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UNILATERAL ELLIPTIC PROBLEMS
IN L' WITH NATURAL GROWTH TERMS

A. ELMAHI AND D. MESKINE

ABSTRACT. We prove an existence result for solutions of nonlinear elliptic uni-
lateral problems having natural growth terms and L' data.

1. INTRODUCTION

Let © be an open bounded subset of RN, N > 2. Let f € L'(Q2). Consider the
following nonlinear Dirichlet problem:
A(u) + g(z,u, Vu) = f (1.1)

where A(u) = —div(a(x,u, Vu)) is a Leray-Lions operator defined on Wol’p(Q), with
1 < p < 00, and where g is a nonlinearity having “natural growth” with respect to
|Vu| (of order p) and which satisfies the classical “sign condition” with respect to
u.

In the variational case (i.e., where f € W=7 (Q)), it is well known that the
following obstacle problems corresponding to (1.1) have at least one solution (see
[2], and [9] for f =0)):

u € Ky, g(z,u, Vu) € L(Q), g(z,u, Vu)u € L}(Q)

(A(u),u —v) + / g(x,u, Vu)(u — v)dz < / fu—v)dz (1.2)
QVveK¢mL°°(Q), !
where Ky is a convex subset in Wy P(Q) defined by
Ky={veW,?(Q):v>¢ae inQ}

where ¢ is a measurable function with ¢+ € Wy? () N L®(Q).
In the general case where f belongs to L'(2), formulation (1.2) is not adequat

since the term f(u — v)dr may not have a meaning. Many results have been
Q

obtained in this case, for example see [10], [11] if g = 0 and [1] if ¢ = g(z,u, Vu)
satisfying further the following coercivity condition:

lg(z, 5,Q)| = BICIP for [s] = . (1.3)

The purpose of the paper is to prove an existence result for unilateral problems
corresponding to (1.1) without assuming the coercivity condition (1.3). For the
equation case the reader is referred to [2]-[7] and [12]. In the case where 1 < p <
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2 — + we cannot expect the solutions to be in W(Q) but in Tol’p(Q), see [3] and
Remark 2.3 below. The case p > N is easier since the solutions turn out to be
continuous.

2. THE MAIN RESULT

Let © be an open bounded subset of IRY, N > 2 and let 2 — % <p<N.
Let A(u) = —div(a(x,u, Vu)) be a Leray-Lions operator defined on Wol’p(Q) into

its dual where a : Q x IR x RN — IRY is a Carathéodory function satisfying for a.e.
r€Qand forall (,¢' € RN, (C#(¢)andall s € R:

la(z, s, Q)] < k(@) + kilslP " + ko[ (2.1)
(CL(.%',S,C)—CL(.%',S,C/))(C—CI) >0 (22)
a(z, s,C)¢ = alc]? (2.3)

with a > 0, k1 > 0, ks > Oand k € Lp/(Q), where p’ denotes the conjugate
exponent of p.

Furthermore, let g : Q x IR x RN — IR be a Carathéodory function such that for
a.e. x € Q and for all s € IR and all ¢ € RY:

g(z,5,()s >0 (2.4)
9(, 5, ) < b(]s|)(c(z) + [¢[P) (2.5)

where b : IR, — IR is a continuous and nondecreasing function and ¢(x) is a given
nonnegative function in L'(Q), ¢(z) > 0.
Let
Ky={ve Wol’p(Q) :v > ae. in Q}
where 9 : Q — IR is a measurable function on €2 such that
P e WyP(Q) N L=(Q). (2.6)
Finally, we assume that
feLy(Q). (2.7)
We define, for s and k in IR, k > 0, T;(s) = max(—k, min(k, s)).
We shall prove the following existence theorem.
Theorem 2.1. Under assumptions (2.1)-(2.7) there exists at least one solution of
the following obstacle problem
(u > a.e. in §)
ue Wi (Q),V1<qg< %, g(x,u, Vu) € L' (),
Ti(u) € Wy P(Q),Vk > 0
/ a(x,u, Vu)VTi(u —v)dx + / g(x,u, Vu)Ti(u — v)dx (Py)
Q Q

