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SUBLEVEL SETS AND GLOBAL MINIMA OF COERCIVE
FUNCTIONALS AND LOCAL MINIMA OF THEIR

PERTURBATIONS

BIAGIO RICCERI

1. Introduction

In [24], we have identified a general variational principle of which the following
theorem is a by-product:

Theorem A. If Φ and Ψ are two sequentially weakly lower semicontinuous func-
tionals on a reflexive real Banach space and if Ψ is also continuous and coercive,
then the functional Ψ + λΦ has at least one local minimum for each λ > 0 small
enough.

The variational principle of [24] has already been widely applied to nonlinear
differential equations and Hammerstein integral equations as well (see, for instance,
[1]-[6], [8]-[16], [18], [20], [25]-[28]).

The aim of the present paper is essentially to point out that, under the same
assumptions as those of Theorem A, the following more precise conclusion holds:
if, for some r > infX Ψ, the weak closure of the set Ψ−1(] −∞, r[) has at least k
connected components in the weak topology, then, for each λ > 0 small enough, the
functional Ψ + λΦ has at least k local minima lying in Ψ−1(]−∞, r[).

This, in particular, holds (for any r > infX Ψ) when the set of all global minima
of Ψ has at least k connected components in the weak topology.

This more precise conclusion can be used in a twofold way.
In a direct way, when we have, a priori, a sufficient information about the set of

all global minima or, more generally, about the sublevel sets of Ψ, it just provides
an information on the number of the local minima of suitable perturbations of Ψ.

Otherwise, when our primary objective is to get some information on the structure
of the set of all global minima and of the sublevel sets of Ψ, we can try to use it in
an indirect way.

For instance, if we are interested in knowing whether the sublevel sets of Ψ
are connected in the weak topology (an important issue in minimax theory (see
[22], [23])), then we could try to find a sequentially weakly lower semicontinuous
functional Φ and a sequence of positive numbers {µn} converging to 0 in such a way
that, for each n ∈ N, the functional Ψ + µnΦ has at most one local minimum.

We develop this point of view in the third section, when Ψ is the energy functional
related to a Dirichlet problem.

In the next section, we first establish our basic results in full generality and then
we formulate them in the setting of reflexive and separable real Banach spaces.
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2. Basic Results

If (X, τ) is a topological space, for any Ψ : X →] −∞,+∞], with dom(Ψ) 6= ∅,
we denote by τΨ the smallest topology on X which contains both τ and the family
of sets {Ψ−1(]−∞, r[)}r∈R.

Our main abstract result is as follows.

Theorem 1. Let (X, τ) be a Hausdorff topological space, and Φ,Ψ : X →]−∞,+∞]
two functions. Assume that there is ρ > infX Ψ such that the set Ψ−1(]−∞, ρ[) is
compact and sequentially compact, has at least k connected components and each of
them intersects the interior of dom(Φ). Moreover, suppose that the function Φ is
bounded below in Ψ−1(]−∞, ρ[) and that the function Ψ + λΦ is sequentially lower
semicontinuous for each λ > 0 small enough.

Then, there exists λ∗ > 0 such that, for each λ ∈ ]0, λ∗[, the function Ψ+λΦ has
at least k τΨ-local minima lying in dom(Φ) ∩Ψ−1(]−∞, ρ[).

Proof. Denote by C the family of all connected components of Ψ−1(]−∞, ρ[). Note
that these sets are closed in X since they are closed in Ψ−1(]−∞, ρ[) which is,
in turn, closed in X. We now observe that there are k pairwise disjoint closed
non-empty sets C1, ..., Ck such that

Ψ−1(]−∞, ρ[) =
k⋃

i=1

Ci .

We distinguish two cases. First, assume that C is finite. Let h be its cardinality.
Let B1, .., Bh be the members of C. Then, if we choose Ci = Bi for i = 1, ..., k − 1
and Ck = ∪h

i=kBi, we are clearly done. Now, assume that C is infinite. In this case,
we prove our claim by induction. The claim is true, of course, if k = 1. Assume
that it is true if k = p. So, we are assuming that there are p pairwise disjoint closed
non-empty sets D1, ..., Dp, such that

Ψ−1(]−∞, ρ[) =
p⋃

i=1

Di .

