varepsilon}{\varepsilon+2 \delta}=\frac{\varepsilon}{\varepsilon+2 \delta} .
$$

Since $\delta>0$ is arbitrary, we obtain (2). For each $\varepsilon \in(0, \ell)$, there exists $s_{2} \in[0, \infty)$ such that $\left\|T\left(s_{2}\right) z-u_{1}\right\| \leq \varepsilon / 2$. So, if $t_{n}>s_{2}$ and $t \in B\left(u_{1}, s_{2}, t_{n}, \varepsilon / 2\right)$, we have

$$
\begin{aligned}
\left\|T\left(t-s_{2}\right) z-z\right\| & \geq\left\|T(t) z-T\left(s_{2}\right) z\right\| \\
& \geq\left\|T(t) z-u_{1}\right\|-\left\|T\left(s_{2}\right) z-u_{1}\right\| \\
& \geq \ell-\varepsilon
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mu\left(B\left(z, 0, t_{n}, \varepsilon\right)\right) & \geq \mu\left(\left\{t-s_{2}: t \in B\left(u_{1}, s_{2}, t_{n}, \varepsilon / 2\right)\right\}\right) \\
& =\mu\left(B\left(u_{1}, s_{2}, t_{n}, \varepsilon / 2\right)\right) \\
& =\mu\left(B\left(u_{1}, 0, t_{n}, \varepsilon / 2\right) \backslash\left[0, s_{2}\right)\right) \\
& \geq \mu\left(B\left(u_{1}, 0, t_{n}, \varepsilon / 2\right)\right)-s_{2}
\end{aligned}
$$

So, we obtain

$$
\liminf _{n \rightarrow \infty} \frac{\mu\left(B\left(z, 0, t_{n}, \varepsilon\right)\right)}{t_{n}} \geq \lim _{n \rightarrow \infty} \frac{\mu\left(B\left(u_{1}, 0, t_{n}, \varepsilon / 2\right)\right)-s_{2}}{t_{n}}=1
$$

and hence $\lim _{n} \mu\left(B\left(z, 0, t_{n}, \varepsilon\right)\right) / t_{n}=1$ for $\varepsilon \in(0, \ell)$. We next find a sequence $\left\{u_{m}\right\}$ in A satisfying $\left\|u_{i}-z\right\|=\ell$ and $\left\|u_{i}-u_{j}\right\| \geq \ell$ for $i \neq j$. If we find $u_{1}, u_{2}, \ldots, u_{m}$, then we can find u_{m+1} as follows: Since $\lim _{n} \mu\left(B\left(u_{i}, 0, t_{n}, \varepsilon\right)\right) / t_{n}=1$ for $i \in\{1,2, \ldots, m\}$ and $\varepsilon \in(0, \ell)$, by Lemma 2 , we have

$$
\lim _{n \rightarrow \infty} \frac{\mu\left(B\left(z, 0, t_{n}, \varepsilon\right) \cap\left(\bigcap_{i=1}^{m} B\left(u_{i}, 0, t_{n}, \varepsilon\right)\right)\right)}{t_{n}}=1
$$

and

$$
B(z, t, \infty, \varepsilon) \cap\left(\bigcap_{i=1}^{m} B\left(u_{i}, t, \infty, \varepsilon\right)\right) \neq \emptyset
$$

for all $t \in[0, \infty)$ and $\varepsilon \in(0, \ell)$. By Lemma 3, we can find $u_{m+1} \in A$ such that $\left\|u_{m+1}-z\right\|=\ell$ and $\left\|u_{m+1}-u_{i}\right\| \geq \ell$ for $i \in\{1,2, \ldots, m\}$. Since $\left\{u_{n}\right\} \subset A$ is a sequence in a compact set C, there exists a convergent subsequence of $\left\{u_{n}\right\}$. This is a contradiction. Hence we have $\ell=0$. So, we have

$$
T(t) z=T(t)\left(\lim _{s \rightarrow \infty} T(s) z\right)=\lim _{s \rightarrow \infty} T(t+s) z=z
$$