Te(u —v)d
S/Qf k(u —v)dr
Vo € Ky 1 L®(Q).
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Remark 2.1 We obtain the same result if we assume only that the sign condition
(2.4) is verified at infinity, or if the data is the form f — div(F), with f € L*(Q)
and F € (L ()N

Remark 2.2 If we assume that a satisfies a(z, s, () = a(x, () and

o, ¢) = ala, ¢ == al¢ = P ifp>2
Nie — ¢ =P
- — >
[a(z, ¢) — alz, O)][¢ = (] @ I
where o > 0 and h € LP(§2). We can replace in (Py), Ky N L>®(Q) by K.

Proof of Remark 2.2. Let v € K. By taking T,(v),n > ||t)™||s, as test function
in (Py), we obtain

ifp<?2

/ a(x, Vu)VTi(u — Ty (v))dx + / g(x,u, Vu)Ti(u — Ty, (v))dx
Q Q

/ka w—Ty())dz (2.8)
then if p > 2, we have
/]VTk w = T (0)|Pda
/Q( o, Vi) — a(, VTn(0)))V Tt — Ty (v))da:

/ ’ 1/pl 1/p
<20.k+2 (Hkug, + kY HWH]’;) (/ VT (u — Tn(v))!pdx>
Q
which implies
/ VT4(u — To(v))Pdz < Cioy

where C},, is a constant which can depend on £ and v but not on n.
If p < 2, we have

/VT;.C u—Ty(v))[Pdx
!VTk(u—Tn(v))l” - u v (2—p)p/2 X
g/(() (h(z) + |Vl + |[VT(v)]) d

) + [Vu| + [V (v)])E PP/
and by using Hoélder’s inequality, we obtain

[ 9T - T,
[ / |VTk<u—T<v>>|2 dwr”
= Lo (h(@) + [Vul + VL ()P

x [ / (h() + V] + VT (v) P d
{lu=Tn(v)|<k}

] (2-p)/2

p/2
< | [ (a9 - o, VL, 0) Vi - Tn<v>>dxj
x 3P B]p + [V Te(w = Ta(0)) [ + 20 Vellp] "
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which gives, thanks to (2.8) and Hélder’s inequality again,
/ IVTi(u — T, (v))|Pdx
Q

< [2Ck -+ 21RIE + B 70 )5) 7 |V Ti(u - Tn<v>>upl”/ 2
x 3PP (|| h|b + (VT (u — To(0))[[f + 2] Vo5 777
and so that
/ VT (u— T, (v))Pde < Ckp, n.
We deduce that, in all c:ses,
VTi(u — Tp(v)) = VT (u — v) weakly in (LP(Q))Y

(for a subsequence).
We will now to pass to the limit in (2.8). Remark that,

/Qa(q:, Vu)VTi(u— Ty(v))dx
= /Q(a(x, Vu) —a(x, VT,,(v)))VTi(u — T,(v))dx
—I—/ a(x, VT, (v))VTp(u — Ty(v))dx
Q

then, by using Fatou’s Lemma in the first term of the right hand side of the last
equality and Lebesgue’s Theorem in the second, we obtain

liminf/ a(x, Vu)VTi(u — Ty (v))dx
Q

n—-+00
> / a(x, Vu)VTi(u — v)dx.
Q
Finally, we apply Lebesgue’s Theorem on other terms in (2.8) to complete the
proof. [

First, we give some technical lemmas which we use throughout the paper.

Lemma 2.1. If (z,) is a sequence of real numbers then

| lim sup z,,| < lim sup |x,|.
n——+00 n—-+oo

Proof. Since —|z,| < x,, < |z,| then
lim sup z,, < limsup |z,,|.
n—-4o0o n—-+4o00o

On the other hand

lim inf(—|z,|) < liminf z,, < limsup z,
n—+o0o n—+o0o n—-+00

wich gives
— limsup |z, | < limsup z,.
n—-+0o00 n—-+o00
Consequently
|limsup x,,| < limsup |z,|.
n—+o0o n—+o0o



