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Abstract. The authors have showed some properties of scalarizing functions for
set-valued maps. Fan’s inequality for set-valued maps are proved by using those
properties. In this paper, we present new inherited properties which are obtained
generalized convexity and cone-semicontinuity assumptions for set-valued maps.
By applying those new properties to Fan’s inequality for set-valued maps, we
prove existence theorems for generalized vector equilibrium problems.

1. Introduction

This paper is concerned with a generalization of an existence theorem for the
generalized vector equilibrium problem in [1], in which Ansari and Yao proved an
existence result by using Fan-Browder type fixed point theorem. It is relative to a
vector-valued Fan’s inequality for set-valued maps in [4, 5].

In this paper, we consider the following two kinds of generalized vector equilib-
rium problems:

(1.1) find x̄ ∈ K such that F (x̄, y) 6⊂ −intC(x̄) for every y ∈ K

and

(1.2) find x̄ ∈ K such that F (x̄, y) ∩ (−intC(x̄)) = ∅ for every y ∈ K

where E and Y are two topological vector spaces, K is a nonempty convex subset
of E, F : K ×K → 2Y is a multifunction, C : K → 2Y is a multifunction such that
for each x ∈ K, C(x) is a closed convex cone with intC(x) 6= ∅. We show existence
theorems of these problems by using Fan’s inequality. Our proofs of Theorems 3.1
and 3.2 are quite different from that in [1] and in the proofs we use a result of
Georgiev and Tanaka [4, Theorem 2.3] which follows from a two-function result of
Simons [11, Theorem 1.2].

By applying the two-function result for special scalarizing functions possessing
quasiconvexity and semicontinuity, we establish the proofs of the main theorems.
For such a reason, it is necessary for those scalarizing functions to have such con-
vexity and semicontinuity. It is, therefore, important and useful to study what
kind of scalarizing functions can inherit properties of such kind of convexity and
semicontinuity from multifunctions.

To shows some results on the inherited properties, we consider certain general-
izations and modifications of convexity and semicontinuity for multifunctions in a
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topological vector space with respect to a cone preorder in the target space, which
have motivated by [6, 7] and studied in [4] for generalizing the classical Fan’s inequal-
ity. Convexity and semicontinuity for multifunctions are inherited by the following
scalarizing functions;

(1.3) inf{hC(x, y; k) | y ∈ F (x)}
and

(1.4) sup{hC(x, y; k) | y ∈ F (x)}
where hC(x, y; k) = inf{t | y ∈ tk − C(x)}, F : E → 2Y is a multifunction, C(x) a
closed convex cone with intC(x) 6= ∅, x and y are vectors in two topological vector
spaces E and Y , respectively, and k ∈ intC(x). Note that hC(x, ·; k) is positively
homogeneous and subadditive for every fixed x ∈ E and k ∈ intC(x), and that
hC(x, y; k) ≤ 0 for y ∈ −C(x), remark that −hC(x,−y; k) = sup{t | y ∈ tk + C(x)}.
This function hC(x, y; k) has been treated in some papers. Essentially, hC(x, y; k) is
equivalent to the smallest strictly monotonic function defined by Luc [8]. For each
y ∈ Y , hC(x, y; k) · k corresponds the minimum vector of upper bounds of y with
respect to the cone C(x) restricted to the direction k. Similarly, −hC(x,−y; k) · k
corresponds the maximum vector of lower bounds of y with respect to the cone C(x)
restricted to the direction k.

2. Inherited Properties for Set-Valued Maps

Further let E and Y be topological vector spaces and F and C : E → 2Y two
multifunctions. Denote B(x) = co ((intC(x))∩ (2S \S)) (which plays a role of base
for intC(x) without uniqueness), where S is a neighborhood of 0 in Y . We observe
the following four types of scalarizing functions:

ψF
C (x; k) := sup

y∈F (x)
hC(x, y; k), ϕF

C(x; k) := inf
y∈F (x)

hC(x, y; k);

−ϕ−F
C (x; k) = sup

y∈F (x)
−hC(x,−y; k), −ψ−F

C (x; k) = inf
y∈F (x)

−hC(x,−y; k).

