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REMARKS ON (0, k)-EPI MAPS WITH NONZERO DEGREE

IN-SOOK KIM

Abstract. We prove that a map of the form id−f with a countably `-condensing
operator f is (0, k)-epi for k ≤ 1 − ` if and only if it has nonzero degree on a
bounded open and connected set in a Banach space. It is based on a result of M.
Väth [5] on 0-epi maps.

1. Introduction

The study of 0-epi maps was initiated by M. Furi, M. Martelli, and A. Vignoli
[4]. 0-epi maps have analogous properties to that of degree, such as existence,
normalization, and homotopy invariance. The theory of 0-epi maps can be applied to
solvability of boundary value problems and a spectral theory for nonlinear operators;
see [3,4,6,8].

It is well-known that a map of the form id − f is 0-epi if and only if it has
nonzero degree whenever f : Ω → X is compact on a Jordan domain Ω in an
infinite-dimensional Banach space X. In [12] it is shown that this still holds for
countably 1/2-condensing maps f . More generally, M. Väth [5] proved that a map
id− f with a strictly countably condensing operator f is 0-epi if and only if it has
nonzero degree on a component of its domain of definition.

The class of 0-epi maps is not stable under noncompact perturbations. To reduce
the gap, the concept of (0, k)-epi maps was introduced by E.U. Tarafdar and H.B.
Thompson [9]. The aim of this paper is to establish a connection between (0, k)-epi
maps and degree theory. To do this, we introduce a variant of the notion of (0, k)-
epi maps and a degree of countably condensing maps due to M. Väth [5,10,11]. We
show that a map of the form id − f with a countably `-condensing operator f is
(0, k)-epi for k ≤ 1− ` if and only if it has nonzero degree on a bounded open and
connected set in a Banach space. Analyzing a simple example leads us to facilitate
the proof of the sufficiency. For the necessity we follow the basic line of the proof
in [5].

Given a nonempty subset Ω of a metric space X, the closure and the boundary of
Ω in X are denoted by Ω and ∂Ω, respectively. For a metric space Y , a continuous
map f : Ω → Y is said to be compact if its range f(Ω) is contained in a compact
subset of Y .

Let X and Y be normed spaces and Ω a bounded open subset of X. A continuous
map F : Ω → Y is said to be 0-epi on Ω if

(1) F (x) 6= 0 for all x ∈ ∂Ω; and

2000 Mathematics Subject Classification. 47H09, 47H11.
Key words and phrases. 0-epi maps, (0, k)-epi maps, countably condensing maps, countably

k-condensing maps, degree, measures of noncompactness.



200 IN-SOOK KIM

(2) for any compact map h : Ω → Y with h(x) = 0 for all x ∈ ∂Ω, the equation
F (x) = h(x) has a solution in Ω.

Let (X, d) be a metric space. Given a bounded set A ⊂ X, the Kuratowski
measure of noncompactness of A, α(A), is defined as the infimum of all ε > 0 such
that A can be covered by a finite number of sets of diameter less than ε; see [1,2].

Let X and Y be metric spaces and Ω a nonempty subset of X. Given a real
number k ≥ 0, a continuous map f : Ω → Y is said to be a k-set contraction if
α(f(A)) ≤ kα(A) for each bounded subset A of Ω. Given k > 0, a continuous map
f is called k-condensing (with respect to α) if α(f(A)) < kα(A) for each bounded
subset A of Ω with α(A) > 0. More generally, a continuous map f is called countably
k-condensing (with respect to α) if α(f(A)) < kα(A) for each countable bounded
subset A of Ω with α(A) > 0. In case when k = 1, f is usually called condensing
and countably condensing, respectively.

Note that every compact map is k-condensing for any k > 0. Any k-condensing
map f : Ω → Y is a k-set contraction when X is a complete metric space. But
the converse is not true in general. An example of a 1-set contraction which is not
1-condensing can be found in [2, Example II.7].

In this regard, we introduce a variant of the notion of (0, k)-epi map due to E.U.
Tarafdar and H.B. Thompson [9], where the condition h is “k-set contractive” in
[9] is replaced by “k-condensing”.

Let X and Y be Banach spaces and Ω a bounded open subset of X. A continuous
map F : Ω → Y is said to be (0, k)-epi on Ω if

(1) F (x) 6= 0 for all x ∈ ∂Ω; and
(2) for any k-condensing map h : Ω → Y with h(x) = 0 for all x ∈ ∂Ω, the

equation F (x) = h(x) has a solution in Ω.