UNILATERAL ELLIPTIC PROBLEMS IN L! WITH NATURAL GROWTH TERMS 101

Lemma 2.2. Let (fum) and (gnm) be two sequences in L*(Q) such that
Z) ‘fn,m| S gn,mv fOT 0’” n7m
it) lm fom=fm and lim f, = f ae.
n—+o0o m—+00

1) lm  gpm = gm and ml_lgrloo gm = g a.e. with g and g, belong to L'(Q)

n—-+4oo

iv) limsuplimsup/gn’mdm:/gd:r.
Q Q

m—-+00 n—-+oo
Then
feLYQ) and lim limsup/ | fom — fldz = 0.
m— Q

X n—+4o0

By the last lemma, we deduce that

lim hmsup/fn’mda::/fdx.
Q

M—+00 n_4oo

Proof. Put hym = gnm + 9 — | fum — f| > 0. Fatou’s Lemma applied on n implies
that

n—-+00 n—-+00

/lim inf hy mdr < lim inf/ hnmdz,
Q Q

which gives

/(gm+g|fmf|)dx§liminf [/ |fn’mf|dx+/gd$+/gn7md:v]
Q n—+00 Q Q Q

< —limsup/ \fmm—fdm—i—/gdx—i-hmsup/ Gn,md.
Q

n——4o00 n—-4o00

Using Fatou’s Lemma again, but now on m, we obtain
/ liminf(gm + g — | fm — f|)dx
Q m—too

< liminf [— lim sup/ | from — fldx + / gdx + lim sup/ gmmda:]
Q

m—-+00 n—+o00 n—-—+00

< —limsuplimsup/ | from — fldx + / gdx + lim sup hmsup/ In,mdx,
Q Q

m—-+00 n—-+0oo m—-+00 n—-+o0o

which yields
2/ gdr < 2/ gda:—limsuplimsup/ | fa,m — fldz
Q Q Q

m—-+00 n—-+oo

hence
lim sup lim Sup/ | frm — fldz <0
Q

m—400 n—+00

and finally
lim limsup/ | frm — fldz = 0.
Q

M—+00 n4oo
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Proof of Theorem 2.1.
Stepl: A priori estimates.
Consider the approximate unilateral problems:

un € Ky, g(x,un, Vuy,) € L'(2), g(x, un, Vuy)u, € L1(Q)
(A(un), up —v) + / 9(x, Up, Vuy ) (u, —v)de < / fn(up —v)dz (2.9)
Q Q
Vo € Ky N L*(Q),

where f,, is a sequence of smooth functions which converges strongly to f in L'(€2).
By Theorem 3.1 of [2], there exists at least one solution u,, of (2.9).
Thanks to Remark 2.2 of [1], we have:

(A(un), Tp(un, — v)) + /Qg(x, Uy V)T (uy, — v)de,

< / JnTk(un —v)dx (Pn)
Q
Yo € Ky, Wk > 0.

Taking v = 1" as test function in (P,) gives
/ a(z, un, Vun ) VT (uy, —1)dz + / 9(x, Un, Vup) Tk (uy, — 71 )dz
Q Q

< [ fuTiun — 07 )da
Q
and by using the fact that g(z, un, Vu,) Tk (un, — 1) > 0 we obtain
/ a(x, up, Vg )V (u, —pT)de < Ck.
{lun—v+|<k}

As in [1], we deduce then by Young’s inequality

/ a(x, up, Vup)Vu, < Cl—i—a/ |Vup|Pdx
{Jun—rt| <k} 2 J{jun—vt|<k}

where C} is a constant which doesn’t depend on n (but which can depend on

ke, e(a),
k‘l, ]€2, a).
Thus by using (2.3) we obtain

a/ |Vu,[Pde < Ch.
2 J{lun—wt <k}

Finally, we have for any h > 0

/ |Vu,[Pde < / |Vu,|[Pde < Cp (2.10)
{lunl<h} {lun—9F|<h+[¢F oo}

where C}, is a constant which depends on h but not on n.
The choice of the test function v = Ty, (uy), h > || ||ee With k& =1 in (P,) yields

/ |Vug|Pde < C
{(h<|un|<h+1}
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and / lg(z, up, Vuy,)|de < C.
{lun|>h+1}

Consequently, as in [5], for every ¢ such that 1 < g < %
/ \Vuy,|%dx < C (2.11)
Q
where Cj is a constant which doesn’t depend on n (but which depends on ¢ and
meas(€)).
On the other hand, it is easy to see that

/ |9(z, un, Vup)|de < C. (2.12)
Q

Thanks to (2.11) there exists some u € Wol’q(Q) such that
Un — u weakly in W, 7(Q)
and by (2.10)
Th(un) — Ti(u) weakly in W,P(2), Vk > 0.

