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CLASSIFICATIONS OF IRRATIONAL NUMBERS AND
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Dedicated to Professor Wataru Takahashi for his 60th Birthday

Abstract. Diophantine conditions in the famous KAM theorem and also Liou-
ville conditions(not Diophantine conditions) in the converse KAM theorem are
deeply related to classifications of irrational numbers (of winding numbers or fre-
quencies) according to badness or goodness levels of approximation by rational
numbers. In our previous paper we introduced the gaps between the upper and
the lower recurrent dimensions as the index parameters, which measure unpre-
dictability levels of the orbits. In this paper we show that the gaps of recurrent
dimensions of quasi-periodic orbits take positive values when the irrational fre-
quencies are weak Liouville numbers with sufficiently large orders of goodness
levels of approximation by rational numbers.

1. Introduction

The celebrated KAM theorem ignited so many mathematicians to study about
stability or instability of the KAM tori and to proceed (or to be drowned) in analysis
of chaotic systems. Showing various critical conditions for destructions of KAM
quasi-periodic orbits is the most interesting and exciting problem in the analysis
of “ chaos”. According to the KAM theorem (cf. [2] or [3]), if the irrational
frequencies of integrable quasi-periodic Hamiltonian dynamical systems satisfy the
Diophantine conditions (badly approximable by rationals), then the quasi-periodic
tori are persistent (stable for small perturbations). On the other hand, we can see in
the converse KAM theorem that, if the irrational frequencies are Liouville numbers
(extremely good approximative numbers by rationals), then any small perturbations
of the quasi-periodic systems contain the destructions of the quasi-periodic tori (see
[9]).

In our previous papers ([4], [5], [6]) we estimated correlation dimensions or recur-
rent dimensions of discrete quasi-periodic orbits according to algebraic properties of
the irrational frequencies, introducing some classes of irrational numbers, α-order
Roth numbers (Diophantine numbers), which contains the class of Roth numbers,
and α-order Liouville or α-order weak Liouville numbers, which have good approx-
imation by rational numbers. These irrational numbers are classified according to
badness or goodness levels of approximation by rational numbers. In our previous
paper ([7]) we also introduced the gaps between the upper and the lower recurrent
dimensions as the index parameters, which measure unpredictability levels of the
orbits. In this paper we show that the gaps of recurrent dimensions of quasi-periodic
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orbits take positive values when the irrational frequencies are weak Liouville num-
bers with sufficiently large orders of goodness levels of approximation by rational
numbers.

The plan of this paper is as follows. In section 2 we give definitions of recurrent
dimensions and the gaps of these dimensions. In section 3 we review classifications of
irrational numbers, following our pervious papers. In section 4 we estimate the gaps
of recurrent dimensions of quasi-periodic orbits. In Appendixes we give examples of
Roth or Liouville type numbers, following the classifications of irrational numbers.

2. Definitions of recurrent dimensions

We have introduced the definitions of recurrent dimensions in our previous papers
([6], [7]):

Let T be a nonlinear operator on a Banach space X. For an element x ∈ X we
consider a discrete dynamical system given by

xn = Tnx, n ∈ N0 := N ∪ {0}
and its orbit is denoted by

Σx = {Tnx : n ∈ N0}.
For a small ε > 0, define upper and lower first ε-recurrent times by

M ε = sup
n∈N0

min{m : Tm+nx ∈ Vε(Tnx), m ∈ N},

M ε = inf
n∈N0

min{m : Tm+nx ∈ Vε(Tnx), m ∈ N},

respectively, where Vε(z) = {y ∈ X : ‖y− z‖ < ε}. Then upper and lower recurrent
dimensions are defined as follows:

Dr(Σx) = lim sup
ε→0

log M ε

− log ε
,

dr(Σx) = lim sup
ε→0

log M ε

− log ε
,

dr(Σx) = lim inf
ε→0

log M ε

− log ε
,

Dr(Σx) = lim inf
ε→0

log M ε

− log ε
.

On the other hand, we can define the gaps between the upper and the lower
recurrent dimensions by

(2.1) Gr(Σx) = Dr(Σx)−Dr(Σx), gr(Σx) = dr(Σx)− dr(Σx).

