Journal of Nonlinear and Convex Analysis Volume 5, Number 2, 2004, 199–207



# REMARKS ON (0, k)-EPI MAPS WITH NONZERO DEGREE

#### IN-SOOK KIM

ABSTRACT. We prove that a map of the form id-f with a countably  $\ell$ -condensing operator f is (0, k)-epi for  $k \leq 1 - \ell$  if and only if it has nonzero degree on a bounded open and connected set in a Banach space. It is based on a result of M. Väth [5] on 0-epi maps.

#### 1. INTRODUCTION

The study of 0-epi maps was initiated by M. Furi, M. Martelli, and A. Vignoli [4]. 0-epi maps have analogous properties to that of degree, such as existence, normalization, and homotopy invariance. The theory of 0-epi maps can be applied to solvability of boundary value problems and a spectral theory for nonlinear operators; see [3,4,6,8].

It is well-known that a map of the form id - f is 0-epi if and only if it has nonzero degree whenever  $f: \overline{\Omega} \to X$  is compact on a Jordan domain  $\Omega$  in an infinite-dimensional Banach space X. In [12] it is shown that this still holds for countably 1/2-condensing maps f. More generally, M. Väth [5] proved that a map id - f with a strictly countably condensing operator f is 0-epi if and only if it has nonzero degree on a component of its domain of definition.

The class of 0-epi maps is not stable under noncompact perturbations. To reduce the gap, the concept of (0, k)-epi maps was introduced by E.U. Tarafdar and H.B. Thompson [9]. The aim of this paper is to establish a connection between (0, k)-epi maps and degree theory. To do this, we introduce a variant of the notion of (0, k)epi maps and a degree of countably condensing maps due to M. Väth [5,10,11]. We show that a map of the form id - f with a countably  $\ell$ -condensing operator f is (0, k)-epi for  $k \leq 1 - \ell$  if and only if it has nonzero degree on a bounded open and connected set in a Banach space. Analyzing a simple example leads us to facilitate the proof of the sufficiency. For the necessity we follow the basic line of the proof in [5].

Given a nonempty subset  $\Omega$  of a metric space X, the closure and the boundary of  $\Omega$  in X are denoted by  $\overline{\Omega}$  and  $\partial\Omega$ , respectively. For a metric space Y, a continuous map  $f:\overline{\Omega} \to Y$  is said to be *compact* if its range  $f(\overline{\Omega})$  is contained in a compact subset of Y.

Let X and Y be normed spaces and  $\Omega$  a bounded open subset of X. A continuous map  $F:\overline{\Omega} \to Y$  is said to be 0-*epi* on  $\Omega$  if

(1)  $F(x) \neq 0$  for all  $x \in \partial \Omega$ ; and

Copyright (C) Yokohama Publishers

<sup>2000</sup> Mathematics Subject Classification. 47H09, 47H11.

Key words and phrases. 0-epi maps, (0, k)-epi maps, countably condensing maps, countably k-condensing maps, degree, measures of noncompactness.

(2) for any compact map  $h: \overline{\Omega} \to Y$  with h(x) = 0 for all  $x \in \partial\Omega$ , the equation F(x) = h(x) has a solution in  $\Omega$ .

Let (X, d) be a metric space. Given a bounded set  $A \subset X$ , the Kuratowski measure of noncompactness of A,  $\alpha(A)$ , is defined as the infimum of all  $\varepsilon > 0$  such that A can be covered by a finite number of sets of diameter less than  $\varepsilon$ ; see [1,2].

Let X and Y be metric spaces and  $\Omega$  a nonempty subset of X. Given a real number  $k \geq 0$ , a continuous map  $f: \overline{\Omega} \to Y$  is said to be a k-set contraction if  $\alpha(f(A)) \leq k\alpha(A)$  for each bounded subset A of  $\Omega$ . Given k > 0, a continuous map f is called k-condensing (with respect to  $\alpha$ ) if  $\alpha(f(A)) < k\alpha(A)$  for each bounded subset A of  $\Omega$  with  $\alpha(A) > 0$ . More generally, a continuous map f is called countably k-condensing (with respect to  $\alpha$ ) if  $\alpha(f(A)) < k\alpha(A)$  for each countable bounded subset A of  $\Omega$  with  $\alpha(A) > 0$ . In case when k = 1, f is usually called condensing and countably condensing, respectively.

Note that every compact map is k-condensing for any k > 0. Any k-condensing map  $f : \overline{\Omega} \to Y$  is a k-set contraction when X is a complete metric space. But the converse is not true in general. An example of a 1-set contraction which is not 1-condensing can be found in [2, Example II.7].