Step2: Almost everywhere convergence of the gradients.
Fix g such that 1 < ¢ < g. Consider

I, = /{[a(m,un, V) — a(, ty, Vu)]V (u, —u)}ode
Q

where 0 <0 < 1. Let k > [ ]|co- The use of the test function Ty (u) in (P,) gives
for any n > 0:

(Aup), Ty(un — Tp(w))) + /Qg(x, Un, Vuy) Ty (un — Ti(u))d

< /Q faTy(tn — Ty(w))da. (2.13)

Thanks to (2.12) and (2.13), we prove , as in [8] (see Remark 2.6), that I, converges
to zero, and so that

Vu, — Vu a.e. in Q. (2.14)
Step3: Passage to the limit.
Let now k such that k > |[¢7 || and let v = (%)2 and let ¢(s) = sexp(ys?).
It is well known that

, Vs € IR. (2.15)

Q
N |

¢ (s) — ——=[o(s)| =

Consider now the function h,,, m > 0 defined by:
1 if (| <m
hm(t) =< —Lsgn(t)+2 if m <|[t]<2m
0 if [t >2m.
Let U = Un — Nhim (un)P(2n), with 7 = exp(—4vk?), 2, = Tg(un) — Ti(u).
The use of vy, as test function in (P,) gives, for all h > 0,
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(A(ttn ), T (o (1) $(20))) + /Q 9 s V1) T (0o (1) b (2) )

< /Q P (b (110 (20 i,

and by taking h > 2k we obtain

(A1), B (1) (z0)) + /

g(w,un,Vun)hm(un)qﬁ(zn)d:U</fnhm(un)qﬁ(zn)daﬁ.
Q Q

which gives

/Q (s U, Vi) [V T (1) — VT4 (1) oy (1) (2)
+/ a(:c,un,Vun)Vunh;n(unW(zn)dx (2.16)
+ /Q (s, Vit (1) b2 )t < / ol (1) (20
Q Q

2

Denote by €l,(n), €2,(n), ..., various sequences of real numbers which converge to zero

when n tends to infinity with any fixed value of m. Since g(x, Uy, V) A (tun ) d(2,)
> 0 on the subset {z € Q : |u,(z)| > k}, we deduce from (2.15) that

/Q (st Vi) [V T (1) — VT4 ()] o (1) (2l
—i—/ﬂa(x,un,Vun)Vunhm(un)qb(zn)dw

+/ 9(x, Upy Vg ) o, (Un) P( 20 )dz < / Jrahm(up)o(2n)dx = e}n(n)
{lun|<k} Q

(2.17)
The first term of the last inequality can be written as:
/ CL(JJ, Un, Vun)[VTk(un) - VTk(u)]hm(un)¢l(zn)dx
Q
- /{ ot VU T ) VT )6 o) (219
un|<k

- a(z, un, Vun)VTk(u)hm(un)gb,(zn)dfn.
{lun|>k}

It’s easy to observe that we have
/ a(x, Uy, Vun)VTk(u)hm(un)gb, (zn)dx
{[un|>k}
< i | (e, T ). 9T () VT 1 1yl

where Cj, = ¢ (2k). The right hand side of the last inequality tends to 0 as n
tends to infinity. Indeed, the sequence (a(z, Tom (ur), VIom (uy)))rn is bounded in
(LY ()N while VT ()X {jun >k} tends to 0 strongly in (LP(€2))".
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For the first term of the right hand side of (2.17), one can write

/ (@, tn, V) [V Tk () — VT (1)) Ao (tn) @ (2 )da
{Jun| <k}

= [ ot Tiun). VTi(00)) = (e, Tin). Vi)
X VT (tn) — VT ()] han (1) ¢ (2)d
—|—/ﬂa(a:,Tk(un),VTk(u))[VTk(un) — VT3 ()] o () § (20)dz.