Since
Dr(Σx) ≥ dr(Σx), dr(Σx) ≥ Dr(Σx),

we have Gr(Σx) ≥ gr(Σx).
Instead of considering the whole orbit we can treat a local point in the orbit, say,

Tn0x, n0 ∈ N. Define the first ε-recurrent time by

Mε(n0) = min{m ∈ N : Tm+n0x ∈ Vε(Tn0x)}
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and the upper and lower recurrent dimensions by

Dr(n0) = lim sup
ε→0

log Mε(n0)
− log ε

,

Dr(n0) = lim inf
ε→0

log Mε(n0)
− log ε

.

The gaps of the recurrent dimensions can be defined by

Gr(n0) = Dr(n0)−Dr(n0)

and, obviously, we have

Gr(Σx) ≥ Gr(n0) ≥ gr(Σx)

for n0 ∈ N.
If the gaps between the upper and the lower recurrent dimensions take positive

values, we cannot exactly determine or predict the ε-recurrent time of the orbits.
Thus we propose the value Gr(Σx) or gr(Σx) as the parameter, which measures the
unpredictability level of the orbit.

3. Roth numbers and Liouville numbers

Let f(t) : [0,+∞) → X be a continuous periodic function such that f(t + 1) =
f(t), t ≥ 0. For an irrational number τ : 0 < τ < 1, define a discrete quasi-periodic
orbit by

Tnx = f(τn), n ∈ N, x = f(0).

Then our purpose is to estimate the recurrent dimensions of the orbits under some
algebraic conditions on the frequency τ .

Consider the following continued fraction of the number τ :

(3.1) τ =
1

a1 +
1

a2 +
1

a3 + ...

(ai ∈ N)

and take the rational approximation as follows. Let m0 = 1, n0 = 0, m−1 = 0,
n−1 = 1 and define the pair of sequences of natural numbers

mi = aimi−1 + mi−2,(3.2)

ni = aini−1 + ni−2, i ≥ 1,(3.3)

then the elementary number theory gives the Diophantine approximation {ni/mi},
which satisfies

(3.4)
1

mi(mi+1 + mi)
< |τ − ni

mi
| < 1

mimi+1
<

1
m2

i

.

Here {ni/mi} is the best approximation in the sense that

(3.5) |τ − ni

mi
| ≤ |τ − r

p
|
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holds for every rational r/p : p ≤ mi, and, furthermore,

(3.6) inf
r∈N

|τm− r| ≥ |τmi − ni|
holds for every m : 1 ≤ m < mi+1.

We can classify irrational numbers according to badness or goodness levels of
approximation by rational numbers. First we treat badly approximable irrational
numbers by rational numbers.

We call a irrationla number τ an α-order Roth number if there exists a constant
α ≥ 0 such that, for every β > α, there exists cβ > 0, which satisfies

|τ − q

p
| ≥ cβ

p2+β

for every rational q/p.
Roth numbers are 0-order Roth numbers, that is, for every ε > 0, there exists

cε > 0, which satisfies
|τ − q

p
| ≥ cε

p2+ε

for every rational q/p.
Furthermore, for the most badly approximable numbers we say that τ is constant

type or badly approximable if there exists a constant c > 0 such that

|τ − q

p
| ≥ c

p2

holds for every rational q/p.
The set of α-order Roth numbers for each α ≥ 0 is of full measure in the Lebesgue

sense, while the class of constant type is dense in the space of real numbers, but it
is of null measure.

In our previous papers ([5], [6], [8]) we have shown some equivalent conditions
to these numbers by using the growth rates of {mi}. However, the definitions of
α-Roth numbers and the equivalent conditions in these papers are slightly different.
For completeness we prove the equivalence relation.

Lemma 3.1. τ is a Roth number with its order α0 ≥ 0 if and only if for every
β : β > α0 there exists a constant Kβ > 0, which satisfies

(3.7) mj+1 ≤ Kβm1+β
j , ∀j.

Proof. First we assume that τ is a Roth number with its order α0 ≥ 0. It follows
from the definition and (3.4) that, for every β > α0, there exists Kβ > 0:

(3.8)
K−1

β

m2+β
j

≤ |τ − nj

mj
| ≤ 1

mj+1mj
.