The first and fourth functions have symmetric properties and then results for
the fourth function −ψ−F

C (x; k) can be easily proved by those for the first function
ψF

C (x; k). Similarly, the results for the third function −ϕ−F
C (x; k) can be deduced

by those for the second function ϕF
C(x; k). By using these four functions we measure

each image of multifunction F with respect to its 4-tuple of scalars, which can be
regarded as standpoints for the evaluation of the image. To avoid confusion for
properties of convexity, we consider the constant case of C(x) = C (a convex cone)
and B(x) = B (a convex set), and hC(x, y; k) = hC(y; k) := inf{t | y ∈ tk − C}.

To begin with, we recall some kinds of convexity for multifunctions.

Definition 2.1. A multifunction F : E → 2Y is called C-quasiconvex, if the set
{x ∈ E |F (x) ∩ (a− C) 6= ∅} is convex ( or empty ) for every a ∈ Y . If −F is
C-quasiconvex, then F is said to be C-quasiconcave, which is equivalent to a (−C)-
quasiconvex mapping.

Remark 2.1. The above definition is exactly that of Ferro type (−1)-quasiconvex
mapping in [7, Definition 3.5].
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Definition 2.2. A multifunction F : E → 2Y is called (in the sense of [7, Defini-
tion 3.7])

(a) type-(iii) C-naturally quasiconvex if for every two points x1, x2 ∈ E and
every λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

µF (x1) + (1− µ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C;

(b) type-(v) C-naturally quasiconvex, if for every two points x1, x2 ∈ E and
every λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

F (λx1 + (1− λ)x2) ⊂ µF (x1) + (1− µ)F (x2)− C.

If −F is type-(iii) [resp., type-(v)] C-naturally quasiconvex, then F is said to be
type-(iii) [resp., type-(v)] C-naturally quasiconcave, which is equivalent to a type-(iii)
[resp., type-(v)] (−C)-naturally quasiconvex mapping.

However, there is no relationship between those for types (iii) and (v) in general.

Proposition 2.1 (See [7, Theorem 3.1]). For a multifunction F : E → 2Y , type-(iii)
C-naturally quasiconvexity implies C-quasiconvexity.

Proposition 2.2. For each x ∈ E and a multifunction F : E → 2Y ,
(i) ψF

C (x; k) is convex with respect to variable k ∈ intC;
(ii) ϕF

C(x; k) is convex with respect to variable k ∈ intC if F (x) is a convex set.

Proof. We first note that hC is convex with respect to two variables y ∈ Y and
k ∈ intC. To begin with, we shall prove the assertion (i). Let x ∈ E be given. For
every k1, k2 ∈ intC and λ ∈ [0, 1],

ψF
C (x;λk1 + (1− λ)k2) := sup

y∈F (x)
hC(y;λk1 + (1− λ)k2)

≤ sup
y∈F (x)

(λhC(y; k1) + (1− λ) hC(y; k2))

≤ λ sup
y∈F (x)

hC(y; k1) + (1− λ) sup
y∈F (x)

hC(y; k2)

= λψF
C (x; k1) + (1− λ) ψF

C (x; k2),

which shows that ψF
C (x; k) is convex with respect to variable k ∈ intC.

Next, we shall prove the assertion (ii). Let x ∈ E be given. Assume that F (x) is
a convex set. By the definition of ϕF

C , for every ε > 0 and k1, k2 ∈ intC there exist
yi ∈ F (x) such that for each i = 1, 2,

hC(yi; ki) < ϕF
C(x; ki) + ε.