Notice that at least one of the sets Di must be disconnected, since, otherwise, we
would have {D1, ..., Dp} = C, contrary to the assumption that C is infinite. Then, if
Di∗ is disconnected, there are two disjoint closed non-empty sets E1, E2 such that
Di∗ = E1 ∪ E2. So, D1, ..., Di∗−1, Di∗+1, ..., Dp, E1, E2 are p + 1 pairwise disjoint
closed non-empty sets whose union is Ψ−1(]−∞, ρ[). So, our claim is true for
k = p + 1, and hence, by induction, for any k.

Now, fix i (1 ≤ i ≤ k). By compactness and Hausdorffness, it is clear that there
exists an open set Ai ⊂ X such that Ci ⊂ Ai and Ai∩∪k

j=1,j 6=iCj = ∅. Furthermore,
it is easily seen that, if we put

Gi = {x ∈ Ai : Ψ(x) < ρ} ,

we have
Gi = Ci .
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Clearly, Ci contains at least one member of C, and hence, by assumption,
int(dom(Φ)) ∩ Ci 6= ∅. This implies that dom(Φ) ∩ Gi 6= ∅. Taken into account
that, by assumption, infCi Φ is finite, put

µi = inf
x∈dom(Φ)∩Gi

Φ(x)− infCi Φ
ρ−Ψ(x)

.

Let λ′ > 0 be such that Ψ + λΦ is sequentially lower semicontinuous for each
λ ∈]0, λ′]. Fix µ > max{µi,

1
λ′ }. Then, there exists y ∈ dom(Φ) ∩Gi such that

µρ > µΨ(y) + Φ(y)− inf
Ci

Φ .

Moreover, since Ci is sequentially compact, there exists x∗i ∈ dom(Φ) ∩ Ci such

Φ(x∗i ) + µΨ(x∗i ) ≤ Φ(x) + µΨ(x)

for all x ∈ Ci. We claim that x∗i ∈ Gi. Arguing by contradiction, assume that
Ψ(x∗i ) ≥ ρ. We then have

Φ(x∗i ) + µΨ(x∗i ) ≥ Φ(x∗i ) + µρ > Φ(x∗i ) + Φ(y) + µΨ(y)− inf
Ci

Φ ≥ Φ(y) + µΨ(y)

which is absurd. Now, let i vary. Put µ∗ = max{µ1, ..., µk,
1
λ′ }. Clearly, each set

Gi is τΨ-open, and hence each x∗i is a τΨ-local minimum of Φ + µΨ for all µ > µ∗.
Consequently, the points x∗1, ..., x

∗
k satisfy the conclusion, taking λ∗ = 1

µ∗ , and the
proof is complete. ¤

The next result provides a reasonable way to check the key assumption of Theo-
rem 1.

Proposition 1. Let X be a Hausdorff topological space and Ψ : X →]−∞,+∞] a
sequentially lower semicontinuous function. Assume that there is r > infX Ψ such
that the set Ψ−1(]−∞, r[) is compact and first-countable. Moreover, assume that
the set of all global minima of Ψ has at least k connected components.

Then, there exists ρ∗ ∈] infX Ψ, r] such that, for each ρ ∈] infX Ψ, ρ∗], the set
Ψ−1(]−∞, ρ[) has at least k connected components.

Proof. Arguing by contradiction, assume that there is a decreasing sequence {ρn}
in ] infX Ψ, r[, coverging to infX Ψ, such that for each n ∈ N, the set Ψ−1(−∞, ρn[)
has at most k − 1 connected components. Clearly, we have

Ψ−1(inf
X

Ψ) =
∞⋂

n=1

Ψ−1(]−∞, ρn[) .