Thus we obtain (3.7).
Next we assume (3.7) where we can assume that Kβ ≥ 1. Then we show that

|τm− l| ≥ 1
2Kβmβ+1

holds for every integer l, m. In the case where m = mk it is obvious from (3.4),
(3.5) and (3.7).
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Assume that there exist some positive integers l, m : mk < m < mk+1, which
satisfies

|τm− l| < 1
Kβmβ+1

.

It follows from (3.4) and (3.6) that we have

1
Kβm1+β

> |τm− l| ≥ |τmk − nk| ≥ 1
mk+1 + mk

.

Thus we have
1

Kβ(mk + 1)1+β
>

1

Kβm1+β
k + mk

,

which yields the contradiction, since

Kβ(x + 1)1+β > Kβxβ+1 + x

holds for all x ≥ 1. ¤

The equivalent condition of a badly approximable number is the boundedness of
the partial quotients {ai} (cf. [10]). Thus, τ is badly approximable if and only if
there exists a constant K > 0 such that

mj+1 ≤ Kmj , ∀j.
Next we consider Liouville(not Diophantine) numbers. An irrational number τ ,

which has extremely good approximable property by rational numbers, is called a
Liouville number if

|τ − ni

mi
| ≤ 1

mi
i

, ∀i.

In our previous paper [6] we introduced a class of irrational numbers which contains
Liouville numbers. We state that an irrational number τ is an α-order Liouville
number, or a Liouville number with its order α if there exist constants c, α > 0 such
that

(3.9) |τ − ni

mi
| ≤ c

m2+α
i

, ∀i.

Furthermore, considering some subsequece of the Diophantine approximation, we
can extend the definitions of α-order Liouville numbers as follows. τ is called an
α-order weak Liouville number if there exists a subsequence {mkj

} ⊂ {mj}, which
satisfies

|τ − nkj

mkj

| < c

m2+α
kj

, ∀j

for some constants c, α > 0 (see [8]).
For the α-order Liouville numbers we have given the equivalent condition in [6].

Lemma 3.2 ([6]). τ is a Liouville number with its order α if and only if there exist
constants α, L > 0:

(3.10) mj+1 ≥ Lm1+α
j , ∀j.
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Obviously, (3.10) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of τ .

There exist constants α, L′ > 0:

(3.11) aj+1 ≥ L′mα
j , ∀j.

For an α-order Liouville number we have shown the following lemma.

Lemma 3.3 ([6]). If the partial quotients in the continued fraction expansion of τ
satisfies

aj+1 ≥ L0a
β+1
j , ∀j

for some β > 0 and L0 ≥ 2β+1, then τ is a Liouville number with its order β.

For the weak Liouville numbers we can show the equivalent condition.

Lemma 3.4 ([8]). τ is a weak Liouville number with its order α if and only if there
exist constants α, L > 0:

(3.12) mkj+1 ≥ Lm1+α
kj

, ∀j.
Next we consider some relations between Roth numbers and Liouville numbers.
We can prove that the class of weak Liouville numbers is equivalent to the com-

plement ( in the space of all irrational numbers) of the class of Roth numbers.

Lemma 3.5. For a constant α0 > 0, let

α0 = inf{α : τ is an α-order Roth number},
then τ is a β-order weak Liouville number for every β : β < α0. On the contrary,
let τ be a β-order weak Liouville number, then τ is not an α-order Roth number for
every α : α < β.

Proof. Since we have

α0 = sup{α : τ is not an α-order Roth number},
let τ be not an α-order Roth number for α < α0. Then there exists a constant
β : α < β ≤ α0 such that for every dj : 0 < dj < 1, dj → 0 as j → ∞, there exist
positive integers lj , rj , which satisfies

(3.13) |ljτ − rj | ≤ dj

l1+β
j

.

We can take an infinite sequence {lj} : lj → ∞. In fact, let dj → 0, then the
existence of a finite set or a bounded infinite sequence {lj}, which has a convergent
subsequence, gives a contradiction by (3.13) that τ is a rational number. It follows
from (3.6) that, for each lj , there exists mkj

∈ {mj} : mkj
≤ lj < mkj+1, which

satisfies

|mkj
τ − nkj

| ≤ |ljτ − rj | ≤ dj

l1+β
j

≤ 1

m1+β
kj

.