For every λ ∈ [0, 1], since F (x) is a convex set, λy1 + (1− λ)y2 ∈ F (x). Then

ϕF
C(x;λk1 + (1− λ)k2) := inf

y∈F (x)
hC(y;λk1 + (1− λ)k2)

≤ hC(λy1 + (1− λ)y2;λk1 + (1− λ)k2)

≤ λhC(y1; k1) + (1− λ) hC(y2; k2)

< λ(ϕF
C(x; k1) + ε) + (1− λ)(ϕF

C(x; k2) + ε)

= λϕF
C(x; k1) + (1− λ) ϕF

C(x; k2) + ε.
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Since ε > 0 is arbitrarily small, we obtain

ϕF
C(x;λk1 + (1− λ)k2) ≤ λϕF

C(x; k1) + (1− λ) ϕF
C(x; k2),

which shows that ϕF
C(x; k) is convex with respect to variable k ∈ intC. ¤

Now, we show some inherited properties of convexity for multifunctions.

Lemma 2.1 (See [9, Theorem 2.6]). If the multifunction F : E → 2Y is type-(v)
C-naturally quasiconvex, then the function ψF

C (x; k) = sup {hC(y; k) | y ∈ F (x)} is
quasiconvex with respect to variable x where k ∈ intC.

Lemma 2.2. If F : E → 2Y is type-(v) C-naturally quasiconvex, then

ψF (x) := inf
k∈B

ψF
C (x; k) = inf

k∈B
sup

y∈F (x)
hC(y; k)

is quasiconvex.

Proof. By the definition of ψF , for every ε > 0 and x1, x2 ∈ E there exist ki ∈ B
such that for each i = 1, 2,

ψF
C (x1; ki) < ψF (x1) + ε

and
ψF

C (x2; ki) < ψF (x2) + ε.

For every λ ∈ [0, 1], since B is convex, λk1 + (1− λ)k2 ∈ B. Then

ψF (λx1 + (1− λ)x2) := inf
k∈B

ψF
C (λx1 + (1− λ)x2; k)

≤ ψF
C (λx1 + (1− λ)x2;λk1 + (1− λ)k2)

≤ λψF
C (λx1 + (1− λ)x2; k1)

+ (1− λ) ψF
C (λx1 + (1− λ)x2; k2) (by (i) of Prop. 2.2)

≤ max{ψF
C (λx1 + (1− λ)x2; k1), ψF

C (λx1 + (1− λ)x2; k2)}
≤ max{max{ψF

C (x1; k1), ψF
C (x2; k1)},

max{ψF
C (x1; k2), ψF

C (x2; k2)}} (by Lemma 2.1)

< max{ψF (x1), ψF (x2)}+ ε.

Since ε > 0 is arbitrarily small, we obtain

ψF (λx1 + (1− λ)x2) ≤ max{ψF (x1), ψF (x2)},
which shows that ψF is quasiconvex. ¤
Lemma 2.3 (See [9, Theorem 2.5]). If the multifunction F : E → 2Y is C-
quasiconvex, then the function ϕF

C(x; k) = inf {hC(y; k) | y ∈ F (x)} is quasiconvex
with respect to variable x where k ∈ intC.

Lemma 2.4. If F : E → 2Y is convex-valued and C-quasiconvex, then

ϕF (x) := inf
k∈B

ϕF
C(x; k) = inf

k∈B
inf

y∈F (x)
hC(y; k)

is quasiconvex.
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Proof. Since F is convex-valued, by (ii) of Proposition 2.2, ϕF
C(x; k) is convex with

respect to variable k ∈ B. By Lemma 2.3, ϕF
C(x; k) is quasiconvex with respect to

variable x where k ∈ B. From these properties, we can verify that ϕF is quasiconvex
in the same way as the proof of Lemma 2.2. ¤
Remark 2.2. When we replace F by −F in Lemmas 2.2, 2.4, it leads to the quasicon-
cavity of scalarizing functions−ψ−F and−ϕ−F . By Proposition 2.1 and Lemma 2.4,
if F : E → 2Y is convex-valued and type-(iii) C-naturally quasiconvex, then ϕF is
quasiconvex.

Next we show some inherited properties from some kinds of semicontinuity. We
introduce two types of cone-semicontinuity for multifunctions, which are regarded
as extensions of the ordinary lower semicontinuity for real-valued functions; see [6].