In this regard, we introduce a variant of the notion of (0, k)-epi map due to E.U. Tarafdar and H.B. Thompson [9], where the condition h is "k-set contractive" in [9] is replaced by "k-condensing".

Let X and Y be Banach spaces and  $\Omega$  a bounded open subset of X. A continuous map  $F:\overline{\Omega} \to Y$  is said to be (0, k)-epi on  $\Omega$  if

- (1)  $F(x) \neq 0$  for all  $x \in \partial \Omega$ ; and
- (2) for any k-condensing map  $h : \overline{\Omega} \to Y$  with h(x) = 0 for all  $x \in \partial\Omega$ , the equation F(x) = h(x) has a solution in  $\Omega$ .

We give the following simple example which clarifies the definition.

**Example 1.1.** Let  $\Omega$  be the open unit ball in a Banach space X and 0 < c < 1. If a map  $f : \overline{\Omega} \to X$  is defined by

$$f(x) := cx \quad \text{for } x \in \overline{\Omega}$$

then F = id - f is (0, k)-epi on  $\Omega$  for any  $k \leq 1 - c$ .

*Proof.* Let  $\varphi : \overline{\Omega} \to X$  be any k-condensing map such that  $\varphi(x) = 0$  for all  $x \in \partial \Omega$ . Consider a homotopy  $h : [0, 1] \times \overline{\Omega} \to X$  defined by

$$h(t,x) := f(x) + t\varphi(x) \text{ for } (t,x) \in [0,1] \times \overline{\Omega}.$$

Then h is a condensing map and  $x \neq h(t, x)$  for all  $(t, x) \in [0, 1] \times \partial \Omega$ . In fact, for any subset A of  $\Omega$  with  $\alpha(A) > 0$ , we have

$$\begin{aligned} \alpha(h([0,1]\times A)) &\leq \alpha(cA + \operatorname{co}\left(\varphi(A) \cup \{0\}\right)) \\ &\leq c\alpha(A) + \alpha(\varphi(A)) < (c+k)\alpha(A) \leq \alpha(A), \end{aligned}$$

where co *B* denotes the convex hull of a set *B*. Since the condensing map  $f: \overline{\Omega} \to X$  is odd and has no fixed points on  $\partial\Omega$ , Borsuk's theorem implies that the degree  $\text{Deg}(id - f, \Omega)$  is odd; see e.g. [1, Theorem 3.2.7]. In particular,  $\text{Deg}(id - f, \Omega)$  is

different from zero. The homotopy invariance of the degree (see Lemma 3.1 below) implies that

$$\operatorname{Deg}(id - f - \varphi, \Omega) = \operatorname{Deg}(id - f, \Omega) \neq 0.$$

Hence there exists a point  $x_0$  in  $\Omega$  such that  $x_0 - f(x_0) - \varphi(x_0) = 0$ . Thus the equation  $x - f(x) = \varphi(x)$  is solvable. Therefore, F is (0, k)-epi on  $\Omega$ . This completes the proof.

# 2. (0, k)-EPI MAPS

In this section we begin with the following extension of k-condensing maps. For the case of k-set contractions, see [9, Theorem 1.3].

**Lemma 2.1.** Let X and Y be metrizable topological vector spaces and  $\Omega$  a bounded open subset of X such that X is complete. Let  $h: \overline{\Omega} \to Y$  be a k-condensing map with k > 0 such that h(x) = 0 for all  $x \in \partial \Omega$ . If a map  $\tilde{h}: X \to Y$  is defined by

$$\tilde{h}(x) := \begin{cases} h(x) & \text{for } x \in \overline{\Omega} \\ 0 & \text{for } x \notin \Omega \end{cases}$$

then  $\tilde{h}$  is k-condensing.

*Proof.* Let  $A \subset X$  be any bounded set such that  $\alpha(A) > 0$ . If  $A \cap \Omega = \emptyset$ , then  $\tilde{h}(A) = \{0\}$  and so  $\alpha(\tilde{h}(A)) = 0 < k\alpha(A)$ . Suppose  $A \cap \Omega \neq \emptyset$ . There are two cases to consider. If  $\alpha(A \cap \Omega) \neq 0$ , then we have

$$\begin{aligned} \alpha(h(A)) &\leq \alpha(h(A \cap \Omega) \cup \{0\}) = \alpha(h(A \cap \Omega)) \\ &< k\alpha(A \cap \Omega) \leq k\alpha(A). \end{aligned}$$

Now let  $\alpha(A \cap \Omega) = 0$ . Since X is complete and h is continuous, the set  $A \cap \Omega$  is relatively compact and so is  $h(A \cap \Omega)$ . From  $\alpha(h(A \cap \Omega)) = 0$  it follows that

$$\alpha(h(A)) \le \alpha(h(A \cap \Omega)) = 0 < k\alpha(A).$$

Therefore, in all possible cases, h is k-condensing. This completes the proof.  $\Box$ 

Now we consider some of basic properties of (0, k)-epi maps in our sense; see [9].