for all $t \in[0, \infty)$. This completes the proof.
Using Theorem 1, we prove the following.
Theorem 2. Let C be a compact convex subset of a Banach space E and let $\{T(t)$: $t \geq 0\}$ be a one-parameter nonexpansive semigroup on C. Let $x_{1} \in C$ and define a sequence $\left\{x_{n}\right\}$ in C by

$$
x_{n+1}=\frac{\alpha_{n}}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s+\left(1-\alpha_{n}\right) x_{n}
$$

for $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{t_{n}\right\} \subset(0, \infty)$ satisfy the following conditions:

$$
0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1, \quad \lim _{n \rightarrow \infty} t_{n}=\infty, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}}=1 .
$$

Then $\left\{x_{n}\right\}$ converges strongly to a common fixed point z_{0} of $\{T(t): t \geq 0\}$.
Proof. We know by $[2,8]$ that $\bigcap_{t \geq 0} F(T(t))$ is nonempty. Fix $w \in \bigcap_{t \geq 0} F(T(t))$. Since

$$
\begin{align*}
\left\|x_{n+1}-w\right\| & \leq \alpha_{n}\left\|M\left(t_{n}, x_{n}\right)-w\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-w\right\| \tag{3}\\
& \leq \alpha_{n}\left\|x_{n}-w\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-w\right\| \\
& =\left\|x_{n}-w\right\|
\end{align*}
$$

for $n \in \mathbb{N}$. So, we have that $\lim _{n}\left\|x_{n}-w\right\|$ exists. Fix $k, n \in \mathbb{N}$, and put

$$
a=\min \left\{t_{n}, t_{n+k}\right\}, \quad b=\max \left\{t_{n}, t_{n+k}\right\}, \quad \text { and } \quad D=\sup _{y \in C}\|y\|<\infty .
$$

Then we have

$$
\begin{aligned}
& \left\|M\left(t_{n}, x_{n}\right)-M\left(t_{n+k}, x_{n+k}\right)\right\|-\left\|x_{n}-x_{n+k}\right\| \\
& \leq\left\|M\left(t_{n}, x_{n}\right)-M\left(t_{n}, x_{n+k}\right)\right\|+\left\|M\left(t_{n}, x_{n+k}\right)-M\left(t_{n+k}, x_{n+k}\right)\right\|-\left\|x_{n}-x_{n+k}\right\| \\
& \leq\left\|x_{n}-x_{n+k}\right\|+\left\|M\left(t_{n}, x_{n+k}\right)-M\left(t_{n+k}, x_{n+k}\right)\right\|-\left\|x_{n}-x_{n+k}\right\| \\
& =\left\|M\left(t_{n}, x_{n+k}\right)-M\left(t_{n+k}, x_{n+k}\right)\right\| \\
& =\left\|\frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n+k} d s-\frac{1}{t_{n+k}} \int_{0}^{t_{n+k}} T(s) x_{n+k} d s\right\| \\
& \leq\left(\frac{1}{a}-\frac{1}{b}\right)\left\|\int_{0}^{a} T(s) x_{n+k} d s\right\|+\frac{1}{b}\left\|\int_{a}^{b} T(s) x_{n+k} d s\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\frac{a}{a}-\frac{a}{b}+\frac{b-a}{b}\right) D \\
& =\left(2-2 \frac{\min \left\{t_{n}, t_{n+k}\right\}}{\max \left\{t_{n}, t_{n+k}\right\}}\right) D
\end{aligned}
$$