Definition 2.3. Let x̂ ∈ E. A multifunction F is called C(x̂)-upper semicontinuous
at x0, if for every y ∈ C(x̂) ∪ (−C(x̂)) satisfying with F (x0) ⊂ y + intC(x̂), there
exists an open U 3 x0 such that F (x) ⊂ y + intC(x̂) for every x ∈ U .

Definition 2.4. Let x̂ ∈ E. A multifunction F is called C(x̂)-lower semicontinuous
at x0, if for every open V such that F (x0) ∩ V 6= ∅, there exists an open U 3 x0

such that F (x) ∩ (V + intC(x̂)) 6= ∅ for every x ∈ U .

Remark 2.3. In the two definitions above, the notions for single-valued functions
are equivalent to the ordinary notion of lower semicontinuity of real-valued ones,
whenever Y = R and C(x) = [0,∞). Usual upper semicontinuous multifunction is
also (cone-) upper semicontinuous. When the cone C(x̂) consists only of the zero of
the space, the notion in Definition 2.4 coincides with that of lower semicontinuous
multifunction. Moreover, it is equivalent to the cone-lower semicontinuity defined
in [6], based on the fact that V + intC(x̂) = V + C(x̂); see [13, Theorem 2.2].

Proposition 2.3 (See [10, Proposition 2]). Assume that there exists a compact
subset D ⊂ Y satisfying (i) A ⊂ cone D where cone D := {λx|λ ≥ 0, x ∈ D} and (ii)
D ⊂ intC(x0) for some x0 ∈ E. If W (·) := Y \ {intC(·)} has a closed graph, then
there exists an open set U 3 x0 such that A ⊂ C(x) for every x ∈ U . In particular
C is lower semicontinuous.

Lemma 2.5. Suppose that W : E → 2Y defined as W (x) = Y \ intC(x) has a
closed graph. If F is (−C(x))-upper semicontinuous at x for each x ∈ E and there
exists a compact-valued multifunction D : E → 2Y such that for each x0 ∈ E, (i)
D(x0) ⊂ intC(x0) and (ii) for every t ∈ R, k ∈ B(x0) and x ∈ E satisfying with
tk − F (x) ⊂ intC(x0), tk − F (x) ⊂ cone D(x0). Then

ψF (x) := inf
k∈B(x)

sup
y∈F (x)

hC(x, y; k)

is upper semicontinuous. If the mapping C is constant-valued, then ψF is upper
semicontinuous without assumptions on D above.

Proof. Let ε > 0 and x0 ∈ E be given. In the case ψF (x0) = ∞, it is clear that
ψF is upper semicontinuous at x0. So we assume ψF (x0) 6= ∞. By the definition of
ψF , there exists k0 ∈ B(x0) such that

sup
y∈F (x0)

hC(x0, y; k0) < ψF (x0) + ε.
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Since supy∈F (x0) hC(x0, y; k0) = inf{t |F (x0) ⊂ tk0 − C(x0)}, we can take

inf{t |F (x0) ⊂ tk0 − C(x0)} < t0 < ψF (x0) + ε.

Therefore
F (x0) ⊂ t0k0 − intC(x0).

Since F is (−C(x0))-upper semicontinuous at x0, there exists an open U1 3 x0 such
that

F (x) ⊂ t0k0 − intC(x0) for every x ∈ U1.
Therefore

t0k0 − F (U1) ⊂ intC(x0).
Hence, from the assumption, there exists a compact D(x0) such that

D(x0) ⊂ intC(x0)

and
t0k0 − F (U1) ⊂ cone D(x0).

By Proposition 2.3, there exists an open U2 3 x0 such that

t0k0 − F (U1) ⊂ C(x) for every x ∈ U2.

Hence, for t0 < t′ < ψF (x0) + ε, there exists an open U3 := U1 ∩ U2 (U3 3 x0) such
that

F (x) ⊂ t′k0 − intC(x) and k0 ∈ B(x) for every x ∈ U3.
Then

ψF (x) = inf
k∈B(x)

sup{hC(x, y; k) | y ∈ F (x)}

≤ sup{hC(x, y; k0) | y ∈ F (x)}
≤ sup{hC(x, y; k0) | y ∈ t′k0 − C(x)}
= sup{hC(x, t′k0 − c; k0) | c ∈ C(x)}
= hC(x, t′k0; k0) + sup{hC(x,−c; k0) | c ∈ C(x)}
≤ t′

≤ ψF (x0) + ε.