Reasoning as in the proof of Thoerem 1, we find k open and pairwise disjoint
subsets of X, Ω1, ...,Ωk, such that Ωi ∩ Ψ−1(infX Ψ) 6= ∅ for all i = 1, ..., k and
Ψ−1(infX Ψ) ⊆ ⋃k

i=1 Ωi. Then, for each n ∈ N, the set Ψ−1(]−∞, ρn[) cannot
be contained in

⋃k
i=1 Ωi, since, otherwise, it would have at least k connected com-

ponents. So,
{
Ψ−1(]−∞, ρn[) ∩ (X \ ⋃k

i=1 Ωi)
}

is a non-increasing sequence of
non-empty closed subsets of a compact one, and hence

⋂∞
n=1 Ψ−1(]−∞, ρn[)∩ (X \⋃k

i=1 Ωi) 6= ∅ which is absurd. ¤
So, putting Theorem 1 and Proposition 1 together, we clearly get



160 BIAGIO RICCERI

Theorem 2. Let (X, τ) be a Hausdorff topological space and Φ : X → R, Ψ :
X →] −∞,+∞] two functions. Assume that there is r > infX Ψ such that the set
Ψ−1(]−∞, r[) is compact and first-countable. Moreover, suppose that the function
Φ is bounded below in Ψ−1(]−∞, r[) and that the function Ψ + λΦ is sequentially
lower semicontinuous for each λ ≥ 0 small enough. Finally, assume that the set of
all global minima of Ψ has at least k connected components.

Then, there exists λ∗ > 0 such that, for each λ ∈]0, λ∗[, the function Ψ + λΦ has
at least k τΨ-local minima lying in Ψ−1(]−∞, r[).

Arguing by contradiction, the use of Theorems 1 and 2 gives the following

Theorem 3. Let (X, τ) be a Hausdorff topological space and Ψ : X →]−∞,+∞] a
sequentially lower semicontinuous function such that, for some r > infX Ψ, the set
Ψ−1(]−∞, r[) is compact and first-countable.

Suppose that there are a function Φ : X → R, bounded below in Ψ−1(]−∞, r[),
and a sequence {µn} in R+ converging to 0 such that, for each λ > 0 small enough,
the function Ψ + λΦ is sequentially lower semicontinuous, and, for each n ∈ N, the
function Ψ + µnΦ has at most k τΨ-local minima lying in Ψ−1(]−∞, r[).

Then, for every ρ ∈] infX Ψ, r], the sets Ψ−1(]−∞, ρ[) and Ψ−1(infX Ψ) have
at most k connected components. So, in particular, these sets are connected when
k = 1.

Remark 1. When k = 1, Theorem 3 ensures that, for every ρ ∈] infX Ψ, r[, the set
Ψ−1(]−∞, ρ]) is connected. This follows from the equality

Ψ−1(]−∞, ρ]) =
⋂

ρ<s<r

Ψ−1(]−∞, s[)

and from the fact that, for every s ∈] infX Ψ, r], the set Ψ−1(]−∞, s[) is connected
and compact.

An interesting consequence of Theorem 3 is the following two local minima result.

Theorem 4. Let (X, τ) be a Hausdorff topological space, and Φ : X → R, Ψ :
X →] − ∞,+∞] two functions. Assume that there is r > infX Ψ such that the
set Ψ−1(]−∞, r[) is compact and first-countable. Moreover, assume that there is a
strict local minimum of Ψ, say x0, such that infX Ψ < Ψ(x0) < r. Finally, suppose
that the function Φ is bounded below in Ψ−1(]−∞, r[) and that the function Ψ+λΦ
is sequentially lower semicontinuous for each λ ≥ 0 small enough.

Then, there exists λ∗ > 0 such that, for each λ ∈]0, λ∗[, the function Ψ + λΦ has
at least two τΨ-local minima lying in Ψ−1(]−∞, r[).

Proof. Arguing by contradiction, assume that the conclusion does not hold. Then,
by Theorem 3 and Remark 1, the set Ψ−1(]−∞,Ψ(x0)]) is connected. But this set
contains x0 as an isolated point (since x0 is a strict local minimum of Ψ) and does
not reduce to it (since infX Ψ < Ψ(x0)), against connectedness. ¤

With the aim to apply them to nonlinear differential equations, we now establish
some consequences of the previous general results in the setting of reflexive and
separable real Banach spaces.
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For a set A in a Banach space, we denote by (A)w its closure in the weak topol-
ogy. We say that A is weakly connected if it is connected in the weak topology.
The weakly connected components of A are its connected components in the weak
topology.