(2.19)

The second term of the right hand side of (2.19) tends to 0 since
a(z, T (un), VTi(u)) — a(z, Ti(u), VTi(w)) strongly in (L ()"

and

!

(VT (un) — VT3 (u)] hn (tn)d (2n) — O weakly in (LP())V.

Consequently, from (2.17) we have

/Qa(:z:,un, V) [V (tn) — VT (W) (un) @ (20)da

= /Q[a(a:,Tk(un),VTk(un)) —a(z, T (up), VTi(u))] (2.20)

X [VTy(un) — VTk(u)]hm(un)gb,(Zn)dx
+em(n).

On the other hand
2¢(2k)

m

/a(m,un,Vun)Vunh/m(un)gb(zn)da: <
Q

/ a(z, up, V) Vuydz
{m<jun|<2m}

and by using Ty, (un),m > ||9 7 ||oo, as test function in (P,), we obtain

/a(:U,un,Vun)Vunh;n(unW(zn)da:
Q

<202) [ |fplde. (220

{lun|zm}

If we denote by J, ,, the third term of the left hand side of (2.17), one has

[Jnm| < / b(k)(c() + |Vun["hm (un))|¢(zn)|de
{lun|<k}

< b(k) /Q o(2)|6(2n)
¢ 20 /Qau,n(un),v:rk<un>>VTk<un>hm<un>|¢<zn>rdx
< en(n) + b(ak) [a(x, Ti(un), VI (un)) — a(x, Tp(un), VT (u))]

IV T (ttn) — VT (1)) o (10 620z
(2.22)
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indeed, we have

/Q a(x, T (un), VI (un)) VT () i (un) | 0(2,) | dx

= /Q[a(x,Tk(un),VTk(un)) —a(x, Ti(up), VIi(u))]
X[V (un) = VT (u)]hm (un)|¢(2n)|dx
+/Qa(x,Tk(un),VTk(un))VTk(u)hm(un)|¢>(zn)|da:

—l—/Qa(:c,Tk(un),VTk(u))[VTk(un) — VT (w)|hm(un)|d(2n)|d.

It’s easy to see that the second and third terms of the right hand side of the last
equality tend to 0 as n tends to infinity, since (a(z, Tk (un), VTk(uy)))n is bounded
in (L7 ()N,
VT (w) han (1) |0(20)| — 0 strongly in (LP(Q))V
and
a(z, T (upn), VI (uw)) — a(x, Tp(u), VI (u)) strongly in (Lp/(Q))N,
(VT (tn) — VT ()] (1) |0(20)| — 0 weakly in (LP(Q))Y.
Combining (2.20), (2.21) and (2.22) we obtain

/Q [0, T (tn), VTi(tn)) — e, Te(tin), VT ()]

X [V T3 (tn) — V()| (wn) (8 (20) — "2[(20)] ) e
< e (n) + 26(2K) / fuldz

Un|>m}

which implies, by using (2.15)

[a(z, Ty (un), VI (un)) — al@, Ti(un), VIi(u))]
X[VTi(un) — VTi(w)]hm (up)dz
< 26k (n) + 46(2K) fulda

{lun|zm}

by passing to the limit sup over n, one has

s | a(e. Tu(un). V() — ala, Ti(u), VTL(w)
n—-+4oo 9]
X[VTi(un) = V()] hm(uy)dx

< 46(2k) |fldx
{lul>m}

pass again to the limit sup but now over m we obtain

lim sup limsup/ﬂ[a(x,Tk(un),VTk(un)) —a(z, T (un), VT (u))]

m—-+o00 n—-+o0o

X [VTi(un) — VT ()] b (uy)dx < 0.
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Finally, we claim that

lim sup lim sup / a(x, Ti(un), VI (un)) VI (wn) b (uy ) dz
Q

m—-+00 n—-+0oo

(2.23)

) a(x, Tk (u), VI (uw) VT (u)dz.