The proof of the second statement (when C is constant-valued) is similar, however
in this case there is no need to use Proposition 2.3. ¤
Lemma 2.6. Suppose that W : E → 2Y defined as W (x) = Y \ intC(x) has
a closed graph. If F is (−C(x))-lower semicontinuous for each x ∈ E and there
exists a compact-valued multifunction D : E → 2Y such that for each x0 ∈ E, (i)
D(x0) ⊂ intC(x0) and (ii) for every t < t∗ ∈ R, k ∈ B(x0), x ∈ E and y ∈ F (x0)
satisfying with F (x) ∩ [y + tk − intC(x0)] 6= ∅, F (x) ∩ [y + t∗k − cone D(x0)] 6= ∅.
Then

ϕF (x) := inf
k∈B(x)

inf
y∈F (x)

hC(x, y; k)

is upper semicontinuous. If the mapping C is constant-valued, then ϕF is upper
semicontinuous without assumptions on D above.
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Proof. Let ε > 0 and x0 ∈ E be given. In the case ϕF (x0) = −∞, we can easy
verify that there exists an open U ∈ x0 such that ϕF (x) = −∞ for every x ∈ U .
Therefore, in this case it is clear that ϕF is upper semicontinuous at x0. So we
assume ϕF (x0) 6= −∞. By the definition of ϕF , for ϕF (x0) < t0 < ϕF (x0) + ε,
there exists k0 ∈ B(x0) (k0 ∈ intC(x0)) and z0 ∈ F (x0) such that

t0k0 − z0 ∈ intC(x0).

By Proposition 2.3, there exists an open U1 3 x0 such that

t0k0 − z0 ∈ intC(x) and k0 ∈ intC(x) for every x ∈ U1.

Therefore

(2.1) hC(x, z0; k0) ≤ t0 for every x ∈ U1.

Let 0 < γ <
ε

2
. By (−C(x0))-lower semicontinuity of F , there exists an open

U2 ⊂ U1 (U2 3 x0) such that

F (x) ∩ (z0 + γk0 − intC(x0)) 6= ∅ for every x ∈ U2.

Since z0 +γk0− intC(x0) ⊂ z0 +2γk0− intC(x0), from the assumption, there exists
a compact D(x0) such that

D(x0) ⊂ intC(x0)
and

G(x) := F (x) ∩ (z0 + 2γk0 − cone D(x0)) 6= ∅ for every x ∈ U2.
Therefore

∅ 6= G(U2) ⊂ z0 + 2γk0 − cone D(x0).
So we have

z0 + 2γk0 −G(U2) ⊂ cone D(x0).
By Proposition 2.3, there exists an open U3 3 x0 such that

z0 + 2γk0 −G(U2) ⊂ intC(x) for every x ∈ U3.

Hence, there exists an open U4 := U2 ∩ U3 (U4 3 x0) such that

∅ 6= G(U2) ⊂ z0 + 2γk0 − intC(x) and k0 ∈ intC(x) for every x ∈ U4.

This implies

F (x) ∩ (z0 + 2γk0 − intC(x)) 6= ∅ for every x ∈ U4.

Take x ∈ U4, yx ∈ F (x) ∩ (z0 + 2γk0 − intC(x)). Therefore yx = z0 + 2γk0 + cx

where cx ∈ −intC(x). Then, we obtain

ϕF (x0) + ε ≥ t0

≥ hC(x, z0; k0) (by (2.1))

= hC(x, yx − 2γk0 − cx; k0)

≥ hC(x, yx; k0)− hC(x, 2γk0; k0)− hC(x, cx; k0)
(

by subadditivity
of hC(x, ·; k0)

)

≥ hC(x, yx; k0)− 2γ

≥ ϕF (x)− ε.
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Hence
ϕF (x0) + 2ε ≥ ϕF (x) for every x ∈ U4.