**Lemma 2.2.** For Banach spaces X, Y and a bounded open subset  $\Omega$  of X, the class of (0, k)-epi maps has the following properties:

- (a) (Existence) If  $F : \overline{\Omega} \to Y$  is (0, k)-epi, then the equation F(x) = 0 has a solution in  $\Omega$ .
- (b) (Normalization) Let  $0 < k \leq 1$ . Then the inclusion map  $i : \overline{\Omega} \to X$  is (0,k)-epi if and only if  $0 \in \Omega$ .
- (c) (Restriction) If  $F : \overline{\Omega} \to Y$  is a (0,k)-epi map on  $\Omega$  such that  $F^{-1}(0)$  is contained in an open set  $\Omega_1 \subset \Omega$ , then the restriction of F to  $\overline{\Omega}_1$ ,  $F|_{\overline{\Omega}_1}$ :  $\overline{\Omega}_1 \to Y$ , is (0,k)-epi on  $\Omega_1$ .
- (d) (Homotopy) Suppose that  $F: \overline{\Omega} \to Y$  is a (0, k)-epi map and  $H: [0, 1] \times \overline{\Omega} \to Y$  is a p-set contraction with  $0 \le p < k < 1$  such that H(0, x) = 0 for each  $x \in \overline{\Omega}$ . If  $F(x) + H(t, x) \ne 0$  for all  $(t, x) \in [0, 1] \times \partial\Omega$ , then the map  $F(\cdot) + H(1, \cdot): \overline{\Omega} \to Y$  is (0, k p)-epi.

*Proof.* Statement (a) follows directly from the definition of (0, k)-epi map with  $h \equiv 0$ .

(b) Let  $0 < k \leq 1$ . If i is (0, k)-epi, the existence property (a) implies that  $0 \in \Omega$ . Conversely, suppose that  $0 \in \Omega$ . Let  $h : \overline{\Omega} \to X$  be any k-condensing map such that h(x) = 0 for all  $x \in \partial \Omega$ . Consider a map  $\hat{h} : X \to X$  defined by

$$\hat{h}(x) := \begin{cases} h(x) & \text{ for } x \in \overline{\Omega} \\ 0 & \text{ for } x \notin \Omega. \end{cases}$$

By Lemma 2.1,  $\hat{h}$  is k-condensing with  $k \in (0, 1]$  and hence condensing. Since  $0 \in \Omega$ , the equation i(x) = h(x) has a solution in  $\Omega$  if and only if  $\hat{h}$  has a fixed point. Since  $\hat{h}$  is a condensing map defined on the Banach space X, it is known that  $\hat{h}$  has a fixed point; see [1, Theorem 1.5.11] or [7, Satz 4.2.6]. Hence, the inclusion map i is (0, k)-epi.

(c) Let  $h: \overline{\Omega}_1 \to Y$  be any k-condensing map that vanishes on  $\partial \Omega_1$ . If a map  $\tilde{h}: X \to Y$  is defined by

$$\tilde{h}(x) := \begin{cases} h(x) & \text{for } x \in \overline{\Omega}_1 \\ 0 & \text{for } x \notin \Omega_1 \end{cases}$$

then  $\tilde{h}$  is k-condensing by Lemma 2.1. Hence the restriction  $h_1$  of  $\tilde{h}$  to  $\overline{\Omega}$  is also k-condensing and  $h_1$  vanishes on  $\partial\Omega$ . Since F is (0, k)-epi on  $\Omega$ , the equation  $F(x) = h_1(x)$  has a solution  $x_0$  in  $\Omega$ . The inclusion  $F^{-1}(0) \subset \Omega_1$  implies that  $x_0 \in \Omega_1$  and hence  $F(x_0) = h(x_0)$ . Therefore, the map  $F|_{\overline{\Omega}_1}$  is (0, k)-epi on  $\Omega_1$ .

