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A TWO POINT BOUNDARY VALUE PROBLEM FOR A CLASS
OF DIFFERENTIAL INCLUSIONS

TZANKO DONCHEV AND MARC QUINCAMPOIX

Abstract. A two point boundary value problem for differential inclusions with
relaxed one sided Lipschitz right-hand side in Banach spaces with uniformly con-
vex duals are studied. We use successive approximations to obtain nonemptiness
and compactness of the solution set as well as its continuous dependence from
the initial conditions and the right-hand side. The relaxation theorem is also
proved.

1. Introduction

This paper is about the following boundary value problem:

ẋ(t) ∈ F (t, x, y), x(0) = x0,(1)
ẏ(t) ∈ G(t, x, y), y(1) = y0.(2)

Here F : I ×E1 ×E2 −→ CC(E1), G : I ×E1 ×E2 −→ CC(E2), where E1 and E2

are Banach spaces with uniformly convex duals, t ∈ I = [0, 1] and CC(E) denotes
the set of all nonempty convex compact subsets of E (E is E1 or E2).

Such kind of systems appear for example when one obtains necessary conditions
for optimal control of Pontryagin maximum principle type (see for example [14]
p.219-221). Two point boundary value problems in case of single valued F and G
are intensively studied. We note among others [15] and [18]. In the last one some
iteration procedure is used. For more general two point boundary value problems
see [7] §11, where the result of [15] is extended to differential inclusions in Banach
spaces. We refer to [1], [7] and [12] where the initial point problems for differential
inclusions are comprehensive studied. The boundary value problems are studied in
a large number of papers. In case of Rn, we refer to [12] ch. III.2 and the references
given there. In this book (see also [3]) the relaxation theorem is proved. The
(existence) results (see [2], [16]), however, are obtained either in a finite dimensional
case, or under some compactness type conditions ([4]). Notice also [6], where the
two point boundary value problem is studied with Baire category. The problem (1)
– (2), however is not included in the problems considered in the literature presented
above.

Our result says that, under suitable Relaxed One-Sided Lipschitz (ROSL) condi-
tion described below the problem (1) – (2) has at least one absolutely continuous
solution. Furthermore the set of all solutions is (pre)compact. We will use the suc-
cessive approximations. In case of initial value problems [8, 9] this method does not
work under ROSL condition and time discretization is used. In our case, however,
time discretization does not work, but successive approximations do.
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The solution set of (1) – (2) consists of all absolutely continuous (AC) func-
tions (x, y) satisfying (1) for a.e. t ∈ I. Denote by J(z) = {l ∈ E∗ : |l| =
|z|; 〈

l, z
〉

= |z|2} the duality mapping. Notice that since E1 and E2 have uni-
formly convex duals the duality mapping is single valued and uniformly continuous
on the bounded sets in both spaces. It is easy to see that J(−z) = −J(z). In-
deed | − J(z)| = |z| and

〈−J(z),−z
〉

= |z|2. For A, B closed bounded define
DH(A,B) = max{max

a∈A
min
b∈B

|a − b|,max
b∈B

min
a∈A

|a − b|} – the Hausdorff distance and

dist (a,A) = min
b∈A

|a − b|. A multimap is said to be continuous, when it is continu-

ous with respect to the Hausdorff distance. In a Banach space X we will also use
[x, y]+ = lim

h→0+
h−1{|x + hy| − |x|} (see [13] p.7). The map [x, ·]+ is nonexpansive

and [·, y]+ is upper semicontinuous as a real valued function. Furthermore, if the
dual space X ∗ is uniformly convex then |x|[x, y]+ =

〈
J(x), y

〉
. By ext A we denote

the closure of the set of all extreme points of A. Denote ||f(·)||C = max
t∈I

|f(t)| (this

notation is used for real valued and for vector valued functions).

Definition 1. The multifunction F from I × E into E is said to be upper semi
continuous (USC) at (t, x), when to ε > 0 there exists δ > 0 such that F (s, y) ⊂
F (t, x)+εU (U is the closed unit ball in E) for every (s, y) with |s− t|+ |x−y| < δ.
F (·, ·) is said to be almost USC when for every ε > 0 there exists Iε ⊂ I with
Lebesgue measure meas (I\Iε) < ε such that F is USC restricted to Iε×E. Almost
continuous multimaps are defined analogously.

The multimap F is said to be lower semi continuous (LSC) at (t, x) when for
every f ∈ F (t, x) and every (ti, xi) → (t, x) there exist fi ∈ F (ti, xi) such that
fi → f . Almost LSC maps are defined analogously.