Thus τ is a β-order weak Liouville number. Since for every α < α0 there exists
β : α < β ≤ α0 such that τ is a β-order weak Liouville number, we can conclude
that τ is a β-order weak Liouville number for every β : β < α0.
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On the other hand, let τ be a β-order weak Liouville number τ , that is, there
exists a subsequence {mkj

}, which satisfies

|mkj
τ − nkj

| ≤ c

m1+β
kj

,

and assume that τ is a Roth number with its order α : α < β. Then, for every
γ : α < γ < β, there exists a constant cγ such that

|mτ − n| ≥ cγ

m1+γ

holds for every positive integers m,n. Putting m = mkj
, n = nkj

gives

cγ

m1+γ
kj

≤ c

m1+β
kj

,

which has the contradiction if j → ∞. Thus τ is not an α-order Roth number for
every α : α < β. ¤

Denote the set of α-order Roth numbers by R(α) and the set of β-order weak
Liouville numbers by wL(β), then it follows from the proof of Lemma 3.5 that the
following inclusion relations hold.

R(α)c ⊂
⋂

β<α

wL(β),

wL(β) ⊂
⋂

β>α

R(α)c

where the complements are considered in the set of all irrational numbers. That is,

(3.14) inf{α : τ is an α-order Roth number}
= sup{β : τ is a β-order weak Liouville number} := d0.

Thus, for each irrational number τ , there exists a constant d0, which specifies the
badness or goodness levels of rational approximations. In our previous paper ([7])
we introduced a d0-(D) condition for a pair of irrational numbers. For a single
irrational case, let us say that τ satisfies a d0-(D) condition if (3.14) holds.

Applying the argument in the above proof, we can show the relation:

R(0)c =
⋃

β>0

wL(β).

Lemma 3.6 ([7]). If an irrational number is not a Roth number, then it is an
α-order weak Liouville number for some α > 0. On the contrary, if an irrational
number is an α-order weak Liouville number for some α > 0, then it is not a Roth
number.

Remark 3.7. Since the set of 0-order Roth numbers is of full measure, the set of
irrational numbers, which satisfy d0-(D) conditions for d0 > 0, is of null measure.
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4. Recurrent dimensions of quasi-periodic orbits

In this section, considering a quasi-periodic orbit in a Banach space X with its
irrational frequency given by a weak Liouville number:

Σ = {ϕ(n) ∈ X : ϕ(n) = f(τn), n ∈ N0},
we estimate the recurrent dimensions of Σ. Here, let f : R → X be a nonlinear
function, which satisfies the following Hölder conditions:
(H1) There exist constants K1 > 0 and ϑ1 : 0 < ϑ1 ≤ 1, which satisfy

‖f(t1)− f(t2)‖ ≤ K1|t1 − t2|ϑ1 , t1, t2 ∈ R : |t1 − t2| ≤ ε0

for a small constant ε0 > 0.

(H2) There exist constants K2 > 0 and ϑ2 : 0 < ϑ2 ≤ 1, which satisfy

‖f(t1)− f(t2)‖ ≥ K2|t1 − t2|ϑ2 , t1, t2 ∈ R : |t1 − t2| ≤ 1
2
.

We can obtain the following estimate for the upper bounds of the lower recurrent
dimensions.

Theorem 4.1. Under the condition (H1), assume that the irraional frequency τ is
an α-order weak Liouville number. Then we have

(4.1) dr(Σ) ≤ 1
(1 + α)ϑ1

.

Proof. It follows from (H1), (3.4) and Lemma 3.4 that we have

‖ϕ(mkj
+ n)− ϕ(n)‖ = ‖f(τ(mkj

+ n))− f(τn + nkj
)‖

≤ K1|τmkj
− nkj

|ϑ1

≤ K1(
1

mkj+1
)ϑ1

≤ cm
−(1+α)ϑ1

kj

:= εj .