(d) Let  $g: \overline{\Omega} \to Y$  be any (k-p)-condensing map such that g(x) = 0 for all  $x \in \partial \Omega$ . Consider the set

$$S := \{ x \in \Omega : F(x) + H(t, x) = g(x) \text{ for some } t \in [0, 1] \}.$$

Then the set S is closed in  $\overline{\Omega}$  because the maps F, H and g are continuous and [0, 1] is compact. Note that g is obviously a k-condensing map. Since F is (0, k)-epi on  $\Omega$ , it follows that  $F(x_0) = g(x_0)$  for some  $x_0 \in \Omega$  and hence  $F(x_0) + H(0, x_0) = g(x_0)$  and therefore S is not empty. Since  $\overline{\Omega}$  is normal and  $S \cap \partial \Omega = \emptyset$ , there exists a continuous function  $\varphi : \overline{\Omega} \to [0, 1]$  such that  $\varphi(x) = 1$  for every  $x \in S$  and  $\varphi(x) = 0$  for every  $x \in \partial \Omega$ . Now consider a map  $h : \overline{\Omega} \to Y$  defined by

$$h(x) := g(x) - H(\varphi(x), x) \quad \text{for } x \in \overline{\Omega}.$$

Then h is k-condensing and h(x) = 0 for all  $x \in \partial \Omega$ . In fact, for any subset A of  $\Omega$  with  $\alpha(A) > 0$ , some properties of the Kuratowski measure  $\alpha$  of noncompactness imply that

$$\alpha(h(A)) \le \alpha(g(A)) + \alpha(H(\{(\varphi(x), x) : x \in A\}))$$
  
$$< (k - p)\alpha(A) + p\alpha(\{(\varphi(x), x) : x \in A\})$$
  
$$= (k - p)\alpha(A) + p\alpha(A) = k\alpha(A).$$

Here recall that if A is a bounded subset of a metric space (X, d) and C is a subset of  $[0, 1] \times A$ , then  $\alpha(\{x \in A : (t, x) \in C\}) = \alpha(C)$ , where the metric  $\rho$  on  $\mathbb{R} \times X$  is given by  $\rho((t, x), (t', x')) = \max\{|t - t'|, d(x, x')\}$ ; see [9, Lemma 1.1].

Since F is (0, k)-epi on  $\Omega$ , the equation F(x) = h(x) has a solution  $x_0$  in  $\Omega$ ; that is,  $F(x_0) = g(x_0) - H(\varphi(x_0), x_0)$ . From  $x_0 \in S$  it follows that  $F(x_0) + H(1, x_0) = g(x_0)$ . Therefore, the map  $F(\cdot) + H(1, \cdot)$  is (0, k-p)-epi on  $\Omega$ . This completes the proof.  $\Box$ 

**Remark.** It is remarkable that the normalization property holds even for k = 1, in contrast to [9].

Motivated by Example 1.1, we show which map is (0, k)-epi if it has nonzero degree. Later we will see in Theorem 3.5 below that the converse is true in this situation.

**Theorem 2.3.** Let  $\Omega$  be a bounded open subset of a Banach space X and  $0 < \ell < 1$ . Let  $f: \overline{\Omega} \to X$  be a countably  $\ell$ -condensing map with respect to  $\alpha$  that is fixed point free on  $\partial\Omega$ . If  $Deg(id - f, \Omega) \neq 0$ , then F = id - f is (0, k)-epi on  $\Omega$  for any  $k \leq 1 - \ell$ .

*Proof.* Fix a real number k with  $k \leq 1 - \ell$ . Let  $\varphi : \overline{\Omega} \to X$  be any k-condensing map such that  $\varphi(x) = 0$  for all  $x \in \partial \Omega$ . Consider a homotopy  $h : [0,1] \times \overline{\Omega} \to X$  defined by

$$h(t,x) := f(x) + t\varphi(x) \text{ for } (t,x) \in [0,1] \times \overline{\Omega}.$$

Then h is countably condensing with respect to  $\alpha$  and  $x \neq h(t, x)$  for all  $(t, x) \in [0, 1] \times \partial \Omega$ . In fact, for each countable subset C of  $\Omega$  with  $\alpha(C) > 0$ , we have

$$\begin{aligned} \alpha(h([0,1]\times C)) &\leq \alpha(f(C)) + \alpha(\operatorname{co}\left(\varphi(C) \cup \{0\}\right)) \\ &< \ell\alpha(C) + k\alpha(C) \leq \alpha(C). \end{aligned}$$

The homotopy invariance of the degree (see Lemma 3.1 below) implies that

$$\operatorname{Deg}\left(id - f - \varphi, \Omega\right) = \operatorname{Deg}\left(id - f, \Omega\right).$$

If  $\text{Deg}(id-f,\Omega) \neq 0$ , the fixed point property of the degree implies that the equation  $x - f(x) = \varphi(x)$  has a solution in  $\Omega$ . We conclude that id - f is (0, k)-epi on  $\Omega$ . This completes the proof.

