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REMARKS ON (0,%k)-EPI MAPS WITH NONZERO DEGREE

IN-SOOK KIM

ABSTRACT. We prove that a map of the form id— f with a countably ¢-condensing
operator f is (0,k)-epi for k < 1 — £ if and only if it has nonzero degree on a
bounded open and connected set in a Banach space. It is based on a result of M.
Vith [5] on 0-epi maps.

1. INTRODUCTION

The study of 0-epi maps was initiated by M. Furi, M. Martelli, and A. Vignoli
[4]. 0-epi maps have analogous properties to that of degree, such as existence,
normalization, and homotopy invariance. The theory of 0-epi maps can be applied to
solvability of boundary value problems and a spectral theory for nonlinear operators;
see [3,4,6,8].

It is well-known that a map of the form id — f is O-epi if and only if it has
nonzero degree whenever f :  — X is compact on a Jordan domain € in an
infinite-dimensional Banach space X. In [12] it is shown that this still holds for
countably 1/2-condensing maps f. More generally, M. Vith [5] proved that a map
id — f with a strictly countably condensing operator f is 0-epi if and only if it has
nonzero degree on a component of its domain of definition.

The class of 0-epi maps is not stable under noncompact perturbations. To reduce
the gap, the concept of (0, k)-epi maps was introduced by E.U. Tarafdar and H.B.
Thompson [9]. The aim of this paper is to establish a connection between (0, k)-epi
maps and degree theory. To do this, we introduce a variant of the notion of (0, k)-
epi maps and a degree of countably condensing maps due to M. Vath [5,10,11]. We
show that a map of the form id — f with a countably ¢-condensing operator f is
(0, k)-epi for k < 1 — ¢ if and only if it has nonzero degree on a bounded open and
connected set in a Banach space. Analyzing a simple example leads us to facilitate
the proof of the sufficiency. For the necessity we follow the basic line of the proof
in [5].

Given a nonempty subset 2 of a metric space X, the closure and the boundary of
Q2 in X are denoted by Q and 09, respectively. For a metric space Y, a continuous
map f : Q — Y is said to be compact if its range f(2) is contained in a compact
subset of Y.

Let X and Y be normed spaces and €2 a bounded open subset of X. A continuous
map F : Q — Y is said to be 0-epi on  if

(1) F(z) # 0 for all z € 9€2; and
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(2) for any compact map h: Q — Y with h(z) = 0 for all z € 99, the equation
F(x) = h(z) has a solution in .

Let (X,d) be a metric space. Given a bounded set A C X, the Kuratowski
measure of noncompactness of A, a(A), is defined as the infimum of all € > 0 such
that A can be covered by a finite number of sets of diameter less than e; see [1,2].

Let X and Y be metric spaces and 2 a nonempty subset of X. Given a real
number k& > 0, a continuous map f :  — Y is said to be a k-set contraction if
a(f(A)) < ka(A) for each bounded subset A of Q. Given k > 0, a continuous map
f is called k-condensing (with respect to «) if a(f(A)) < ka(A) for each bounded
subset A of Q with a(A) > 0. More generally, a continuous map f is called countably
k-condensing (with respect to «) if a(f(A)) < ka(A) for each countable bounded
subset A of  with a(A) > 0. In case when k = 1, f is usually called condensing
and countably condensing, respectively.

Note that every compact map is k-condensing for any k£ > 0. Any k-condensing
map f : @ — Y is a k-set contraction when X is a complete metric space. But
the converse is not true in general. An example of a 1-set contraction which is not
1-condensing can be found in [2, Example I1.7].

In this regard, we introduce a variant of the notion of (0, k)-epi map due to E.U.
Tarafdar and H.B. Thompson [9], where the condition h is “k-set contractive” in
[9] is replaced by “k-condensing”.