We give the following simple example which clarifies the definition.

Example 1.1. Let Ω be the open unit ball in a Banach space X and 0 < c < 1. If
a map f : Ω → X is defined by

f(x) := cx for x ∈ Ω

then F = id− f is (0, k)-epi on Ω for any k ≤ 1− c.

Proof. Let ϕ : Ω → X be any k-condensing map such that ϕ(x) = 0 for all x ∈ ∂Ω.
Consider a homotopy h : [0, 1]× Ω → X defined by

h(t, x) := f(x) + tϕ(x) for (t, x) ∈ [0, 1]× Ω.

Then h is a condensing map and x 6= h(t, x) for all (t, x) ∈ [0, 1]× ∂Ω. In fact, for
any subset A of Ω with α(A) > 0, we have

α(h([0, 1]×A)) ≤ α(cA + co (ϕ(A) ∪ {0}))
≤ cα(A) + α(ϕ(A)) < (c + k)α(A) ≤ α(A),

where co B denotes the convex hull of a set B. Since the condensing map f : Ω → X
is odd and has no fixed points on ∂Ω, Borsuk’s theorem implies that the degree
Deg (id− f,Ω) is odd; see e.g. [1, Theorem 3.2.7]. In particular, Deg (id− f,Ω) is
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different from zero. The homotopy invariance of the degree (see Lemma 3.1 below)
implies that

Deg (id− f − ϕ, Ω) = Deg (id− f,Ω) 6= 0.

Hence there exists a point x0 in Ω such that x0 − f(x0) − ϕ(x0) = 0. Thus the
equation x−f(x) = ϕ(x) is solvable. Therefore, F is (0, k)-epi on Ω. This completes
the proof. ¤

2. (0, k)-Epi Maps

In this section we begin with the following extension of k-condensing maps. For
the case of k-set contractions, see [9, Theorem 1.3].

Lemma 2.1. Let X and Y be metrizable topological vector spaces and Ω a bounded
open subset of X such that X is complete. Let h : Ω → Y be a k-condensing map
with k > 0 such that h(x) = 0 for all x ∈ ∂Ω. If a map h̃ : X → Y is defined by

h̃(x) :=

{
h(x) for x ∈ Ω

0 for x 6∈ Ω

then h̃ is k-condensing.

Proof. Let A ⊂ X be any bounded set such that α(A) > 0. If A ∩ Ω = ∅, then
h̃(A) = {0} and so α(h̃(A)) = 0 < kα(A). Suppose A ∩Ω 6= ∅. There are two cases
to consider. If α(A ∩ Ω) 6= 0, then we have

α(h̃(A)) ≤ α(h(A ∩ Ω) ∪ {0}) = α(h(A ∩ Ω))

< kα(A ∩ Ω) ≤ kα(A).

Now let α(A ∩ Ω) = 0. Since X is complete and h is continuous, the set A ∩ Ω is
relatively compact and so is h(A ∩ Ω). From α(h(A ∩ Ω)) = 0 it follows that

α(h̃(A)) ≤ α(h(A ∩ Ω)) = 0 < kα(A).

Therefore, in all possible cases, h̃ is k-condensing. This completes the proof. ¤
Now we consider some of basic properties of (0, k)-epi maps in our sense; see [9].

Lemma 2.2. For Banach spaces X, Y and a bounded open subset Ω of X, the class
of (0, k)-epi maps has the following properties:

(a) (Existence) If F : Ω → Y is (0, k)-epi, then the equation F (x) = 0 has a
solution in Ω.

(b) (Normalization) Let 0 < k ≤ 1. Then the inclusion map i : Ω → X is
(0, k)-epi if and only if 0 ∈ Ω.

(c) (Restriction) If F : Ω → Y is a (0, k)-epi map on Ω such that F−1(0) is
contained in an open set Ω1 ⊂ Ω, then the restriction of F to Ω1, F |Ω1

:
Ω1 → Y , is (0, k)-epi on Ω1.

(d) (Homotopy) Suppose that F : Ω → Y is a (0, k)-epi map and H : [0, 1]×Ω →
Y is a p-set contraction with 0 ≤ p < k < 1 such that H(0, x) = 0 for each
x ∈ Ω. If F (x) + H(t, x) 6= 0 for all (t, x) ∈ [0, 1] × ∂Ω, then the map
F (·) + H(1, ·) : Ω → Y is (0, k − p)-epi.
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Proof. Statement (a) follows directly from the definition of (0, k)-epi map with h ≡
0.