**Corollary 2.4.** Let  $\Omega$  be a bounded open subset of a Banach space X and  $0 < 2k \leq 1$ . Let  $f: \overline{\Omega} \to X$  be a countably k-condensing map with respect to  $\alpha$  that is fixed point free on  $\partial\Omega$ . If  $Deg(id - f, \Omega) \neq 0$ , then F = id - f is (0, k)-epi on  $\Omega$ ; in particular, F is 0-epi on  $\Omega$ .

# 3. Nonzero Degree

To develop the theory of countably condensing maps in a more general setting, we need measures of noncompactness; see [5,12].

Let X be a Banach space. A function  $\gamma : \{M \subset X : M \text{ is bounded}\} \to [0, \infty)$  is said to be a *measure of noncompactness* on X if it has the following properties:

(1) 
$$\gamma(\overline{\operatorname{co}} M) = \gamma(M);$$

(2)  $\gamma(N) \leq \gamma(M)$  if  $N \subset M$ ;

- (3)  $\gamma(\lambda M) = |\lambda|\gamma(M);$
- (4)  $\gamma(M+N) \leq \gamma(M) + \gamma(N)$ ; and
- (5)  $\gamma(M \cup \{x\}) = \gamma(M)$  for  $x \in X$ .

In what follows  $\Gamma$  denotes the class of all measures of noncompactness on X in the above sense. Note that the Kuratowski or the Hausdorff measure of noncompactness on a Banach space has the above properties; see [1,2].

Let  $\Omega$  be a bounded open subset of a Banach space X. We say that a continuous map  $h : [0,1] \times \overline{\Omega} \to X$  is countably condensing with respect to  $\Gamma$  if for each countable set  $C \subset \Omega$  that is not precompact, the set  $h([0,1] \times C)$  is bounded and there is some  $\gamma \in \Gamma$  with  $\gamma(h([0,1] \times C)) \not\geq \gamma(C)$ . If there is a constant k < 1 such that for each countable set  $C \subset \Omega$  that is not precompact, there is some  $\gamma \in \Gamma$  with  $\gamma(h([0,1] \times C)) \not\geq k\gamma(C)$ , we call h strictly countably condensing with respect to  $\Gamma$ . Similarly, we call a continuous map  $f : \overline{\Omega} \to X$  countably condensing (resp. strictly countably condensing) with respect to  $\Gamma$  if the constant homotopy h(t, x) = f(x) for all  $t \in [0, 1]$  has this property.

We consider a degree of countably condensing maps which was introduced in [10,11]; see also [5, Theorem 3.1].

**Lemma 3.1.** For every countably condensing map  $f : \overline{\Omega} \to X$  with respect to  $\Gamma$  which has no fixed points on  $\partial\Omega$ , the degree  $Deg(id - f, \Omega)$  is an integer with the following properties:

- (a) (Fixed point property) If  $Deg(id f, \Omega) \neq 0$ , then f has a fixed point in  $\Omega$ .
- (b) (Normalization) If f is compact, then  $Deg(id f, \Omega)$  is the Leray-Schauder degree.
- (c) (Excision) If  $f: \overline{\Omega} \to X$  is fixed point free outside an open set  $\Omega_0 \subset \Omega$ , then  $Deg(id - f, \Omega) = Deg(id - f, \Omega_0).$
- (d) (Homotopy invariance) If  $h : [0,1] \times \overline{\Omega} \to X$  is a countably condensing homotopy with respect to  $\Gamma$  such that  $x \neq h(t,x)$  for all  $(t,x) \in [0,1] \times \partial\Omega$ , then

$$Deg(id - h(0, \cdot), \Omega) = Deg(id - h(1, \cdot), \Omega).$$

To show the next theorem we need the following result [5, Lemma 3.2].

**Lemma 3.2.** Let  $\Omega$  be a bounded open and connected subset of a Banach space X. Let  $f: \overline{\Omega} \to X$  be a countably condensing map with respect to  $\Gamma$  such that f has no fixed points on  $\partial\Omega$ . Then there exists an open connected set  $\Omega_0$  with  $\overline{\Omega}_0 \subset \Omega$  that contains all fixed points of f. Moreover, there is a compact map  $f_0: \overline{\Omega} \to X$  such that the convex homotopy  $h: [0,1] \times \overline{\Omega} \to X$  defined by  $h(t,x) := (1-t)f(x) + tf_0(x)$  is fixed point free on  $\partial\Omega_0$ .