Let X and Y be Banach spaces and €2 a bounded open subset of X. A continuous
map F : Q — Y is said to be (0, k)-epi on Q if

(1) F(z) #0 for all z € 09; and
(2) for any k-condensing map h : Q — Y with h(z) = 0 for all x € 99, the
equation F'(xz) = h(x) has a solution in .

We give the following simple example which clarifies the definition.

Example 1.1. Let Q be the open unit ball in a Banach space X and 0 < ¢ < 1. If
amap f:Q — X is defined by

f(x):=cx forzef
then F' =id — f is (0,k)-epi on Q for any £k <1 —c.

Proof. Let ¢ : Q) — X be any k-condensing map such that p(z) = 0 for all z € 9.
Consider a homotopy A : [0,1] x Q@ — X defined by

h(t,z) := f(z) + tp(x) for (t,x) € [0,1] x Q.
Then h is a condensing map and x # h(t,z) for all (¢,z) € [0,1] x 9Q. In fact, for
any subset A of Q with a(A) > 0, we have
a(h([0,1] x A)) < a(cA + co (¢(A) U {0}))
< cafA) + a(p(A)) < (e+ k)a(A) < afA),
where co B denotes the convex hull of a set B. Since the condensing map f : Q — X

is odd and has no fixed points on 052, Borsuk’s theorem implies that the degree
Deg (id — f,Q) is odd; see e.g. [1, Theorem 3.2.7]. In particular, Deg (id — f,) is
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different from zero. The homotopy invariance of the degree (see Lemma 3.1 below)
implies that

Deg (id — f — ¢,Q2) = Deg (id — f,Q) # 0.
Hence there exists a point z in €2 such that z¢o — f(xo) — ¢(x9) = 0. Thus the
equation z — f(z) = ¢(x) is solvable. Therefore, F'is (0, k)-epi on Q. This completes
the proof. O

2. (0,k)-Ep1 MAPS

In this section we begin with the following extension of k-condensing maps. For
the case of k-set contractions, see [9, Theorem 1.3].

Lemma 2.1. Let X and Y be metrizable topological vector spaces and Q@ a bounded
open subset of X such that X is complete. Let h : ) — Y be a k-condensing map
with k > 0 such that h(x) =0 for all x € Q. If a map h: X — Y is defined by

- ] W) for z€Q
Mz) = { 0 for x & Q

then h is k-condensing.

Proof. Let A C X be any bounded set such that a(A) > 0. If ANQ = (), then

h(A) = {0} and so a(h(A)) =0 < ka(A). Suppose ANQ # (). There are two cases
to consider. If a(AN Q) # 0, then we have

a(h(A)) < a(h(ANQ)U{0}) = a(h(ANQ))
< ka(ANQ) < ka(A).

Now let a(AN Q) = 0. Since X is complete and h is continuous, the set A N Q is
relatively compact and so is h(A N Q). From a(h(ANQ)) = 0 it follows that

a(h(A)) < a(h(ANQ)) =0 < ka(A).
Therefore, in all possible cases, his k-condensing. This completes the proof. O
Now we consider some of basic properties of (0, k)-epi maps in our sense; see [9].

Lemma 2.2. For Banach spaces X,Y and a bounded open subset Q of X, the class
of (0, k)-epi maps has the following properties:
(a) (Emistence) If F : Q — Y s (0,k)-epi, then the equation F(x) = 0 has a
solution in €.
(b) (Normalization) Let 0 < k < 1. Then the inclusion map i : Q — X is
(0, k)-epi if and only if 0 € Q.
(c) (Restriction) If F : Q — Y s a (0,k)-epi map on Q such that F~1(0) is
contained in an open set Q1 C Q, then the restriction of F to 1, F’ﬁl :
Q) — Y, is (0,k)-epi on Q.
(d) (Homotopy) Suppose that F : Q — Y is a (0, k)-epi map and H : [0,1]xQ —
Y is a p-set contraction with 0 < p < k < 1 such that H(0,z) = 0 for each
x € Q. If F(z) + H(t,z) # 0 for all (t,x) € [0,1] x dQ, then the map
F()+H(1,)):Q—Y is (0,k —p)-epi.
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Proof. Statement (a) follows directly from the definition of (0, k)-epi map with h =
0.