(b) Let 0 < k ≤ 1. If i is (0, k)-epi, the existence property (a) implies that 0 ∈ Ω.
Conversely, suppose that 0 ∈ Ω. Let h : Ω → X be any k-condensing map such that
h(x) = 0 for all x ∈ ∂Ω. Consider a map ĥ : X → X defined by

ĥ(x) :=

{
h(x) for x ∈ Ω

0 for x 6∈ Ω.

By Lemma 2.1, ĥ is k-condensing with k ∈ (0, 1] and hence condensing. Since 0 ∈ Ω,
the equation i(x) = h(x) has a solution in Ω if and only if ĥ has a fixed point. Since
ĥ is a condensing map defined on the Banach space X, it is known that ĥ has a
fixed point; see [1, Theorem 1.5.11] or [7, Satz 4.2.6]. Hence, the inclusion map i is
(0, k)-epi.

(c) Let h : Ω1 → Y be any k-condensing map that vanishes on ∂Ω1. If a map
h̃ : X → Y is defined by

h̃(x) :=

{
h(x) for x ∈ Ω1

0 for x 6∈ Ω1

then h̃ is k-condensing by Lemma 2.1. Hence the restriction h1 of h̃ to Ω is also
k-condensing and h1 vanishes on ∂Ω. Since F is (0, k)-epi on Ω, the equation
F (x) = h1(x) has a solution x0 in Ω. The inclusion F−1(0) ⊂ Ω1 implies that
x0 ∈ Ω1 and hence F (x0) = h(x0). Therefore, the map F |Ω1

is (0, k)-epi on Ω1.
(d) Let g : Ω → Y be any (k − p)-condensing map such that g(x) = 0 for all

x ∈ ∂Ω. Consider the set

S := {x ∈ Ω : F (x) + H(t, x) = g(x) for some t ∈ [0, 1]}.
Then the set S is closed in Ω because the maps F, H and g are continuous and [0, 1]
is compact. Note that g is obviously a k-condensing map. Since F is (0, k)-epi on Ω,
it follows that F (x0) = g(x0) for some x0 ∈ Ω and hence F (x0) + H(0, x0) = g(x0)
and therefore S is not empty. Since Ω is normal and S ∩ ∂Ω = ∅, there exists a
continuous function ϕ : Ω → [0, 1] such that ϕ(x) = 1 for every x ∈ S and ϕ(x) = 0
for every x ∈ ∂Ω. Now consider a map h : Ω → Y defined by

h(x) := g(x)−H(ϕ(x), x) for x ∈ Ω.

Then h is k-condensing and h(x) = 0 for all x ∈ ∂Ω. In fact, for any subset A of
Ω with α(A) > 0, some properties of the Kuratowski measure α of noncompactness
imply that

α(h(A)) ≤ α(g(A)) + α(H({(ϕ(x), x) : x ∈ A}))
< (k − p)α(A) + pα({(ϕ(x), x) : x ∈ A})
= (k − p)α(A) + pα(A) = kα(A).

Here recall that if A is a bounded subset of a metric space (X, d) and C is a subset
of [0, 1]× A, then α({x ∈ A : (t, x) ∈ C}) = α(C), where the metric ρ on R×X is
given by ρ((t, x), (t′, x′)) = max{|t− t′|, d(x, x′)}; see [9, Lemma 1.1].
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Since F is (0, k)-epi on Ω, the equation F (x) = h(x) has a solution x0 in Ω; that is,
F (x0) = g(x0)−H(ϕ(x0), x0). From x0 ∈ S it follows that F (x0)+H(1, x0) = g(x0).
Therefore, the map F (·)+H(1, ·) is (0, k−p)-epi on Ω. This completes the proof. ¤

Remark. It is remarkable that the normalization property holds even for k = 1, in
contrast to [9].

Motivated by Example 1.1, we show which map is (0, k)-epi if it has nonzero
degree. Later we will see in Theorem 3.5 below that the converse is true in this
situation.

Theorem 2.3. Let Ω be a bounded open subset of a Banach space X and 0 < ` < 1.
Let f : Ω → X be a countably `-condensing map with respect to α that is fixed point
free on ∂Ω. If Deg (id − f,Ω) 6= 0, then F = id − f is (0, k)-epi on Ω for any
k ≤ 1− `.