Now we can give a slight modification of [5, Theorem 3.2] for the case of (0, k)-epi maps in our sense. We follow the basic line of the proof in [5].

**Theorem 3.3.** Let  $\Omega$  be a bounded open and connected subset of a Banach space X. Let  $f : \overline{\Omega} \to X$  be a countably condensing map with respect to  $\Gamma$  such that F = id - f is 0-epi on  $\Omega$ . If one of the following conditions is satisfied:

- (a) F is (0,k)-epi on  $\Omega$  for some  $k \in (0,1)$  and f is a p-set contraction for some real number p > 0,
- (b) f is strictly countably condensing with respect to  $\Gamma$ ,

then  $Deg(F, \Omega) \neq 0$ .

Proof. Suppose that  $f: \overline{\Omega} \to X$  is a countably condensing map with respect to  $\Gamma$ and F is 0-epi on  $\Omega$ . We remark that if f is compact and F is 0-epi on  $\Omega$ , then Deg  $(F, \Omega) \neq 0$ ; see the proof of [5, Theorem 3.2]. Since f has no fixed points on  $\partial\Omega$ , by Lemma 3.2, there exists an open connected set  $\Omega_0$  with  $\overline{\Omega}_0 \subset \Omega$  that contains all fixed points of f and there is a compact map  $f_0: \overline{\Omega} \to X$  such that the convex homotopy  $h: [0,1] \times \overline{\Omega} \to X$  given by  $h(t,x) = (1-t)f(x) + tf_0(x)$  has no fixed points on  $\partial\Omega_0$ .

We will claim that  $G := id - f_0$  is 0-epi on  $\Omega_0$  and  $\text{Deg}(F, \Omega) = \text{Deg}(G, \Omega_0)$ . Since  $f_0$  is compact and  $\Omega_0(\subset \Omega)$  is an open connected set, the above remark says that  $\text{Deg}(G, \Omega_0) \neq 0$  which implies that  $\text{Deg}(F, \Omega) \neq 0$ , as desired.

Claim 1:  $\text{Deg}(F, \Omega) = \text{Deg}(G, \Omega_0).$ 

Since f is fixed point free outside  $\Omega_0$ , the excision of the degree implies  $\text{Deg}(F, \Omega) = \text{Deg}(F, \Omega_0)$ . Then the homotopy h is countably condensing with respect to  $\Gamma$  because f is countably condensing with respect to  $\Gamma$  and  $f_0$  is compact. Since h has no fixed points on  $\partial\Omega_0$ , the homotopy invariance of Lemma 3.1 implies that  $\text{Deg}(F, \Omega_0) = \text{Deg}(G, \Omega_0)$ . Consequently, we obtain  $\text{Deg}(F, \Omega) = \text{Deg}(G, \Omega_0)$ .

Claim 2: G is 0-epi on  $\Omega_0$ .

There are two cases to consider. First we suppose that F is (0, k)-epi on  $\Omega$  for some  $k \in (0, 1)$  and f is a p-set contraction for some p > 0. Since  $\Omega_0$  contains all fixed points of f, Lemma 2.2 implies that F is (0, k)-epi on  $\Omega_0$ . Fix a real number  $\lambda \in (0, 1)$  with  $\lambda < k/p$ . Consider the homotopy  $H_0 : [0, 1] \times \overline{\Omega} \to X$  given by

$$H_0(t,x) := t\lambda(f_0(x) - f(x)).$$

Then  $H_0$  is a  $k_0$ -set contraction with  $k_0 := \lambda p < k$  and  $H_0(0, \cdot) = 0$  and  $F(x) \neq H_0(t, x)$  for all  $(t, x) \in [0, 1] \times \partial \Omega_0$  because h has no fixed points on  $\partial \Omega_0$ . Since  $0 \leq k_0 < k < 1$ , the homotopy property of (0, k)-epi maps stated in Lemma 2.2 implies that  $F_{\lambda} := F - H_0(1, \cdot)$  is  $(0, k - k_0)$ -epi on  $\Omega_0$ . Let a map  $f_{\lambda} : \overline{\Omega}_0 \to X$  be defined by

$$f_{\lambda}(x) := (1 - \lambda)f(x) + \lambda f_0(x) \quad \text{for } x \in \overline{\Omega}_0.$$