(b) Let 0 < k < 1. If i is (0, k)-epi, the existence property (a) implies that 0 € .
Conversely, suppose that 0 € 2. Let h : €2 — X be any k-condensing map such that
h(z) = 0 for all z € 9. Consider a map h : X — X defined by

. | (=) for z€Q
Mz) = { 0 for x & Q.

By Lemma 2.1, h is k-condensing with k € (0, 1] and hence condensing. Since 0 € €,
the equation i(z) = h(z) has a solution in € if and only if & has a fixed point. Since
his a condensing map defined on the Banach space X, it is known that h has a
fixed point; see [1, Theorem 1.5.11] or [7, Satz 4.2.6]. Hence, the inclusion map i is
(0, k)-epi.

(c) Let h : Q1 — Y be any k-condensing map that vanishes on 9Q;. If a map

h: X — Y is defined by

h(x) = h(x) for = €Oy
v 0 for = &y

then h is k-condensing by Lemma 2.1. Hence the restriction hi of h to  is also
k-condensing and h; vanishes on 0Q. Since F' is (0,k)-epi on £, the equation
F(z) = hi(x) has a solution zg in €. The inclusion F~1(0) C Q implies that
zo € 1 and hence F(zg) = h(zo). Therefore, the map Flg is (0, k)-epi on Q.

(d) Let g : Q@ — Y be any (k — p)-condensing map such that g(x) = 0 for all
x € 0N2. Consider the set

S:={reQ:F(x)+ H(t,z) = g(xr) for some t € [0,1]}.

Then the set S is closed in Q because the maps F, H and g are continuous and [0, 1]
is compact. Note that g is obviously a k-condensing map. Since F'is (0, k)-epi on €2,
it follows that F'(xg) = g(x¢) for some xg € 2 and hence F(xq) + H(0,z0) = g(x0)
and therefore S is not empty. Since  is normal and S N OQ = (), there exists a
continuous function ¢ : Q — [0, 1] such that ¢(z) = 1 for every x € S and p(x) =0
for every = € 0€2. Now consider a map h : Q — Y defined by

h(z) :=g(z) — H(p(x),x) for z € Q.
Then h is k-condensing and h(z) = 0 for all z € 0. In fact, for any subset A of
Q2 with a(A) > 0, some properties of the Kuratowski measure a of noncompactness
imply that
a(h(A4)) < a(g(A)) + a(H{(p(2),2) : x € A}))

< (k=p)a(A) +pa({(p(z),z) : x € A})

= (k—p)a(A) + pa(A) = ka(A).
Here recall that if A is a bounded subset of a metric space (X, d) and C is a subset
of [0,1] x A, then a({z € A: (t,z) € C}) = a(C), where the metric p on R x X is
given by p((t,z), (t',2")) = max{|t — ¢|,d(x,2')}; see [9, Lemma 1.1].
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Since F is (0, k)-epi on Q, the equation F'(z) = h(x) has a solution z in €2; that is,
F(z0) = g(xo)—H(p(z0), o). From xo € S it follows that F'(xo)+H (1, zo) = g(xo).
Therefore, the map F'(-)+H (1,-) is (0, k—p)-epi on . This completes the proof. [

Remark. It is remarkable that the normalization property holds even for £ = 1, in
contrast to [9].

Motivated by Example 1.1, we show which map is (0, k)-epi if it has nonzero
degree. Later we will see in Theorem 3.5 below that the converse is true in this
situation.

Theorem 2.3. Let () be a bounded open subset of a Banach space X and 0 < £ < 1.
Let f:Q — X be a countably £-condensing map with respect to a that is fixed point
free on 0. If Deg(id — f,2) # 0, then F = id — f is (0,k)-epi on Q for any
E<1-¢.