Here and hereafter c denotes a suitable constant in each estimate. Thus we can
estimate

dr(Σ) = lim
j→∞

inf
0<ε≤εj

log M ε

− log ε

≤ lim
j→∞

log M εj

− log εj

≤ lim
j→∞

log mkj

− log εj

= lim
j→∞

log mkj

− log cm
−(1+α)ϑ1

kj

≤ lim
j→∞

log mkj

− log c + (1 + α)ϑ1 log mkj
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=
1

(1 + α)ϑ1
. ¤

Furthermore, by using the Hölder exponents and simple calculations we can esti-
mate the lower bounds of the recurrent dimensions without any algebraic conditions
on the irrational frequencies.

Theorem 4.2. Assume that the function f satisfies (H2). Then we have

dr(Σ) ≥ 1
ϑ2

.

Proof. Since, for every integer m : m < mj+1, there exists an integer n′ which
satisfies |τm− n′| < 1/2, it follows from (H2), (3.4) and (3.6) that we have

‖ϕ(m + n)− ϕ(n)‖ = ‖f(τ(m + n))− f(τn + n′)‖
≥ K2|τm− n′|ϑ2

≥ K2|τmj − nj |ϑ2

≥ K2(
1

2mj+1
)ϑ2 = c(

1
mj+1

)ϑ2 := εj .

Thus we can estimate

dr(Σ) = lim
j→∞

sup
0<ε≤εj

log M ε

− log ε

≥ lim
j→∞

log M εj

− log εj

≥ lim
j→∞

log mj+1

log c−1mϑ2
j+1

=
1
ϑ2

. ¤

By using Theorem 4.1 and 4.2 we obtain the gap of the recurrent dimension.

Corollary 4.3. Under Hypotheses (H1) and (H2), assume the same assumptions
as those of Theorem 4.1. Then we have

(4.2) gr(Σ) ≥ 1
ϑ2
− 1

(1 + α)ϑ1
.

Remark 4.4. It follows from (4.2) that the gaps of the recurrent dimensions become
positive if ϑ1 ' ϑ2 or the order α is sufficiently large.

5. Appendix

In this section we summarize our previous results on the classifications of irra-
tional numbers and examples. Before showing examples of Roth numbers we prepare
some Lemmas.

Lemma 5.1 ([8]). Assume that there exists a subsequence {mkj
} which satisfies

(5.1) mkj+1
≤ Km1+β

kj
, ∀j.

for some constants β, K > 0. Then τ is a Roth number with its order β(β + 3).
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Proof. For every positive integer q, there exists a number j:

mkj−1
< q ≤ mkj

< Kmβ+1
kj−1

< Kqβ+1.

Since nj/mj is a best approximation of τ , we have

|τ − r

q
| ≥ |τ − nkj

mkj

|

≥ 1
(mkj+1 + mkj

)mkj

≥ 1
(mkj+1

+ mkj
)mkj

≥ 1
2mkj+1

mkj

≥ c

mβ+2
kj

>
c

q(β+1)(β+2)

where we denote by c a suitable constant in each term. Thus for every rational
number r/q we have

|τ − r

q
| > c

q2+β(β+3)
. ¤

In [5] we have given a sufficient condition for an α-order Roth number, using the
partial quotients of the continued fraction expansion.

Lemma 5.2 ([5]). Let {aj} be the partial quotients in the continued fraction expan-
sion of τ . Assume that, for a given constant ε > 0, there exists a constant Cε > 0,
which satisfies

aj+1a
2
j ≤ Cε(aj−1aj−2 · · · a1)ε, ∀j.

Then we have
|τ − r

q
| ≥ cε

q2+ε
, ∀q, r ∈ N

where cε = 1/(16Cε).

Also we introduce another sufficient condition for α-order Roth numbers.

Lemma 5.3 ([8]). Let {aj} be the partial quotients in the continued fraction expan-
sion of τ . Assume that there exists a subsequence {akj

}, which satisfies that, for a
given constant ε > 0, there exists a constant Cε > 0 such that

(akj+1 + 1)(akj
+ 1)2(akj−1 + 1)2 · · ·

· · · (akj−1+2 + 1)2(akj−1+1 + 1)2

≤ Cε(akj−1
akj−1−1 · · · a1)ε, ∀j.