Theorem 5. Let X be a sequentially weakly closed subset of a reflexive and separable
real Banach space E, and Φ : X → R, Ψ : X →]−∞,+∞] two functionals. Assume
that there is ρ > infX Ψ such that the set (Ψ−1(]−∞, ρ[))w is bounded and has at
least k weakly connected components. Moreover, suppose that the functional Φ is
bounded below in (Ψ−1(]−∞, ρ[))w and that the functional Ψ + λΦ is sequentially
weakly lower semicontinuous for each λ > 0 small enough.

Then, there exists λ∗ > 0 such that, for each λ ∈]0, λ∗[, the functional Ψ + λΦ
has at least k τΨ-local minima lying in Ψ−1(]−∞, ρ[), where τ is the relative weak
topology of X.

Proof. Apply Theorem 1, τ just being the relative weak topology. In particular,
observe that, since E is reflexive and separable, the weak closure of any bounded
set is weakly compact and metrizable (and so first-countable). ¤

Analogously, from Theorem 2, we get

Theorem 6. Let X be a sequentially weakly closed subset of a reflexive and separable
real Banach space E, and Φ : X → R, Ψ : X →]−∞,+∞] two functionals. Assume
that there is ρ > infX Ψ such that the set Ψ−1(] − ∞, ρ[) is bounded. Moreover,
suppose that the functional Φ is bounded below in (Ψ−1(]−∞, ρ[))w and that the
functional Ψ+λΦ is sequentially weakly lower semicontinuous for each λ ≥ 0 small
enough. Finally, assume that the set Ψ−1(infX Ψ) has at least k weakly connected
components.

Then, the conclusion of Theorem 5 holds.

Arguing by contradiction, from Theorems 5 and 6 we then get

Theorem 7. Let X be a sequentially weakly closed subset of a reflexive and sep-
arable real Banach space, and Ψ : X →] − ∞,+∞] a sequentially weakly lower
semicontinuous functional such that, for some r > infX Ψ, the set Ψ−1(]−∞, r[) is
bounded.

Suppose that there are a functional Φ : X → R, bounded below in
(Ψ−1(]−∞, r[))w, and a sequence {µn} in R+ converging to 0 such that, for each
λ > 0 small enough, the functional Ψ + λΦ is sequentially weakly lower semicontin-
uous, and, for each n ∈ N, the functional Ψ + µnΦ has at most k τΨ-local minima
lying in Ψ−1(]−∞, r[), where τ is relative weak topology of X.

Then, for every ρ ∈] infX Ψ, r], the sets Ψ−1(]−∞, ρ[) and Ψ−1(infX Ψ) have
at most k weakly connected components. So, in particular, these sets are weakly
connected when k = 1.

The next result is an application of Theorems 5 and 6 to critical point theory.
If J is a Gâteaux differentiable functional on a Banach space X, the critical points
of J are the zeros of its derivative, J ′. Moreover, J is said to satisfy the Palais-
Smale condition if each sequence {xn} in X such that supn∈N |J(xn)| < +∞ and
limn→+∞ ‖J ′(xn)‖X∗ = 0 admits a strongly converging subsequence.
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Theorem 8. In addition to the assumptions of either Theorem 5 or Theorem 6,
suppose that X = E, that the functionals Ψ,Φ : X → R are continuously Gâteaux
differentiable, and that k ≥ 2.

Then, there exists λ∗ > 0 such that, for each λ ∈]0, λ∗[ for which the functional
Ψ + λΦ satisfies the Palais-Smale condition, the same functional has at least k + 1
critical points, k of which are lying in Ψ−1(]−∞, ρ[).