Proof. Fix a real number k with k ≤ 1 − `. Let ϕ : Ω → X be any k-condensing
map such that ϕ(x) = 0 for all x ∈ ∂Ω. Consider a homotopy h : [0, 1] × Ω → X
defined by

h(t, x) := f(x) + tϕ(x) for (t, x) ∈ [0, 1]× Ω.

Then h is countably condensing with respect to α and x 6= h(t, x) for all (t, x) ∈
[0, 1]× ∂Ω. In fact, for each countable subset C of Ω with α(C) > 0, we have

α(h([0, 1]× C)) ≤ α(f(C)) + α(co (ϕ(C) ∪ {0}))
< `α(C) + kα(C) ≤ α(C).

The homotopy invariance of the degree (see Lemma 3.1 below) implies that

Deg (id− f − ϕ, Ω) = Deg (id− f,Ω).

If Deg (id−f,Ω) 6= 0, the fixed point property of the degree implies that the equation
x − f(x) = ϕ(x) has a solution in Ω. We conclude that id − f is (0, k)-epi on Ω.
This completes the proof. ¤

Corollary 2.4. Let Ω be a bounded open subset of a Banach space X and 0 < 2k ≤
1. Let f : Ω → X be a countably k-condensing map with respect to α that is fixed
point free on ∂Ω. If Deg (id − f,Ω) 6= 0, then F = id − f is (0, k)-epi on Ω; in
particular, F is 0-epi on Ω.

3. Nonzero Degree

To develop the theory of countably condensing maps in a more general setting,
we need measures of noncompactness; see [5,12].

Let X be a Banach space. A function γ : {M ⊂ X : M is bounded} → [0,∞) is
said to be a measure of noncompactness on X if it has the following properties:

(1) γ(co M) = γ(M);
(2) γ(N) ≤ γ(M) if N ⊂ M ;
(3) γ(λM) = |λ|γ(M);
(4) γ(M + N) ≤ γ(M) + γ(N); and
(5) γ(M ∪ {x}) = γ(M) for x ∈ X.
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In what follows Γ denotes the class of all measures of noncompactness on X in the
above sense. Note that the Kuratowski or the Hausdorff measure of noncompactness
on a Banach space has the above properties; see [1,2].

Let Ω be a bounded open subset of a Banach space X. We say that a continuous
map h : [0, 1] × Ω → X is countably condensing with respect to Γ if for each
countable set C ⊂ Ω that is not precompact, the set h([0, 1] × C) is bounded and
there is some γ ∈ Γ with γ(h([0, 1]× C)) 6≥ γ(C). If there is a constant k < 1 such
that for each countable set C ⊂ Ω that is not precompact, there is some γ ∈ Γ with
γ(h([0, 1]×C)) 6≥ kγ(C), we call h strictly countably condensing with respect to Γ.
Similarly, we call a continuous map f : Ω → X countably condensing (resp. strictly
countably condensing) with respect to Γ if the constant homotopy h(t, x) = f(x) for
all t ∈ [0, 1] has this property.

We consider a degree of countably condensing maps which was introduced in
[10,11]; see also [5, Theorem 3.1].

Lemma 3.1. For every countably condensing map f : Ω → X with respect to Γ
which has no fixed points on ∂Ω, the degree Deg (id − f,Ω) is an integer with the
following properties:

(a) (Fixed point property) If Deg (id− f,Ω) 6= 0, then f has a fixed point in Ω.
(b) (Normalization) If f is compact, then Deg (id− f,Ω) is the Leray-Schauder

degree.
(c) (Excision) If f : Ω → X is fixed point free outside an open set Ω0 ⊂ Ω, then

Deg (id− f,Ω) = Deg (id− f,Ω0).

(d) (Homotopy invariance) If h : [0, 1] × Ω → X is a countably condensing
homotopy with respect to Γ such that x 6= h(t, x) for all (t, x) ∈ [0, 1]× ∂Ω,
then

Deg (id− h(0, ·),Ω) = Deg (id− h(1, ·),Ω).

To show the next theorem we need the following result [5, Lemma 3.2].

Lemma 3.2. Let Ω be a bounded open and connected subset of a Banach space X.
Let f : Ω → X be a countably condensing map with respect to Γ such that f has no
fixed points on ∂Ω. Then there exists an open connected set Ω0 with Ω0 ⊂ Ω that
contains all fixed points of f . Moreover, there is a compact map f0 : Ω → X such
that the convex homotopy h : [0, 1]×Ω → X defined by h(t, x) := (1−t)f(x)+tf0(x)
is fixed point free on ∂Ω0.