Proof. Fix a real number k with £ < 1 —£. Let ¢ : Q — X be any k-condensing
map such that ¢(z) = 0 for all z € Q. Consider a homotopy h : [0,1] x @ — X
defined by

h(t,x) = f(z) +to(z) for (t,z) €[0,1] x Q.
Then h is countably condensing with respect to o and = # h(t,x) for all (¢t,z) €
[0,1] x 0. In fact, for each countable subset C of Q with a(C) > 0, we have

a(h([0,1] x C)) < a(f(C)) + a(co (¢(C) U{0}))
<la(C) + ka(C) < a(C).

The homotopy invariance of the degree (see Lemma 3.1 below) implies that
Deg (id — f — ¢,Q) = Deg (id — f,9).

If Deg (id— f,Q2) # 0, the fixed point property of the degree implies that the equation
x — f(z) = ¢(x) has a solution in Q. We conclude that id — f is (0, k)-epi on €.
This completes the proof. O

Corollary 2.4. Let Q) be a bounded open subset of a Banach space X and 0 < 2k <
1. Let f : Q — X be a countably k-condensing map with respect to o that is fized
point free on 9. If Deg(id — f,Q) # 0, then F = id — f is (0,k)-epi on ; in

particular, F' is 0-epi on €.

3. NONZERO DEGREE

To develop the theory of countably condensing maps in a more general setting,
we need measures of noncompactness; see [5,12].
Let X be a Banach space. A function v: {M C X : M is bounded} — [0, 00) is
said to be a measure of noncompactness on X if it has the following properties:
1) y(co M) = ~(M);
(N)<~(M)if N C M;
(AM) = [A[y(M);
(M +N) <~(M) +v(N); and
(MU{z})=~(M) for x € X.
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In what follows I" denotes the class of all measures of noncompactness on X in the
above sense. Note that the Kuratowski or the Hausdorff measure of noncompactness
on a Banach space has the above properties; see [1,2].

Let €2 be a bounded open subset of a Banach space X. We say that a continuous
map h : [0,1] x @ — X is countably condensing with respect to I' if for each
countable set C' C ) that is not precompact, the set h([0, 1] x C) is bounded and
there is some v € I' with v(h([0,1] x C)) 2 v(C). If there is a constant k¥ < 1 such
that for each countable set C' C € that is not precompact, there is some v € I with
v(h(]0,1] x C)) 2 kv(C), we call h strictly countably condensing with respect to I'.
Similarly, we call a continuous map f :  — X countably condensing (resp. strictly
countably condensing) with respect to I if the constant homotopy h(t,z) = f(z) for
all ¢ € [0,1] has this property.

We consider a degree of countably condensing maps which was introduced in
[10,11]; see also [5, Theorem 3.1].

Lemma 3.1. For every countably condensing map f : Q — X with respect to T
which has no fized points on OS), the degree Deg(id — f,Q) is an integer with the
following properties:
(a) (Fized point property) If Deg(id — f,Q) # 0, then f has a fived point in Q.
(b) (Normalization) If f is compact, then Deg (id — f,) is the Leray-Schauder
degree.
(c) (Excision) If f : Q — X is fived point free outside an open set Qo C ), then

(d) (Homotopy invariance) If h : [0,1] x Q@ — X is a countably condensing
homotopy with respect to T such that x # h(t,x) for all (t,x) € [0,1] x 0,
then

Deg (id — h(0,-),Q) = Deg(id — h(1,-),8).

To show the next theorem we need the following result [5, Lemma 3.2].

Lemma 3.2. Let € be a bounded open and connected subset of a Banach space X.
Let f : Q — X be a countably condensing map with respect to T such that f has no
fized points on 0. Then there exists an open connected set Qg with Qo C Q that
contains all fized points of f. Moreover, there is a compact map fo: Q — X such
that the convex homotopy h : [0,1] x Q — X defined by h(t,z) := (1—t)f(z)+tfo(x)
is fized point free on 0.