In particular,  $F_{\lambda} = id - f_{\lambda}$  is 0-epi on  $\Omega_0$ . Since f is countably condensing with respect to  $\Gamma$ , we conclude that  $f_{\lambda}$  is strictly countably condensing with respect to  $\Gamma$ , with constant  $1 - \lambda \in (0, 1)$ . Let a map  $h_{\lambda} : [0, 1] \times \overline{\Omega}_0 \to X$  be defined by

$$h_{\lambda}(t,x) := h((1-t)\lambda + t \cdot 1, x) = (1-t)f_{\lambda}(x) + tf_{0}(x) \quad \text{for } (t,x) \in [0,1] \times \overline{\Omega}_{0}.$$

Since h has no fixed points on  $\partial \Omega_0$ , it follows that  $h_{\lambda}$  has no fixed points on  $\partial \Omega_0$ . Consider the homotopy  $H_{\lambda} : [0, 1] \times \overline{\Omega}_0 \to X$  given by

$$H_{\lambda}(t,x) := t(f_0(x) - f_{\lambda}(x)) \quad \text{for } (t,x) \in [0,1] \times \overline{\Omega}_0.$$

Observing the fact that  $F_{\lambda}(x) = H_{\lambda}(t, x)$  is equivalent to  $x = h_{\lambda}(t, x)$ , we have  $F_{\lambda}(x) \neq H_{\lambda}(t, x)$  for  $(t, x) \in [0, 1] \times \partial \Omega_0$ . To apply Theorem 2.2 of [5], we will check that the following compactness condition is satisfied. To see this, choose a partition  $0 = t_0 < t_1 < \cdots < t_n = 1$  such that

$$c_i := t_i - t_{i-1} \le \frac{1}{1-\lambda} - 1$$
 for  $i = 1, \dots, n$ .

For each map  $\psi : \overline{\Omega}_0 \to X$  such that  $\psi$  vanishes on  $\partial \Omega_0$  and  $\overline{\operatorname{co}}(\psi(\overline{\Omega}_0))$  is compact let

$$F_{\lambda i}(x) = x - (1 - t_{i-1})f_{\lambda}(x) - t_{i-1}f_{0}(x),$$
  

$$H_{\lambda i,\psi}(t,x) = (t - t_{i-1})(f_{0}(x) - f_{\lambda}(x)) + \psi(x) \quad \text{for } t \in [t_{i-1}, t_{i}] \text{ and } x \in \overline{\Omega}_{0}.$$
  
Let  $C \subset \Omega_{0}$  be any countable set that the following relation holds:

$$\overline{\operatorname{co}(H_{\lambda i,\psi}([t_{i-1},t_i]\times C)\cup\{0\})\cap F_{\lambda i}(\Omega_0)}\subset \overline{F_{\lambda i}(C)}$$
$$\subset \overline{\overline{\operatorname{co}}(H_{\lambda i,\psi}([t_{i-1},t_i]\times C)\cup\{0\})\cap F_{\lambda i}(\Omega_0)}.$$

Now it remains to show that  $\overline{\operatorname{co}}(H_{\lambda i,\psi}([t_{i-1},t_i]\times\overline{C})\cup\{0\})$  is compact. For any  $\gamma\in\Gamma$ , we obtain

$$\gamma(F_{\lambda i}(C)) \leq \gamma(\overline{\operatorname{co}}(H_{\lambda i,\psi}([t_{i-1},t_i]\times C)\cup\{0\})) = \gamma(H_{\lambda i,\psi}([t_{i-1},t_i]\times C))$$
  
$$\leq (t_i-t_{i-1})\gamma(f_0(C)-f_\lambda(C))+\gamma(\psi(C)) \leq c_i\gamma(f_\lambda(C)).$$

From  $x = F_{\lambda i}(x) + (1 - t_{i-1})f_{\lambda}(x) + t_{i-1}f_0(x)$  it follows that

$$\gamma(C) \le \gamma(F_{\lambda i}(C)) + (1 - t_{i-1})\gamma(f_{\lambda}(C))$$

which implies

$$(1-\lambda)\gamma(C) \le (1-t_{i-1}+c_i)(1-\lambda)\gamma(f_{\lambda}(C))$$
  
$$\le (1+c_i)(1-\lambda)\gamma(f_{\lambda}(C)) \le \gamma(f_{\lambda}(C)).$$

Since this estimate holds for any  $\gamma \in \Gamma$  and  $f_{\lambda}$  is strictly countably condensing with respect to  $\Gamma$ , the set C is precompact. Since  $H_{\lambda i,\psi}$  maps compact sets into compact sets and X is a Banach space, the set  $\overline{\operatorname{co}}(H_{\lambda i,\psi}([t_{i-1}, t_i] \times \overline{C}) \cup \{0\})$  is compact. In view of Theorem 2.2 of [5], since  $F_{\lambda}$  is 0-epi on  $\Omega_0$ , the map  $F_{\lambda} - H_{\lambda}(1, \cdot)$  is 0-epi on  $\Omega_0$ . From  $G = F_{\lambda} - H_{\lambda}(1, \cdot)$  it follows that G is 0-epi on  $\Omega_0$ .