The proof of the second statement (when C is constant-valued) is similar, however
in this case there is no need to use Proposition 2.3. ¤
Remark 2.4. When we replace F by −F in the two lemmas above, it leads to the
lower semicontinuity of scalarizing functions −ψ−F and −ϕ−F .

3. Existence Results

Firstly, we introduce our main tool, which is presented in [4, Theorem 2.3], for
proving the main results in this paper.

Lemma 3.1 (See [4, Theorem 2.3]). Let X be a nonempty compact convex subset
of a topological vector space, a : X × X → R lower semicontinuous in its second
variable, b : X ×X → R quasiconvex in its second variable, and

x, y ∈ X and a(x, y) > 0 ⇒ b(y, x) < 0.

If infx∈X b(x, x) ≥ 0, then there exists z ∈ X such that a(x, z) ≤ 0 for every x ∈ X.

Now we present two existence results for generalized vector equilibrium problems.

Theorem 3.1. Let K be a nonempty convex subset of a topological vector space E,
Y a topological vector space. Let F : K ×K → 2Y be a multifunction. Assume that

(i) C : K → 2Y is a multifunction such that for every x ∈ K, C(x) is a closed
convex cone in Y with intC(x) 6= ∅;

(ii) W : K → 2Y is a multifunction defined as W (x) = Y \ (−intC(x)), and the
graph of W is closed in K × Y ;

(iii) for every x, y ∈ K, F (·, y) is (−C(x))-upper semicontinuous at x;
(iv) there exists a multifunction G : K ×K → 2Y such that

(a) for every x ∈ K, G(x, x) 6⊂ −intC(x),
(b) for every x, y ∈ K, F (x, y) ⊂ −intC(x) implies G(x, y) ⊂ −intC(x),
(c) G(x, ·) is type-(v) C(x)-naturally quasiconvex on K for every x ∈ K,
(d) G(x, y) is compact, if G(x, y) ⊂ −intC(x);

(v) there exists a nonempty compact convex subset P of K such that for every
x ∈ K \ P , there exists y ∈ P with F (x, y) ⊂ −intC(x);

(vi) there exists a compact-valued multifunction D : K → 2Y such that for each
x0 ∈ K,
(a) D(x0) ⊂ intC(x0),
(b) for every t ∈ R, k ∈ B(x0) and x, y ∈ K satisfying with tk−F (x, y) ⊂

intC(x0), tk − F (x, y) ⊂ cone D(x0).
Then, the solutions set

S = {x ∈ K |F (x, y) 6⊂ −intC(x), for every y ∈ K}
is a nonempty and compact subset of P .

Proof. Put

a(x, y) := − inf
k∈B(y)

sup
z∈F (y,x)

hC(y, z; k), b(x, y) := inf
k∈B(x)

sup
z∈G(x,y)

hC(x, z; k).
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It is easy to check that

a(x, y) > 0 if and only if F (y, x) ⊂ −intC(y)

by using condition (vi), and also

b(y, x) < 0 if and only if G(y, x) ⊂ −intC(y)

by using (d) of the condition (iv), and then a(x, x) ≤ 0 and b(x, x) ≥ 0.
Denote

(3.1) Sy := {x ∈ P |F (x, y) 6⊂ −intC(x)} = {x ∈ P | a(y, x) ≤ 0} .

Since a(y, ·) is lower semicontinuous (by Lemma 2.5), the set Sy is closed. Let Y0

be a finite subset of K. Denote by Z the closed convex hull of Y0 ∪ P . Obviously
Z is compact and convex. Lemmas 2.2, 2.5 and (b) of the condition (iv) show that
the conditions of Lemma 3.1 are satisfied.

Now we apply Lemma 3.1 and obtain a point z ∈ Z such that a(y, z) ≤ 0 for
every y ∈ Z, which means

(3.2) F (z, y) 6⊂ −intC(z) for every y ∈ Z.