Now we can give a slight modification of [5, Theorem 3.2] for the case of (0, k)-epi
maps in our sense. We follow the basic line of the proof in [5].

Theorem 3.3. Let Ω be a bounded open and connected subset of a Banach space
X. Let f : Ω → X be a countably condensing map with respect to Γ such that
F = id− f is 0-epi on Ω. If one of the following conditions is satisfied:

(a) F is (0, k)-epi on Ω for some k ∈ (0, 1) and f is a p-set contraction for
some real number p > 0,

(b) f is strictly countably condensing with respect to Γ,
then Deg (F, Ω) 6= 0.
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Proof. Suppose that f : Ω → X is a countably condensing map with respect to Γ
and F is 0-epi on Ω. We remark that if f is compact and F is 0-epi on Ω, then
Deg (F, Ω) 6= 0; see the proof of [5, Theorem 3.2]. Since f has no fixed points on ∂Ω,
by Lemma 3.2, there exists an open connected set Ω0 with Ω0 ⊂ Ω that contains
all fixed points of f and there is a compact map f0 : Ω → X such that the convex
homotopy h : [0, 1] × Ω → X given by h(t, x) = (1 − t)f(x) + tf0(x) has no fixed
points on ∂Ω0.

We will claim that G := id − f0 is 0-epi on Ω0 and Deg (F, Ω) = Deg (G, Ω0).
Since f0 is compact and Ω0(⊂ Ω) is an open connected set, the above remark says
that Deg (G, Ω0) 6= 0 which implies that Deg (F, Ω) 6= 0, as desired.

Claim 1: Deg (F, Ω) = Deg (G, Ω0).
Since f is fixed point free outside Ω0, the excision of the degree implies Deg (F, Ω)

= Deg (F, Ω0). Then the homotopy h is countably condensing with respect to Γ
because f is countably condensing with respect to Γ and f0 is compact. Since h
has no fixed points on ∂Ω0, the homotopy invariance of Lemma 3.1 implies that
Deg (F, Ω0) = Deg (G, Ω0). Consequently, we obtain Deg (F, Ω) = Deg (G, Ω0).

Claim 2: G is 0-epi on Ω0.
There are two cases to consider. First we suppose that F is (0, k)-epi on Ω for

some k ∈ (0, 1) and f is a p-set contraction for some p > 0. Since Ω0 contains all
fixed points of f , Lemma 2.2 implies that F is (0, k)-epi on Ω0. Fix a real number
λ ∈ (0, 1) with λ < k/p. Consider the homotopy H0 : [0, 1]× Ω → X given by

H0(t, x) := tλ(f0(x)− f(x)).

Then H0 is a k0-set contraction with k0 := λp < k and H0(0, ·) = 0 and F (x) 6=
H0(t, x) for all (t, x) ∈ [0, 1] × ∂Ω0 because h has no fixed points on ∂Ω0. Since
0 ≤ k0 < k < 1, the homotopy property of (0, k)-epi maps stated in Lemma 2.2
implies that Fλ := F −H0(1, ·) is (0, k − k0)-epi on Ω0. Let a map fλ : Ω0 → X be
defined by

fλ(x) := (1− λ)f(x) + λf0(x) for x ∈ Ω0.

In particular, Fλ = id − fλ is 0-epi on Ω0. Since f is countably condensing with
respect to Γ, we conclude that fλ is strictly countably condensing with respect to
Γ, with constant 1− λ ∈ (0, 1). Let a map hλ : [0, 1]× Ω0 → X be defined by

hλ(t, x) := h((1− t)λ + t · 1, x) = (1− t)fλ(x) + tf0(x) for (t, x) ∈ [0, 1]× Ω0.

Since h has no fixed points on ∂Ω0, it follows that hλ has no fixed points on ∂Ω0.
Consider the homotopy Hλ : [0, 1]× Ω0 → X given by

Hλ(t, x) := t(f0(x)− fλ(x)) for (t, x) ∈ [0, 1]× Ω0.