Next we suppose that f is strictly countably condensing with respect to  $\Gamma$ . If we replace  $f_{\lambda}$ ,  $F_{\lambda}$ ,  $h_{\lambda}$ , and  $H_{\lambda}$  in the first case by f, F, h and H, respectively, where  $H(t, x) = t(f_0(x) - f(x))$ , a similar argument establishes that  $G = F - H(1, \cdot)$  is 0-epi on  $\Omega_0$ . Consequently, in both cases, Claim 2 is proved. This completes the proof.

Theorem 3.3 includes [5, Theorem 1.1] as a special case.

**Corollary 3.4.** Let  $\Omega$  be a bounded open and connected subset of a Banach space X and  $f: \overline{\Omega} \to X$  a condensing map with respect to  $\alpha$ . If F = id - f is (0, k)-epi on  $\Omega$  for some  $k \in (0, 1)$ , then  $Deg(F, \Omega) \neq 0$ .

Finally we show that (0, k)-epi maps of the form id - f where f is strictly countably condensing are precisely those maps with nonzero degree. For other result on countably 1/2-condensing maps on a Jordan domain, we refer to [12, Theorem 4.3].

**Theorem 3.5.** Let  $\Omega$  be a bounded open and connected subset of a Banach space X and  $0 < \ell < 1$ . Let  $f : \overline{\Omega} \to X$  be a countably  $\ell$ -condensing map with respect to  $\alpha$  that has no fixed points on  $\partial\Omega$ . Then the following statements are equivalent:

- (a) F = id f is (0, k)-epi on  $\Omega$  for  $k \le 1 \ell$ .
- (b) F is 0-epi on  $\Omega$ .
- (c)  $Deg(F, \Omega) \neq 0.$

*Proof.* Since f is strictly countably condensing with respect to  $\alpha$ , this is an immediate consequence of Theorem 2.3 and Theorem 3.3.

**Remark.** It is known that a map of the form F = id - f where f is an  $\ell$ -set contraction with  $\ell < 1/2$  is (0, k)-epi for any  $k < 1 - \ell$  if F is 0-epi; see [5, Corollary 2.1]. Notice that Theorem 3.5 is a sharp version of this fact.

**Corollary 3.6.** Let  $\Omega$  be a bounded open and connected subset of a Banach space X and  $f: \overline{\Omega} \to X$  a countably 1/2-condensing map with respect to  $\alpha$  that has no fixed points on  $\partial\Omega$ . Then F = id - f is (0, k)-epi on  $\Omega$  for  $k \leq 1/2$  if and only if  $Deg(F, \Omega) \neq 0$ .

## References

- R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, and B.N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992.
- [2] J.M. Ayerbe Toledano, T. Dominguez Benavides, and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997.
- W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163-183.
- [4] M. Furi, M. Martelli, and A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl. 124 (1980), 321-343.
- [5] E. Giorgieri and M. Väth, A characterization of 0-epi maps with a degree, J. Funct. Anal. 187 (2001), 183-199.
- [6] D.H. Hyers, G. Isac, and T.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific, Singapore, 1997.
- [7] T. Jerofsky, Zur Fixpunkttheorie mengenwertiger Abbildungen, Dissertation A, TU Dresden, 1983.
- [8] P. Santucci and M. Väth, Grasping the phantom- A new approach to nonlinear spectral theory, Ann. Mat. Pura Appl. 180 (2001), 255-284.
- [9] E.U. Tarafdar and H.B. Thompson, On the solvability of nonlinear noncompact operator equations, J. Austral. Math. Soc. Ser. A 43 (1987), 103-126.
- [10] M. Väth, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), 341-363.
- M. Väth, An axiomatic approach to a coincidence index for noncompact function pairs, Topol. Methods Nonlinear Anal. 16 (2000), 307-338.
- [12] M. Väth, On the connection of degree theory and 0-epi maps, J. Math. Anal. Appl. 257 (2001), 223-237.

Manuscript received October 27, 2003

IN-SOOK KIM

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea *E-mail address*: iskim@math.skku.ac.kr