Given M > 0, define ΓM = {(t, x) ∈ I × E : |x| ≤ Mt}. The single valued
map f : I × E → E is said to be ΓM continuous, when (tn − t, xn − x) ∈ ΓM

and (tn, xn) → (t, x) implies f(tn, xn) → f(t, x). Almost ΓM continuous maps are
defined analogously.

We refer to [7] for all concepts used in the paper but not discussed in details.
We need the following assumptions:

A1. The multimaps F and G are bounded on the bounded sets and almost USC.
A2. There exist constants A,B, C, D (with B,C not negative) such that

∀(x1, y1), (x2, y2) ∈ E1 × E2 and a.a. t ∈ I the following two inequalities
hold:

i) σ(J(x1 − x2), F (t, x1, y1))− σ(J(x1 − x2), F (t, x2, y2)) ≤ A|x1 − x2|2 +
B|x1 − x2||y1 − y2|.

ii) σ(J(y1−y2), G(t, x1, y1))−σ(J(y1−y2), G(t, x2, y2)) ≥ −C|x1−x2||y1−
y2| −D|y1 − y2|2.

Here σ(l, A) = sup
a∈A

〈
l, a

〉
is the support function of the set A.

The paper consists of two sections and an introduction. In the next section the
main results are presented. In the last one the main results are proved.
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2. Main Theorem

In this section we formulate our main result Theorem 1 and its corollary, the
relaxation theorem (Theorem 2). Firstly we will change variable in (2). We let
τ = 1− t. Obviously in this case ẏ(t) = −ẏ(τ). The system (1) – (2) becomes:

ẋ(t) ∈ F (t, x, y), x(0) = x0,(3)
ẏ(τ) ∈ H(τ, x, y), y(0) = y0.(4)

Where we have denoted H(τ, x, y) = −G(1− τ, x, y). The following lemma is then
true.

Lemma 1. H(·, ·, ·) satisfies the following condition:

σ(J(y1 − y2),H(τ, x1, y1))− σ(J(y1 − y2),H(τ, x2, y2))

≤ C|x1 − x2||y1 − y2|+ D|y1 − y2|2

∀(x1, y1), (x2, y2) ∈ E1 × E2 and a.a. t ∈ I.

The proof is trivial and is omitted.
Given nonnegative constant B and C we define the real-valued functions r(·, ·)

and s(·, ·) as follows:

r(A,D) =





BC

A

[eA+D − 1
A + D

− eD − 1
D

]
for A > 0, D > 0

BC

A

[1− eD

−D
− 1− eD−A

A−D

]
for A > 0, D < 0

BC

−A

[eD − 1
D

− 1− eA−D

D −A

]
for A < 0, D > 0, A + D 6= 0

BC

D2

[
eD − 1−D

]
for A < 0, D = −A

BC

−A

[1− eD

−D
− 1− eA+D

−A−D

]
for A < 0, D < 0

BC

D2

[
DeD − eD + 1

]
for A = 0, D 6= 0

BC

A2

[
eA − 1−A

]
for A 6= 0, D = 0

BC

2
for A = D = 0
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s(A,D) =





BC

D

[eA+D − 1
A + D

− eA − 1
A

]
for A > 0, D > 0

BC

D

[1− eA

−A
− 1− eA−D

D −A

]
for A < 0, D > 0

BC

−D

[eA − 1
A

− 1− eD−A

A−D

]
for A > 0, D < 0, A + D 6= 0

BC

A2

[
eA − 1−A

]
for A > 0, D = −A

BC

−D

[1− eA

−A
− 1− eA+D

−A−D

]
for A < 0, D < 0

BC

A2

[
AeA − eA + 1

]
for A 6= 0, D = 0

BC

D2

[
eD − 1−D

]
for A = 0, D 6= 0

BC

2
for A = D = 0

The main result in the paper is the following:

Theorem 1. Let F, G be convex compact valued multimaps, satisfying A1, A2. If

(5) l(A,D) := max{r(A,D), s(A,D)} = q < 1,

then the system (1) has a solution. Furthermore the solution set is C(I, E1 × E2)
compact and depends continuously on the initial condition and on the right-hand
side.

As a corollary we will prove the relaxation theorem, which extends the corre-
sponding results of [3] and [12].

Theorem 2. Let F (·, ·, ·) and G(·, ·, ·) be almost continuous. Under the conditions
of Theorem 1 the solution set of

ẋ(t) ∈ ext F (t, x, y), x(0) = x0,(6)
ẏ(t) ∈ ext G(t, x, y), y(1) = y0.(7)

is nonempty and dense in the solution set of (1)–(2).