Indeed, we have

lim  lim a(z, T (upn), VI (u)[VTk(un) — VT (w)] b (uyn)dz = 0

m——+00 Nn—-+00 Q
and

hI_I’_l liI_’I_l a(l‘) Ty (un)> VT (un))VTk (u)hm (un)dx
m—-+00 N——1+00 Q
_ /Q a(z, Ty (u), VT (1)) V Ty (u) da.

Let now v € Ky, N L>(§2). Then, by taking w, — hy, (un)T)(un, — v) as test function
in (P,) we obtain

(A(tn), T (o () T (1t — v))) -+ /Q (2 s V) T (o (1) T (100 — )t
< /Q FuTi (o (1) T (10 — ) )
which gives
(A(tn), o () T (s — )+ / 2ty Vi) (1) T (1 — v)

/ Frhm (un) T (up, — v)dx

IN

and so that
/ 9(, Uy Vg ) b (un) Ti (uy, — v)dz
Q
< —/ a(x, Un, V) VT (ty — )by (uy)dx
Q

a(x, up, Vun)Vunh (un) Tk (up, — v)dx

/fn m(Un) Ty (uy, — v)dx

then by passing to the limit sup on n

lim sup/ g(:c, U, vun)hm(un)Tk(un - v)dx
Q

n—-+o0o

< —liminf/ a(z, Up, Vg ) VT (uy — 0) by (uy)dx

n—-+0o

+ lim supT/ a(z, U, Vun)Vunh;n(un)Tk(un —v)dx
Q

n—-+o0o

-l—/ﬂfhm(u)Tk(u—v)da:
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and thus

lim sup limsup/ 9(x, Up, Vg ), (un) T (uy, — v)dx
Q

m—-+00 n—-+0oo

< - lim}_nf lim}_nf/ a(x, Un, V) VT (uy — )by (uy)dx

/ (2.24)
+ lim sup lim supp[/ a(x, Up, Vi) Vuph,, (un)Ti(u, — v)dx
Q

m—-+00 n—-+00

—I-/Qka(u —v)dz.
On the one hand
/Qa(x,un, Vun)VTi(tuy — v)hp (uy)dx
= /Q[a(x, Up, VUp) — (T, U, V)| VT (Un — V) (uy)dz
+/Qa(x,Tk+||U||oo(un),Vv)VTk(un — V) hp (up)d,

thanks to Fatou’s Lemma on n in the first term of the right hand side, and the fact
that

a(z, Tk+||v||oo(un)a Vv) — al(z, Tk-‘rHvHoo(u)v V) strongly in (Lp/(Q))N

and
VT (un — v) — VT (u — v) weakly in (LP(Q))N

in the second term, we obtain

liminf/ a(x, Upn, Vn) VI (un — )by (uy)dx
Q

n—-+00

> /Q[a(x, u, Vu) — a(x, u, Vo)|VTi(u — v)hy(u)dx
+ /Qa(x,Tk_H|v||oo(u),VU)VTk(u — V) hp (u)dx

in which we can use Fatou’s Lemma on m in the first term of the right hand side
and Lebesgue’s Theorem in the second one to obtain

lim inf lim inf/ a(x, Up, Vg ) VT (tuy — 0)hy (uy)dx
m—+00 n—+00 o

(2.25)
> /Qa(a:,u,Vu)VTk(u—v)da:.

On the other hand we have

/ a(x, Uy, V) Vunh,, () T (tn — v)da
Q

< 2E a(z, Up, V) Vuydz
M J{m<|un|<2m}
< 2% fulda

{lun|=m}
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which implies

lim sup / a(x, U, V) Vunh,, (un) T (tn, — v)dz| < 2k:/ |f|dx
n—+oo |J/Q {lul2m}

and so that
limsuplimsup | [ a(z, tn, Vun)Vunh,, (un) T (wn — v)dz| = 0. (2.26)
m—-+o00 n—-+oo 0