Now we can give a slight modification of [5, Theorem 3.2] for the case of (0, k)-epi
maps in our sense. We follow the basic line of the proof in [5].

Theorem 3.3. Let Q) be a bounded open and connected subset of a Banach space
X. Let f: Q — X be a countably condensing map with respect to I' such that
F =id— f is 0-epi on Q. If one of the following conditions is satisfied:
(a) F is (0,k)-epi on Q for some k € (0,1) and f is a p-set contraction for
some real number p > 0,
(b) f is strictly countably condensing with respect to T,

then Deg (F,Q) # 0.



REMARKS ON (0, k)-EPI MAPS WITH NONZERO DEGREE 205

Proof. Suppose that f : § — X is a countably condensing map with respect to I'
and F' is O-epi on . We remark that if f is compact and F' is 0-epi on 2, then
Deg (F, Q) # 0; see the proof of [5, Theorem 3.2]. Since f has no fixed points on 02,
by Lemma 3.2, there exists an open connected set Qg with Qg C  that contains
all fixed points of f and there is a compact map fo : Q@ — X such that the convex
homotopy h : [0,1] x Q — X given by h(t,z) = (1 —t)f(z) + tfo(x) has no fixed
points on 0.

We will claim that G := id — fp is 0-epi on Qg and Deg (F,Q) = Deg (G, Q).
Since fp is compact and Qo(C ) is an open connected set, the above remark says
that Deg (G, ) # 0 which implies that Deg (F,2) # 0, as desired.

Claim 1: Deg (F,Q2) = Deg (G, Q).

Since f is fixed point free outside €2, the excision of the degree implies Deg (F’, )
= Deg (F,Qp). Then the homotopy h is countably condensing with respect to I'
because f is countably condensing with respect to I' and fy is compact. Since h
has no fixed points on 0, the homotopy invariance of Lemma 3.1 implies that
Deg (F, Q) = Deg (G, Q). Consequently, we obtain Deg (F, Q) = Deg (G, Q).

Claim 2: G is 0-epi on .

There are two cases to consider. First we suppose that F' is (0, k)-epi on 2 for
some k € (0,1) and f is a p-set contraction for some p > 0. Since  contains all
fixed points of f, Lemma 2.2 implies that F'is (0, k)-epi on €. Fix a real number
A € (0,1) with A < k/p. Consider the homotopy Hy : [0,1] x Q2 — X given by

Hy(t,z) :=t\(fo(zx) — f(x)).

Then Hj is a ko-set contraction with ko := Ap < k and Hy(0,-) = 0 and F(x) #
Hy(t,z) for all (t,z) € [0,1] x 09 because h has no fixed points on 9. Since
0 < ko < k < 1, the homotopy property of (0, k)-epi maps stated in Lemma 2.2
implies that Fy := F — Hy(1,-) is (0,k — ko)-epi on Q. Let a map fy : Qg — X be
defined by

fa(@) = (1= N f(z) + Afo(z) for z € Q.

In particular, F) = id — fy is O-epi on §2y. Since f is countably condensing with
respect to I, we conclude that f) is strictly countably condensing with respect to
I, with constant 1 — X\ € (0,1). Let a map h) : [0,1] x Q9 — X be defined by

ha(t,x) == h((1—=t)A+t-1,2) = (1 —t) fa(z) + tfo(x) for (t,x) € [0,1] x Q.

Since h has no fixed points on 9, it follows that hy has no fixed points on 9.
Consider the homotopy H) : [0,1] x Q9 — X given by

Hy(t,x) == t(fo(z) — fr(z)) for (t,x) €[0,1] x Qp.