Remark 1. The condition A2 is a kind of so called Relaxed One Sided Lipschitz
(ROSL) condition. This condition is introduced from the first author under different
name. We recall that the multifunction R : I × E → CC(E) is said to be ROSL
when there exists a constant L such that: σ(J(x−y), F (t, x))−σ(J(x−y), F (t, y)) ≤
y|x− y|2 for every x, y ∈ E. With the help of this condition in [8, 9] the differential
inclusion

(8) ẋ(t) ∈ R(t, x(t), x(0) = x0, t ∈ [0, 1]

is comprehensively studied. We refer to [10, 11, 14] where many examples of differ-
ential inclusions, where this condition is useful are given.

The condition A2 i) is for example fulfilled when F (t, x, ·) is Lipschitz with a
constant B and F (t, ·, y) is ROSL with a constant A. When we study the differential
inclusion (8)for t ∈ [−1, 0] then the opposite inequality ≥ in the definition of ROSL
must be used.
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Of course the conditions A1, A2 are not sufficient for the existence of solu-
tions. We employed l(A,D) = q < 1. It is easy to see that lim

A→−∞
l(A,D) =

lim
D→−∞

l(A,D) = 0. If BC = 0 then the system (1)–(2) has a solution.

In the next section we present the proofs of Theorem 1 and Theorem 2.
Now we present two examples of systems where Theorem 1 and Theorem 2 are

useful.

Example 1. This example is a modification of the well known counter example of
Plis (see [17] for instance).

Consider the following system:

ẋ(t) ∈ {−1− |y|, 1 + |y|}, x(0) = 0
ẏ(t) = 3

√
y + |x|, y(1) = 0.

It is easy to see that A2 holds with A = D = 0 and B = C = 1. Therefore all the
assumptions of Theorem 2 hold.

Consider the initial valued problem:

ẋ(t) ∈ {−1− |y|, 1 + |y|}, x(0) = 0
ẏ(t) = 3

√
y + |x|, y(0) = 0.(9)

It is easy to see that y(t) ≥
(2t

3

)3/2
for every solution of (9). However, y(t) ≡ 0 is

a solution of the convexified problem.

This example can be modified in case of Hilbert space.

Example 2. Let E1 ≡ E2 ≡ l2 (the space of all sequences {kn}∞n=1 with
∞∑

n=1

|kn|2 <

∞). Let ~e ∈ l2 be with positive coordinates.
Consider the following system:

ẋ(t) ∈ {−~e− ‖y‖ , ~e + ‖y‖}, x(0) = 0
ẏ(t) = f(y) + ‖x‖ , y(1) = 0.(10)

here

f(y) =





0 for y = 0,
y

3

√
‖y‖2

for y 6= 0.

It is easy to see that A2 holds with A = D = 0 and B = C = 1. Therefore all the
assumptions of Theorems 1 and 2 hold. If we replace the second equation of (10)
by

· · ·
ẏi+1(t) =

3
√

yi+1

i + 1
+ |xi|+ yi

i + 1
, yi+1(1) = 0

· · ·
then Theorems 1 and 2 still hold. However, for the corresponding initial value
problem (yi+1(1) replaced by yi+1(0)) Theorem 2 does not hold.
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3. Proof of the main results

In this section Theorem 1 and Theorem 2 are proved. The proofs will be given
in case of positive A,D, because if some of them is nonpositive one has to do only
obvious modifications.

Proof of Theorem 1. We let x0(·) ≡ x0 (the initial function). If we replace x(·) in
(4) by x0(·), then we are able to obtain a solution y0(·) of (4) thanks to theorem 1
of [8]. If we replace y in (3) by y0(·), then due to Theorem 1 of [8] there exists a
solution x1(·) of (3). The rest of the proof will be done in three steps.

Step 1. Construction of the initial approximate solutions.
Consider the differential inclusion:

ẏ(τ) ∈ H(τ, x1(τ), y), y(0) = y0.

We will find a solution y1(·) of the last system satisfying the inequality:
d

dτ
|y1(τ)− y0(τ)| ≤ C|x1(τ)− x0(τ)|+ D|y1(τ)− y0(τ)|.

To this end define the multifunction:

G1(τ, u) = {v ∈ H(τ, x1(τ), u) :
〈
J(y0(τ)− u), ẏ0(τ)− v

〉 ≤
C|x1(τ)− x0(τ)||y0(τ)− u|+ |y0(τ)− u|2}.

Due to A2 ii) the set valued map G1(·, ·) has nonempty values. Furthermore it is
not difficult to show that G1(·, ·) is almost USC with convex compact values. Since
G1(τ, u) ⊂ H(τ, x1(τ), u) one has that the differential inclusion:

ż(τ) ∈ G1(τ, z(τ)), z(0) = y0

admits a solution y1(·) thanks to theorem 1 of [8]. This solution satisfies

(11)
〈
J(y0(τ)− y1(τ)), ẏ0(τ)− ẏ1(τ)

〉 ≤
C|x1(τ)− x0(τ)||y0(τ)− y1(τ))|+ D|y0(τ)− y1(τ))|2.