Proof. By either Theorem 5 or Theorem 6, there exists λ∗ > 0 such that, for each λ ∈
]0, λ∗[, the functional Ψ+λΦ has at least k τΨ-local minima lying in Ψ−1(]−∞, ρ[),
where τ is the weak topology of X. Note that Ψ, being C1, is (norm) continuous.
Consequently, the topology τΨ is weaker than the strong topology, and so the above
mentioned τΨ-local minima of Ψ + λΦ are local minima of this functional in the
strong topology. Now, assuming that Ψ + λΦ satisfies the Palais-Smale condition,
the conclusion follows from Theorem (1.ter) of [17]. ¤

From Theorem 8, arguing by contradiction, we then obtain the following

Theorem 9. Let X be a reflexive and separable real Banach space and Ψ : X → R
a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional such that, for some r > infX Ψ, the set Ψ−1(] −∞, r[) is bounded. Let
k ∈ N with k ≥ 2.

Suppose that there are a continuously Gâteaux differentiable functional Φ : X →
R, which is bounded below in (Ψ−1(]−∞, r[))w, and a sequence {µn} in R+ con-
verging to 0 such that the functional Ψ + λΦ is sequentially weakly lower semicon-
tinuous for each λ > 0 small enough and, for each n ∈ N, the functional Ψ + µnΦ
satisfies the Palais-Smale condition and has at most k critical points in X.

Then, for every ρ ∈] infX Ψ, r], the sets (Ψ−1(]−∞, ρ[))w and Ψ−1(infX Ψ) have
at most k− 1 weakly connected components. So, in particular, these sets are weakly
connected when k = 2.

Remark 2. When k = 2, Theorem 9 ensures that, for every ρ ∈] infX Ψ, r[, the set
Ψ−1(]−∞, ρ]) is weakly connected (see Remark 1).

Here is an application of Theorem 4.

Theorem 10. Let X be a uniformly convex and separable real Banach space, g :
[0,+∞[→ R a strictly increasing continuous function, and J : X → R a sequentially
weakly lower semicontinuous functional. For every x ∈ X, put

Ψ(x) = g(‖x‖) + J(x) .

Assume that the functional Ψ is coercive and has a strict, not global, local minimum,
say x0.

Then, for every r > Ψ(x0) and every functional Φ : X → R which is bounded
below in (Ψ−1(]−∞, r[))w and such that Ψ + λΦ is sequentially weakly lower semi-
continuous for each λ > 0 small enough, there exists λ∗ > 0 such that, for each λ ∈
]0, λ∗[, the functional Ψ+λΦ has at least two τΨ-local minima lying in Ψ−1(]−∞, r[),
where τ is the weak topology of X.

Proof. From Theorem 1 of [21], it follows that x0 is a τ -strict local minimum of Ψ.
More precisely, the statement of the above quoted result deals with local minima,
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but exactly the same proof shows that the same is true for strict local minima. Now,
the conclusion follows from Theorem 4, taking as τ just the weak topology. ¤

We conclude this section with an application of Theorem 7 in the setting of
Hilbert spaces.

Theorem 11. Let X be a separable real Hilbert space and J : X → R a continuous,
Gâteaux differentiable, and sequentially weakly upper semicontinuous functional.
For every x ∈ X, put

Ψ(x) =
1
2
‖x‖2 − J(x) .

Assume that, for some r > infX Ψ, the set Ψ−1(] −∞, r[) is bounded. Moreover,
suppose that the restriction of J ′ to Ψ−1(]−∞, r[) is nonexpansive.

Then, for every ρ ∈] infX Ψ, r[, the sets Ψ−1(] − ∞, ρ]) and Ψ−1(infX Ψ) are
weakly connected.

Proof. Let us apply Theorem 7 taking as {µn} any sequence in ]0, 1[ coverging to
zero, and Φ(x) = 1

2‖x‖2. Thus, Φ and Ψ are two continuous, Gâteaux differentiable
and sequentially weakly lower semicontinuous functionals, and for each n ∈ N,
Ψ + µnΦ admits at most one τΨ-local minimum in Ψ−1(] − ∞, r[). This follows
from the fact that the strong topology is stronger than τΨ and that the retriction of

1
1+µn

J ′ to Ψ−1(]−∞, r[) is a contraction, and so the equation Ψ′(x) + µnΦ′(x) = 0
has at most one solution in Ψ−1(] −∞, r[). Hence, the hypotheses of Theorem 9
are satisfied, and the conclusion follows from it. ¤

The following proposition is an useful complement to both Theorems 9 and 11.