Then we have
|τ − r

q
| ≥ cε

q2+ε
, ∀q, r ∈ N.
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Proof. Let q be a positive integer, then there exists a number j : mkj−1
< q ≤ mkj

and we have

mkj−1
< q ≤ mkj

≤ (akj
+ 1)(akj−1 + 1) · · · (akj−1+1 + 1)mkj−1

≤ (akj
+ 1)(akj−1 + 1) · · · (akj−1+1 + 1)q.

Since nj/mj is the best rational approximation, it follows from Hypothesis that we
have

|τ − r

q
| ≥ |τ − nkj

mkj

|

≥ 1
(mkj+1 + mkj

)mkj

≥ 1
2(akj+1 + 1)m2

kj

≥ 1
2(akj+1 + 1)(akj

+ 1)2 · · · (akj−1+1 + 1)2q2

≥ 1
2Cε(akj−1

akj−1−1 · · · a1)εq2

for every r ∈ N . On the other hand, we can estimate

q > mkj−1
≥ akj−1

mkj−1−1 ≥ · · ·
≥ akj−1

akj−1−1 · · · a1m0

= akj−1
akj−1−1 · · · a1.

Thus we obtain the conclusion. ¤
Now we consider some examples of Roth numbers.
For two sequences {aj}, {bj}, we write aj ∼ bj if there exist constants c1, c2 > 0

such that
c1aj < bj < c2aj .

Example 5.4. If aj ∼ jα, α > 0, then τ is a Roth number (0-order Roth number).
In fact, for every ε > 0 there exists dε:

(5.2) (j + 1)
3
ε c

3
αε
2 c

− j−1
αε

1 ≤ dε(j − 1)!, ∀j.
It follows that

c3
2(j + 1)3α ≤ d′ε{cj−1

1 (j − 1)!}αε

and we have
a3

J+1 < d′ε(aj−1aj−2 · · · a1)ε.

Thus we can apply Lemma 5.2 for every ε > 0.

Example 5.5. If aj ∼ Kj , K > 1, then τ is also a Roth number.
In fact, for every ε > 0 there exists jε:

c3
2K

(3+
log c−ε

1
log K

)jε+1
< c−ε

1 K
(jε−1)jε

2
ε.

Put

dε = c3
2K

(3+
log c−ε

1
log K

)jε+1
,
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then we have
c3
2K

3j+1 < dε(c
j−1
1 Kj−1 · · ·K2K1)ε, ∀j,

which yields Hypothesis of Lemma 5.2.

Example 5.6. If aj+1 ∼ mβ
j , β > 0, then it follows from Lemma 3.1 that τ is a

β-order Roth number.

Now we consider the case that the growth rate of aj has the order Mκj
for some

constans M, κ > 1.

Lemma 5.7 ([5]). For constants c1, c2,M, κ, α : M, κ > 1, α ≥ 1, assume that
the partial quotients in the continued fraction expansion of τ satisfies

(5.3) c1M
κj

< aj < c2(Mα)κj
.

Then τ is a Roth number with its order (κ− 1)(κ + 2)α.

Next we consider some examples of Liouville type numbers. Obviously, (3.12)
is equivalent to the following condition on the partial quotients in the continued
fraction expansion of τ .

There exist constants α, L′ > 0:

(5.4) akj+1 ≥ L′mα
kj

, ∀j.
Furthermore, for a weak Liouville number, we can show the following lemma.

Lemma 5.8 ([8]). Assume that the partial quotients {aj} in the continued fraction
expansion of τ has a subsequence {akj

}, which satisfies

(5.5) akj+1+1 ≥ (akj+1
+ 1)β(akj+1−1 + 1)β · · · (akj+1 + 1)βakj+1

for some β > 0, then τ is a weak Liouville number with its order β.

Proof. By induction we can show that the condition (5.4) is satisfied. It is obvious
that there exists a constant L > 0: Let k0 = 0, then

ak0+1 = a1 ≥ Lmβ
0 = L · 1.

Assume that
akj+1 ≥ Lmβ

kj
.

It follows from Hypothesis that we have

akj+1+1 ≥ (akj+1
+ 1)β(akj+1−1 + 1)β · · · (akj+1 + 1)βakj+1

≥ L(akj+1
+ 1)β(akj+1−1 + 1)β · · · (akj+1 + 1)βmβ

kj

≥ L(akj+1
+ 1)β(akj+1−1 + 1)β · · · (akj+2 + 1)βmβ

kj+1

...