The conditions (v) and (3.2) imply that z ∈ P . Relation (3.1) implies that

∩{Sy | y ∈ Y0} 6= ∅.
So we proved that the family {Sy | y ∈ K} has finite intersection property. Since P
is compact,

∩{Sy | y ∈ K} 6= ∅,
which means that there exists x0 ∈ K such that

F (x0, y) 6⊂ −intC(x0) for every y ∈ K.

So we proved that S is nonempty, and since S is a closed subset of P , the proof is
completed. ¤
Remark 3.1. The above theorem is a generalization of the theorem that it is replaced
F and G in [4, Theorem 4.1] by −F and −G, respectively. The main difference
between our result and [4, Theorem 4.1] is (c) of the condition (iv), which is more
generalized with respect to convexity.

Theorem 3.2. Let K be a nonempty convex subset of a topological vector space E,
Y a topological vector space. Let F : K ×K → 2Y be a multifunction. Assume that

(i) C : K → 2Y is a multifunction such that for every x ∈ K, C(x) is a closed
convex cone in Y with intC(x) 6= ∅;

(ii) W : K → 2Y is a multifunction defined as W (x) = Y \ (−intC(x)), and the
graph of W is closed in K × Y ;

(iii) for every x, y ∈ K, F (·, y) is (−C(x))-lower semicontinuous at x;
(iv) there exists a multifunction G : K ×K → 2Y such that

(a) for every x ∈ K, G(x, x) ∩ (−intC(x)) = ∅,
(b) for every x, y ∈ K, F (x, y) ∩ (−intC(x)) 6= ∅ implies G(x, y) ∩

(−intC(x)) 6= ∅,
(c) G(x, ·) is C(x)-quasiconvex on K for every x ∈ K,
(d) G is convex-valued;
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(v) there exists a nonempty compact convex subset P of K such that for every
x ∈ K \ P , there exists y ∈ P with F (x, y) ∩ (−intC(x)) 6= ∅;

(vi) there exists a compact-valued multifunction D : K → 2Y such that for each
x0 ∈ K,
(a) D(x0) ⊂ intC(x0),
(b) for every t < t∗ ∈ R, k ∈ B(x0), x, y ∈ K and z ∈ F (x0, y) satisfying

with F (x, y)∩[z+tk−intC(x0)] 6= ∅, F (x, y)∩[z+t∗k−cone D(x0)] 6= ∅.
Then, the solutions set

S = {x ∈ K |F (x, y) ∩ (−intC(x)) = ∅, for every y ∈ K}
is a nonempty and compact subset of P .

Proof. Put

a(x, y) := − inf
k∈B(y)

inf
z∈F (y,x)

hC(y, z; k), b(x, y) := inf
k∈B(x)

inf
z∈G(x,y)

hC(x, z; k).

It is easy to check that

a(x, y) > 0 if and only if F (y, x) ∩ (−intC(y)) 6= ∅,

b(y, x) < 0 if and only if G(y, x) ∩ (−intC(y)) 6= ∅,

a(x, x) ≤ 0, b(x, x) ≥ 0.

Lemmas 2.4, 2.6 and (b) of the condition (iv) show that the conditions of
Lemma 3.1 are satisfied. Further the proof is the same as that of Theorem 3.1,
but in this case Sy := {x ∈ P |F (x, y) ∩ (−intC(x)) = ∅}. ¤

Remark 3.2. The above theorem is an improvement of the theorem that it is replaced
F and G in [4, Theorem 4.2] by −F and −G, respectively. The main difference
between our result and [4, Theorem 4.2] is the condition (vi), which is more relaxed
with respect to compactness assumption of the images of F in the condition (iii) of
[4, Theorem 4.2]. However, (d) of the condition (iv) is added in comparison with
[4, Theorem 4.2], because we want to use Lemma 2.4 in the proof directly.

4. Conclusions

We have established new inherited properties of convexity for set-valued maps.
By using one of those new inherited properties and applying to set-valued Fan’s
inequality in [4, 5], we have generalized the existence theorem in [1]. We have
also presented an existence theorem for a different type of the generalized vector
equilibrium problem in [1].
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