Proposition 2. Let X be a real Hilbert space and J : X → R a continuously
Gâteaux differentiable functional whose derivative is compact. For every x ∈ X,
put

Ψ(x) =
1
2
‖x‖2 − J(x) .

Assume that, for some r > infX Ψ, the set Ψ−1(]−∞, r[) is bounded.
Then, the set Ψ−1(infX Ψ) is compact.

Proof. The functional Ψ is Gâteaux differentiable and its critical points are exactly
the fixed points of J ′. Let B be a closed ball in X containing Ψ−1(] −∞, r[). Let
{xn} be a sequence of fixed points of J ′ lying in B. Since this sequence is bounded
and J ′ is compact, there is a subsequence {xnk

} such that J ′(xnk
) converges to some

z ∈ B. Clearly, by continuity, z is a fixed point of J ′. So, the set {x ∈ B : J ′(x) = x}
is compact. Of course, it contains Ψ−1(infX Ψ) which is closed since Ψ is continuous,
and the conclusion follows. ¤

Remark 3. Note that when we can apply Theorem 7 with k = 1 to a functional
Ψ as in Proposition 2, then the set Ψ−1(infX Ψ) is connected. This follows from
the fact in any compact subset of a Banach space the relative strong and weak
topologies coincide. This remark, in particular, applies to Theorem 9 (when k = 2)
and to Theorem 11.
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3. Applications

In this section, we intend to present some applications of Theorems 9 and 11
to the energy functional related to the Dirichlet problem for a semilinear elliptic
equation.

In the sequel, Ω will denote an open connected subset of Rh with sufficiently
smooth boundary.

Put X = W 1,2
0 (Ω), and consider it with the usual norm ‖u‖ = (

∫
Ω |∇u(x)|2dx)

1
2 .

If h ≥ 2, we denote by A the class of all Carathéodory functions f : Ω ×R → R
such that

sup
(x,ξ)∈Ω×R

|f(x, ξ)|
1 + |ξ|q < +∞ ,

where 0 < q < h+2
h−2 if h > 2 and 0 < q < +∞ if h = 2. While, when h = 1, we

denote by A the class of all Carathéodory functions f : Ω×R → R such that, for
each r > 0, the function x → sup|ξ|≤r |f(x, ξ)| belongs to L1(Ω).

For each f ∈ A and u ∈ X, we put

Jf (u) =
∫

Ω

(∫ u(x)

0
f(x, ξ)dξ

)
dx

and

Ψf (u) =
1
2

∫

Ω
|∇u(x)|2dx− Jf (u) .

So, by classical results, the functional Jf is (well defined and) continuously
Gâteaux differentiable on X, its derivative is compact, and one has

Ψ′
f (u)(v) =

∫

Ω
∇u(x)∇v(x)dx−

∫

Ω
f(x, u(x))v(x)dx

for all u, v ∈ X. Hence, the critical points of Ψf in X are exactly the weak solutions
of the Dirichlet problem {

−∆u = f(x, u) in Ω
u|∂Ω = 0.

Recall also that if Ψf is coercive, then it satisfies the Palais-Smale condition (see,
for instance, Example 38.25 of [29]). We denote by λ1 the first eigenvalue of the

problem {
−∆u = λu in Ω
u|∂Ω = 0.

Reacall that ‖u‖L2(Ω) ≤ λ
− 1

2
1 ‖u‖ for all u ∈ X. So, if

lim sup
|ξ|→+∞

supx∈Ω

∫ ξ
0 f(x, t)dt

ξ2
<

λ1

2

then the functional Ψf is coercive in X.
Let us state the following
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Theorem 12. Let f : Ω×R → R be a Carathéodory function belonging to A such
that

sup
(ξ,η)∈R2, ξ 6=η

supx∈Ω |f(x, ξ)− f(x, η)|
|ξ − η| ≤ λ1

and

lim sup
|ξ|→+∞

supx∈Ω

∫ ξ
0 f(x, t)dt

ξ2
<

λ1

2
.

Then, the sublevel sets of Ψf are weakly connected, and the set of all global minima
of Ψf is compact and connected.