≥ Lmβ
kj+1

. ¤
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Example 5.9. For some positive numbers κ,M > 1, let

aj ∼ Mκj
,

that is, there exist constants d1 > d2 > 0 :

(5.6) d1M
κj ≥ aj ≥ d2M

κj
.

Assume that

(5.7) Mκ2−κ ≥ 2d1

d2
,

then τ is a Liouville number with its order β:

(5.8) β ≤ log d2 + κ2 log M

log 2d1 + κ log M
− 1.

In fact, (5.7) yields

log d2 + κ2 log M ≥ log 2d1 + κ log M

and (5.8) gives

(5.9) β + 1 ≤ log d2 + κj+1 log M

log 2d1 + κj log M

for j ≥ 1. It follows that

aj+1 ≥ d2M
κj+1 ≥ (2d1)β+1 · (Mκj

)β+1 ≥ 2β+1aβ+1
j ,

which satisfies Hypothesis of Lemma 3.3.

Example 5.10. Let {kj} be a sequence of integers which is increasing and goes to
infinity such that

(5.10) kj − kj−1 ≤ Cκj

for some C > 0 and κ > 1. For constants M, M ′ > 1, to simplify the argument, let

(5.11) akj+1 = Mκj
, al ≤ M ′, l 6∈ {kj + 1 : j ∈ N}.

Then the irrational number, which has the partial quotients above, is a weak Liou-
ville number with its order β, which satisfies

(5.12) β ≤ κ− 1

1 + Cκ log(M ′+1)
log M + κ−1 log 2

log M

.

In fact, the inequality above implies

κ ≥ log(M ′ + 1)
log M

βCκ + β + 1 +
log 2
log M

βκ−1.

It follows from Hypotheses that the estimates

Mκj+1 ≥ M
log(M′+1)

log M
βCκj+1

M
κj(β+1)+ log 2

log M
β

≥ M
log(M′+1)

log M
β(kj+1−kj−1)2βMκj(β+1)

≥ (M ′ + 1)β(kj+1−kj−1)(Mκj
+ 1)βMκj

hold for every positive integer j. Thus we have the condition (5.5) in Lemma 5.8.
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The number, which satisfies (5.10) and (5.11), is also a Roth number with its
order α such that

α ≥ (κ− 1)(2Cκ
log(M ′ + 1)

log M
+ 2 + κ).

In fact, for every ε > 0, which satisfies

ε
κ

κ− 1
≥ log(M ′ + 1)

log M
2Cκ2 + 2κ + κ2,

there exists a constant Cε such that

CεM
κ(κj−1−1)

κ−1
ε ≥ M

log(M′+1)
log M

2Cκj+1

22M2κj
2Mκj+1

≥ M
log(M′+1)

log M
2(kj+1−kj−1)(Mκj

+ 1)2(Mκj+1
+ 1).

Thus we have

CεM
(κj−1+κj−2+···+κ1)ε ≥ (Mκj+1

+ 1)(M ′ + 1)2(kj+1−kj−1)(Mκj
+ 1)2,

which implies the condition in Lemma 5.3.

6. Appendix II: Khinchine-Lévi class

In this section, using the growth rate of the denominators {mj} of the Diophan-
tine approximation, we introduce another class of irrational numbers, which possibly
has the full Lebesgue measure.

Let us call an irrational number τ a Khinchin-Lévy class number or (KL) class
number if, for the denominators {mj} of the Diophantine approximation of τ , there
exist constants C1, C2 > 1, which satisfy

(6.1) Cj
1 ≤ mj ≤ Cj

2 , ∀j ≥ j0

for some j0 ∈ N.

In [1] Khinchin proved that almost all irrational numbers satisfy (6.1) and fur-
thermore, he had shown that there exists a constant γ0, which satisfies

lim
k→∞

(mk)
1
k = γ0

for almost all irrational numbers. By Lévy this constant was estimated:

γ0 = e
π2

12 log 2 ∼ 3.27582...