Observing the fact that Fy(z) = H,(t,z) is equivalent to x = h)(t,x), we have
F\(x) # Hy(t,x) for (t,z) € [0,1] x 9Q9. To apply Theorem 2.2 of [5], we will check
that the following compactness condition is satisfied. To see this, choose a partition
0=ty <t <---<t,=1such that

1

ci::ti—ti,lgﬁ—l fori:L...’n_
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For each map 1 : Qg — X such that 1) vanishes on 9Qg and co((Qg)) is compact
let

Fi(z) =2 — (1 = ti-1) faz) — tic1 fo(2),
Hyiwp(t,x) = (t = tic1)(fo(@) — fa(@)) + (x) for t € [ti1, 4] and = € Qo.
Let C C Qg be any countable set that the following relation holds:
co(H ;o ([tim1,ti] x C)U{0}) N Fyi(Qo) C Fai(C)
C eo(Hyip([ti-1,t:] x C) U{0}) N Fxi(Qo).

Now it remains to show that co(Hy; . ([ti—1,t) x C) U {0}) is compact. For any
~v € I', we obtain

V(F2i(C)) < (@ (Hnip([ti-1, 8] x C) U{0})) = v(Hxip([tim1, ti] x C))
< (ti = tim1)v(fo(C) = fA(C)) +v(¥(C)) < civ(fA(C)).
From z = F,\Z(.%') + (1 — ti_1>f)\(.%') + ti_lf()(m’) it follows that

Y(C) <A(Fx(C)) + (1 = tiea)y(SA(C))

which implies
(1 =27(C) < (1 —ti—1 + i) (1 = Ny (A(C))
< (T+ )1 = A)y(fa(C) < v(A(0)).

Since this estimate holds for any v € I' and f) is strictly countably condensing with
respect to I', the set C' is precompact. Since H);,, maps compact sets into compact
sets and X is a Banach space, the set €o(Hy;p([ti—1,) x C) U{0}) is compact. In
view of Theorem 2.2 of [5], since F) is 0-epi on €, the map Fy — Hx(1,-) is O-epi
on Q. From G = F) — H)(1,") it follows that G is 0-epi on €.

Next we suppose that f is strictly countably condensing with respect to I'. If we
replace f\, F), hy, and H) in the first case by f, F,h and H, respectively, where
H(t,x) = t(fo(z) — f(z)), a similar argument establishes that G = F — H(1,") is
0-epi on €. Consequently, in both cases, Claim 2 is proved. This completes the
proof. O

Theorem 3.3 includes [5, Theorem 1.1] as a special case.

Corollary 3.4. Let Q be a bounded open and connected subset of a Banach space
X and f: Q — X a condensing map with respect to o. If F =id — f is (0,k)-epi
on Q for some k € (0,1), then Deg(F,Q) # 0.

Finally we show that (0, k)-epi maps of the form id — f where f is strictly count-
ably condensing are precisely those maps with nonzero degree. For other result on
countably 1/2-condensing maps on a Jordan domain, we refer to [12, Theorem 4.3].

Theorem 3.5. Let Q) be a bounded open and connected subset of a Banach space
X and 0 < ¢ < 1. Let f:Q — X be a countably {-condensing map with respect to
« that has no fixed points on 0Q). Then the following statements are equivalent:

(a) F=id— f is (0,k)-epi on Q for k <1—¢.

(b) F is 0-epi on .

(c) Deg(F,Q) #0.
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Proof. Since f is strictly countably condensing with respect to «, this is an imme-
diate consequence of Theorem 2.3 and Theorem 3.3. O

Remark. It is known that a map of the form F = id — f where f is an f-set
contraction with ¢ < 1/2 is (0, k)-epi for any k < 1 — £ if F' is 0-epi; see [5, Corollary
2.1]. Notice that Theorem 3.5 is a sharp version of this fact.

Corollary 3.6. Let Q be a bounded open and connected subset of a Banach space
X and f : Q — X a countably 1/2-condensing map with respect to « that has no
fized points on 0. Then F = id — f is (0,k)-epi on Q for k < 1/2 if and only if
Deg (F, ) # 0.
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