Proof. Fix u, v, w ∈ X, with ‖w‖ = 1. We have

|J ′f (u)(w)− J ′f (v)(w)| ≤
∫

Ω
|f(x, u(x))− f(x, v(x))||w(x)|dx

≤ λ1‖u− v‖L2(Ω)‖w‖L2(Ω) ≤ ‖u− v‖ ,

and hence
‖J ′f (u)− J ′f (v)‖ ≤ ‖u− v‖ ,

that is J ′ is nonexpansive in X. Moreover, Ψf is coercive in X. Thus, the functionals
Jf and Ψf satisfy all the assumptions of Theorem 11, and the conclusion follows
from it, taking also into account Proposition 2 and Remark 3. ¤

Let us segnalize an open question related to Theorem 12.

Problem 1. Is there some f satisfying the assumptions of Theorem 12 for which
the set of all global minima of the functional Ψf is neither a singleton nor a segment
? In particular, what happens when f(ξ) = λ1(sin ξ + a), with a > 0 ? Or when
f(ξ) = λ1dist(ξ,A), where A ⊂ R ?

We now establish

Theorem 13. Let g : Ω × [0,+∞[→ R be a locally Hölder continuous function
belonging to A such that

lim sup
ξ→+∞

supx∈Ω g(x, ξ)
ξ

< λ1 .

Assume also that, for each x ∈ Ω, g(x, 0) = 0 and the function ξ → g(x,ξ)
ξ is

non-increasing in ]0,+∞[.
Let f : Ω×R → R be the function defined by

f(x, ξ) =

{
g(x, ξ) if (x, ξ) ∈ Ω× [0,+∞[
0 otherwise.

Then, the conclusion of Theorem 12 holds.

Proof. For each λ > 0, (x, ξ) ∈ Ω×R, put

α(ξ) = −(ξ + |ξ|)ξ
and

hλ(x, ξ) = f(x, ξ) + λα(ξ) .
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Clearly, hλ ∈ A. Since hλ is locally Hölder continuous in Ω×R, the critical points of
the functional Ψhλ

are continuous in Ω. Thus, since hλ is zero in Ω×]−∞, 0], they
are non-negative in Ω. Now, observe that, for each x ∈ Ω, the function ξ → hλ(x,ξ)

ξ

is (strictly) decreasing in ]0,+∞[. So, by Theorem 1 of [7], the functional Ψhλ

has at most one non-zero crtitical point in X. Consequently, it has at most two
critical points (note that 0 is one of them). Moreover, Ψhλ

satisfies the Palais-Smale
condition, as it is coercive (as well as Ψf ). Thus, since Ψhλ

= Ψf − λJα, all the
assumptions of Theorem 9 are satisfied, and the conclusion follows from it. ¤

The final result is as follows

Theorem 14. Let h = 1, Ω =]0, 1[, and let g ∈ C2([0,+∞[) be a convex and non-
negative function, with g(0) = 0, such that that supξ>0

g(ξ)
ξ < π2 . Let f : R → R

be the function defined by

f(ξ) =

{
g(ξ) if ξ ≥ 0
0 if ξ < 0.

Then, the sublevel sets of Ψf are weakly connected.

Proof. Note that, in the present case, one has λ1 = π2. Let 0 < λ < π2−supξ>0
g(ξ)

ξ .
Define α : R → R by

α(ξ) =

{
ξ − log(ξ + 1) if ξ ≥ 0
0 if ξ < 0.

Then, the functional Ψf −λJα satisfies the Palais-Smale condition (it is coercive as
well as Ψf ) and its crtical points are non-negative. Clearly, f + λα ∈ C2([0,+∞[),
f(0) + λα(0) = f ′(0) + λα′(0) = 0 and f ′′(ξ) + λα′′(ξ) > 0 for all ξ > 0. Then, by
Example 2 of [19], the functional Ψf − λJα has at most two critical points in X.
The conclusion now follows from Theorem 9. ¤

We conclude with the following problem.

Problem 2. Is there a function g satisfying the hypotheses of Theorem 14 for which
the functional Ψf has a non-absolute local minimum?
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