Obviously, the intersection of the class of (KL) and the class of Roth numbers
has the full measure. We can show that there exist Roth numbers, which are not in
the class of (KL). In fact, for an irrational number τ , let aj be the partial quotients
of its continued fraction expansions. If

Aj
1 ≤ aj ≤ Aj

2, ∀j
holds for some constants A1, A2 > 0, then we can see that mj > Cj2

holds and τ is
a Roth number (see Eample 5.5).
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Also, we can show that there exist numbers in the class of (KL), which are not
Roth numbers, that is, weak Liouville numbers.

Lemma 6.1 ([7]). For an irrational number τ , let {aj} be the partial quotients of the
continued fraction expansion of τ and {nj/mj} be its Diophantine approximation.
For a constant β > 0 and some subsequence {mkj

} we assume that

akj+1 = (K − 1)mβ
kj

,(6.2)

al ≤ K − 1, l 6∈ {kj + 1 : j ∈ N}(6.3)

for some positive integer K ≥ 2. Then, τ is not a Roth number. Furthermore, if
β ≥ 1 and the growth rate of kj is sufficiently large such as

(6.4) (1 + β)2
j

< kj < c(1 + β)2
j
, c > 1

then τ belongs to the class of (KL).

Next we consider the weak Liouville numbers, which are not in (KL) class.

Lemma 6.2 ([7]). Let τ be a β-order weak Liouville number and assume that

kj − kj−1 − 1 ≥ c1(1 + β)j−1,(6.5)

kj < c2(1 + β)j , ∀j(6.6)

hold for some constants c1, c2 > 0. Then τ is not in the class of (KL).

It is obvious from Theorem 3.6 that the class of α-order Liouville numbers is
contained in the complement of the class of Roth numbers. Furthermore, the class
of α-order Liouville numbers is also contained in the complement of the class (KL).
In fact, since it follows from Lemma 3.2 that we have

mj+1 ≥ Kmα+1
j ≥ K1+(α+1)m

(α+1)2

j−1 · · · ≥ K1+(α+1)+···+(α+1)j−1
m

(α+1)j

1 ,

the sequence mj cannot be majorized by Cj for any C > 0.
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R(α): the set of α-order Roth numbers,
wL(β): the set of β-order weak Liouville numbers

R(α) ⊂ R(α′), α ≤ α′, wL(β) ⊂ wL(β′), β ≥ β′,

R(α)c ⊂
⋂

β<α

wL(β), wL(β) ⊂
⋂

β>α

R(α)c,

R(0)c =
⋃

β>0

wL(β).

τ satisfies d0-(D):

d0 = inf{α : τ is an α-order Roth number}
= sup{β : τ is a β-order weak Liouville number}.

Figure. Classifications of Irrationals
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Table. Table of Irrationals

Type Definition mj aj meas.

Const.Typ. ∃c : |τ − q/p| ≥ c/p2, ∀q/p mj+1 ≤ Kmj bounded null

Roth.num ∀ε > 0,∃cε : |τ − q/p| ≥ cε/p2+ε ∀β > α,∃Kβ : ∼ κj full

α-Roth ∀β > α,∃cβ : |τ − q/p| ≥ cβ/p2+β mj+1 ≤ Kβm1+β
j ∼ mα

j (*1) full

α-Liouv. |τ − nj/mj | ≤ c/m2+α
j mj+1 ≥ Km1+α

j ∼ Mκj
null

α-w.Liouv. ∃{mkj
} : |τ − nj/mkj

| ≤ c/m2+α
kj

mkj+1 ≥ Km1+α
kj

∼ Mκkj (*2) null

Liouv. |τ − nj/mj | ≤ 1/mj
j —– —– null

(KL) class ∃C1, C2 : Cj
1 < mj < Cj

2 —– ∼ mβ
kj

(*3) full

{nj/mj}: Diophantine sequence
{aj}: partial quotients of continued fraction expansions (examples)
(*1): aj+1 ∼ mα

j , aj ∼ Mκj

(*2): akj+1 ∼ Mκkj , {kj} is sparse: kj − kj−1 ∼ κj

(*3): akj+1 ∼ mβ
kj

, {kj} is sparse: kj ∼ (1 + β)2
j
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