About the left hand side of (2.24), we argue as follows: Let [ > 0 one can write

/ 9(, U, V) T (un — v) by (uy)dz — / g(x,u, Vu)Ti(u — v)dzx
Q Q

< A 19(2, uny V) T (tn — ) (Un) X jun <ty — 9(T, %, V) Ti(u — 0) X qjuj<iy|dT
196t 90T = 0 )X 1
+ /Q l9(z,u, Vu) Ty (u — v) X fjuj>0y [dx
< /Q |9(, Uny Vun) T (un — 0) P (n) X {jun <ty — 9(T, 1y V) Ti(u — 0) X fjuj<iy dz
+ k/Q |9(, Uny Vun) [ X {jun| >34T + k/ﬂ lg(z, u, Vu)| X {ju>n do.
The use of test function Tj(uy,),l > |1 ||eo as test function in (P,) gives

/Q’9(1’7Umvun)‘X{un|>l+1}d$S/ | fnldz.

{lun |21}

Let € > 0 be arbitrary, then there exists [ = I(e) > 1 such that:

€
/|g($,un,Vun)!X{|unzz}d$§ =, n,
A 2%

and by using Fatou’s Lemma

€
/Q|9($,u, V)X {(ju=3dr < o7

= 2k
Then
/ 9(, un, V) Tk (un — v)hpy (uy)dz — / g(z,u, Vu)Ti(u — v)dz
Q Q
< /Q 19(, uny Vun ) Ti(un — 0) A (Un) X {ju, <ty — 9(, 0y V) Ti(u — 0) X o)<ty dz
+5+5.
However,

|9(, tn, V) Ty (un — U)hm(un)X{\unlél}‘
< RO [t + 2o, T ), T30, VT )

by setting
frm = 9(x, U, Vun ) Ty (uy — U)hm(un)X{lun|§l}
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and
= 1) o) + . i) Vi) V0 o)

it’s obvious, in view of (2.14) and (2.23), that our sequences satisfy the hypotheses
of Lemma 2.2 and thus

limsuplimsup/ |9(2, n, Vun) T (un — 0) i (Un) X |, <1}
m——+o00 n—+oo J)

g(z,u, Vu)Tp(u — U)X{|u‘§l}|dx =0
and finally, we have for all € > 0

lim sup lim sup
m—-+00 n—-+00

/ 9(x, Uy V) T (U, — v) Ay (up ) dz
Q

—/ g(z,u, Vu)Ti(u — v)dx| < €
Q

which yields in vertue of Lemma 2.1

lim sup lim sup/ g(x, Up, V)i (un, — ) (up)dz = / g(x,u, Vu)Ti(u — v)dx.
m—+00 n—+00 JQ Q
(2.27)

Combining (2.25), (2.26) and (2.27), the inequality (2.24) becomes

/Qg(ac, u, Vu) Ty (u — v)dx < —/ a(z,u, Vu)VTi(u — v)dx + /Q fTi(u—v)dx

Q
and so that
/ a(x,u, Vu)VTi(u — v)dr + / g(x,u, Vu)Ti(u — v)dr < / fTe(u —v)de.
Q Q Q

Remark 2.3 In the case where p €]1,2 — %], the solutions of (Py) belong only to
T,"
o7 (Q) where

Tol’p(Q) ={v: Q — IR measurable , Tj(v) € Wol’p(Q), VE > 0}.
Indeed, into account of the fact that

/ IVTi(un — Thy (up))|Pdx < C'k, Vk > 0 and for some hg > ||t [0
Q

then as in [3], and in view of (2.10), there exists a measurable function u, finite
almost everywhere, such that
Th(uy) = Th(u) weakly in Wol’p(Q), Vh >0

and by using weak lower semicontinuity in (2.10)

/ ]VTh(u)]pd:c S Ch.
Q

N(p—-1).

Thanks to Lemma 4.2 of [3], we have for any ¢ < § = —y—:

/]V — Thy (up))|%dx < meas(Q2) —i—qC/ 71744t < oo
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and so that

/ |Vuy,|%dx < C
Q

and similarly

/ |Vu|lde < C.
Q

On the other hand, we have

Vu—VTi(u) = V(u— Ti(u))

since for any n > 0,7, (u — Ti(u)) € W&’p(Q) (see the definition of the gradient
given in [3]). So that, we can argue as in the previous proof of Theorem 2.1.
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