By the assumption and induction, we get that

$$
\lim _{n \rightarrow \infty} \frac{\min \left\{t_{n}, t_{n+k}\right\}}{\max \left\{t_{n}, t_{n+k}\right\}}=1
$$

for all $k \in \mathbb{N}$. So, we have

$$
\limsup _{n \rightarrow \infty}\left(\left\|M\left(t_{n}, x_{n}\right)-M\left(t_{n+k}, x_{n+k}\right)\right\|-\left\|x_{n}-x_{n+k}\right\|\right) \leq 0
$$

for all $k \in \mathbb{N}$. By Lemma 1, we obtain $\liminf \operatorname{in}_{n}\left\|M\left(t_{n}, x_{n}\right)-x_{n}\right\|=0$. It follows from the compactness of C that there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{k}\left\|M\left(t_{n_{k}}, x_{n_{k}}\right)-x_{n_{k}}\right\|=0$ and $\left\{x_{n_{k}}\right\}$ converges strongly to some point $z_{0} \in C$. Since

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty}\left\|M\left(t_{n_{k}}, z_{0}\right)-z_{0}\right\| \\
& \leq \limsup _{k \rightarrow \infty}\left(\left\|M\left(t_{n_{k}}, z_{0}\right)-M\left(t_{n_{k}}, x_{n_{k}}\right)\right\|+\left\|M\left(t_{n_{k}}, x_{n_{k}}\right)-x_{n_{k}}\right\|+\left\|x_{n_{k}}-z_{0}\right\|\right) \\
& \leq \limsup _{k \rightarrow \infty}\left(2\left\|x_{n_{k}}-z_{0}\right\|+\left\|M\left(t_{n_{k}}, x_{n_{k}}\right)-x_{n_{k}}\right\|\right)=0
\end{aligned}
$$

we obtain

$$
\liminf _{t \rightarrow \infty}\left\|M\left(t, z_{0}\right)-z_{0}\right\|=\lim _{k \rightarrow \infty}\left\|M\left(t_{n_{k}}, z_{0}\right)-z_{0}\right\|=0
$$

So, by Theorem 1, we have $z_{0} \in \bigcap_{t \geq 0} F(T(t))$. Since $\left\|x_{n+1}-z_{0}\right\| \leq\left\|x_{n}-z_{0}\right\|$ for $n \in \mathbb{N}$, we obtain $\lim _{n}\left\|x_{n}-z_{0}\right\|=\lim _{k}\left\|x_{n_{k}}-z_{0}\right\|=0$. This completes the proof.

References

[1] S. Atsushiba and W. Takahashi, "Strong convergence theorems for one-parameter nonexpansive semigroups with compact domains", in Fixed Point Theory and Applications, Volume 3 (Y. J. Cho, J. K. Kim and S. M. Kang Eds.), pp. 15-31, Nova Science Publishers, New York, 2002.
[2] R. DeMarr, "Common fixed points for commuting contraction mappings", Pacific J. Math., 13 (1963), 1139-1141.
[3] A. T. Lau, N. Shioji and W. Takahashi, "Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces", J. Funct. Anal., 161 (1999), 62-75.
[4] W. R. Mann, "Mean value methods in iteration", Proc. Amer. Math. Soc., 4 (1953), 506-510.
[5] I. Miyadera and K. Kobayasi, "On the asymptotic behaviour of almost-orbits of nonlinear contraction semigroups in Banach spaces", Nonlinear Anal., 6 (1982), 349-365.
[6] T. Suzuki, "Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces", J. Nonlinear Convex Anal., 3 (2002), 381-391.
[7] T. Suzuki and W. Takahashi, "Weak and strong convergence theorems for nonexpansive mappings in Banach spaces", Nonlinear Anal., 47 (2001), 2805-2815.
[8] W. Takahashi, "Fixed point theorem for amenable semigroup of nonexpansive mappings", Kōdai Math. Sem. Rep., 21 (1969), 383-386.
[9] W. Takahashi, "Nonlinear Functional Analysis", Yokohama Publishers, Yokohama, 2000.

Tomonari Suzuki
Department of Mathematics, Kyushu Institute of Technology, 1-1, Sensuicho, Tobata-ku, Kitakyushu 804-8550, Japan

E-mail address: suzuki-t@mns.kyutech.ac.jp
Watard Takahashi
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47H20, Secondary 49M05, 47H10.
 Key words and phrases. Fixed point, Nonexpansive semigroup, Mann iteration.
 The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