Observing the fact that Fλ(x) = Hλ(t, x) is equivalent to x = hλ(t, x), we have
Fλ(x) 6= Hλ(t, x) for (t, x) ∈ [0, 1]×∂Ω0. To apply Theorem 2.2 of [5], we will check
that the following compactness condition is satisfied. To see this, choose a partition
0 = t0 < t1 < · · · < tn = 1 such that

ci := ti − ti−1 ≤ 1
1− λ

− 1 for i = 1, · · · , n.
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For each map ψ : Ω0 → X such that ψ vanishes on ∂Ω0 and co(ψ(Ω0)) is compact
let

Fλi(x) = x− (1− ti−1)fλ(x)− ti−1f0(x),
Hλi,ψ(t, x) = (t− ti−1)(f0(x)− fλ(x)) + ψ(x) for t ∈ [ti−1, ti] and x ∈ Ω0.

Let C ⊂ Ω0 be any countable set that the following relation holds:

co(Hλi,ψ([ti−1, ti]× C) ∪ {0}) ∩ Fλi(Ω0) ⊂ Fλi(C)

⊂ co(Hλi,ψ([ti−1, ti]× C) ∪ {0}) ∩ Fλi(Ω0).

Now it remains to show that co(Hλi,ψ([ti−1, ti] × C) ∪ {0}) is compact. For any
γ ∈ Γ, we obtain

γ(Fλi(C)) ≤ γ(co(Hλi,ψ([ti−1, ti]× C) ∪ {0})) = γ(Hλi,ψ([ti−1, ti]× C))

≤ (ti − ti−1)γ(f0(C)− fλ(C)) + γ(ψ(C)) ≤ ciγ(fλ(C)).

From x = Fλi(x) + (1− ti−1)fλ(x) + ti−1f0(x) it follows that

γ(C) ≤ γ(Fλi(C)) + (1− ti−1)γ(fλ(C))

which implies

(1− λ)γ(C) ≤ (1− ti−1 + ci)(1− λ)γ(fλ(C))

≤ (1 + ci)(1− λ)γ(fλ(C)) ≤ γ(fλ(C)).

Since this estimate holds for any γ ∈ Γ and fλ is strictly countably condensing with
respect to Γ, the set C is precompact. Since Hλi,ψ maps compact sets into compact
sets and X is a Banach space, the set co(Hλi,ψ([ti−1, ti]× C) ∪ {0}) is compact. In
view of Theorem 2.2 of [5], since Fλ is 0-epi on Ω0, the map Fλ −Hλ(1, ·) is 0-epi
on Ω0. From G = Fλ −Hλ(1, ·) it follows that G is 0-epi on Ω0.

Next we suppose that f is strictly countably condensing with respect to Γ. If we
replace fλ, Fλ, hλ, and Hλ in the first case by f, F, h and H, respectively, where
H(t, x) = t(f0(x) − f(x)), a similar argument establishes that G = F − H(1, ·) is
0-epi on Ω0. Consequently, in both cases, Claim 2 is proved. This completes the
proof. ¤

Theorem 3.3 includes [5, Theorem 1.1] as a special case.

Corollary 3.4. Let Ω be a bounded open and connected subset of a Banach space
X and f : Ω → X a condensing map with respect to α. If F = id − f is (0, k)-epi
on Ω for some k ∈ (0, 1), then Deg (F, Ω) 6= 0.

Finally we show that (0, k)-epi maps of the form id− f where f is strictly count-
ably condensing are precisely those maps with nonzero degree. For other result on
countably 1/2-condensing maps on a Jordan domain, we refer to [12, Theorem 4.3].

Theorem 3.5. Let Ω be a bounded open and connected subset of a Banach space
X and 0 < ` < 1. Let f : Ω → X be a countably `-condensing map with respect to
α that has no fixed points on ∂Ω. Then the following statements are equivalent:

(a) F = id− f is (0, k)-epi on Ω for k ≤ 1− `.
(b) F is 0-epi on Ω.
(c) Deg (F, Ω) 6= 0.
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Proof. Since f is strictly countably condensing with respect to α, this is an imme-
diate consequence of Theorem 2.3 and Theorem 3.3. ¤
Remark. It is known that a map of the form F = id − f where f is an `-set
contraction with ` < 1/2 is (0, k)-epi for any k < 1− ` if F is 0-epi; see [5, Corollary
2.1]. Notice that Theorem 3.5 is a sharp version of this fact.

Corollary 3.6. Let Ω be a bounded open and connected subset of a Banach space
X and f : Ω → X a countably 1/2-condensing map with respect to α that has no
fixed points on ∂Ω. Then F = id − f is (0, k)-epi on Ω for k ≤ 1/2 if and only if
Deg (F, Ω) 6= 0.
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