The function |y0(τ)− y1(τ))| is absolutely continuous (AC) and hence a.e. differen-

tiable. Due to (11) we have
1
2

d

dt
|y0(τ)−y1(τ))|2 ≤ C|x1(τ)−x0(τ)||y0(τ)−y1(τ))|+

D|y0(τ)−y1(τ))|2. If |y0(τ)−y1(τ))| > 0 then we can divide the inequality by it. If
|y0(τ)−y1(τ))| = 0 on a set with positive (Lebesgue) measure say ν then the points
of density of this set have measure also ν and on every such a point if the derivative
of |y0(τ) − y1(τ))| exists, then it is 0. Therefore denoting |y0(τ) − y1(τ))| = r1(τ)
and |x1(τ)− x0(τ)| = s1(τ) one has that

ṙ1(τ) ≤ Cs1(τ) + Dr1(τ), r1(0) = 0.

Now we are looking for x2(·) satisfying
d

dt
|x1(t)− x2(t)| ≤ A|x1(t)− x2(t)|+ B|y1(t)− y0(t)|.

The construction is the same as above, i.e. consider the multimap:

F2(t, z) = {w ∈ F (t, z, y1(t)) :
〈
J(x1(t)− z), ẋ1(t)− w

〉 ≤
A|x1(t)− z|2 + B|y0(t)− y1(t)||x1(t)− z|}
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one has that the multimap F2(·, ·) is almost USC with nonempty convex compact
values. Hence the differential inclusion:

ż(t) ∈ F2(t, z(t)), z(0) = x0

has a solution x2(·) which satisfies the required inequality above. Denote |x1(t) −
x2(t)| = s2(t). We have ṡ2(t) ≤ As2(t) + Br1(t), s2(0) = 0.

Step 2. The existence of solutions and continuous dependence.
We go on by induction. Let the sequences {xi(·)}n

i=1 and {yi(·)}n
i=1 be already

defined. Recalling that τ = 1 − t and arguing as above we find functions xn+1(·)
and yn+1(·) satisfying

ẋn+1(t) ∈ F (t, xn+1(t), yn(t)), xn+1(0) = x0

ẏn+1(τ) ∈ F (τ, xn+1(τ), yn+1(τ)), yn+1(0) = y0

to be such that:
d

dt
|xn(t)− xn+1(t)| ≤ A|xn(t)− xn+1(t)|+ B|yn−1(t)− yn(t)|

d

dτ
|yn(τ)− yn+1(τ)| ≤ C|xn(τ)− xn+1(τ)|+ D|yn+1(τ)− yn(τ)|.

Consequently |xn(t)−xn+1(t)| ≤ sn+1(t) and |yn(τ)− yn+1(τ)| ≤ rn+1(τ), where

ṡn+1(t) ≤ Asn+1(t) + Brn(t), sn+1(0) = 0(12)
ṙn+1(τ) ≤ Csn+1(τ) + Drn+1(τ), rn+1(0) = 0(13)

Now we will estimate ||sn+1(·)||C and ‖rn+1(·)‖C . From (13) we obtain:

rn+1(τ) ≤ eDτ

∫ τ

0
e−DαCsn+1(α) dα = CeDτ

∫ τ

0
e−Dαsn+1(α) dα

and sn+1(t) ≤ BeAt

∫ t

0
e−Aβrn(β) dβ.

If we let r̄n = ||rn(·)||C , then sn+1(t) ≤ r̄nBeAt

∫ t

0
e−Aτ dτ = r̄nBeAt 1− e−At

A
.

Consequently

rn+1(τ) ≤ r̄n
BC

A
eDτ

∫ τ

0
e−Dt[eA(1−t) − 1] dt

= r̄n
BC

A
eDτ

[ ∫ τ

0
eA−(A+D)t dt−

∫ τ

0
e−Dt dt

]

= r̄n
BC

A
eDτ

(
eA 1− e−(A+D)τ

A + D
− 1− e−Dτ

D

)
.

After some technical and straightforward computations we get:

||rn+1(·)||C < r̄n
BC

A

[eA+D − 1
A + D

− eD − 1
D

]
,

i.e. r̄n+1 < r̄nr(A,D) ≤ qr̄n. Analogously, using (12), we get

||sn+1(·)||C < s̄n
BC

D

[eA+D − 1
A + D

− eA − 1
A

]
,
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i.e. s̄n+1 < s̄ns(A,D) ≤ qs̄n. Therefore
∞∑

n=1

r̄n + s̄n < ∞. Thus there exist limits

lim
n→∞xn(t) = x(t) and lim

n→∞ yn(t) = y(t) with respect to C(I, E1) (C(I, E2)) topol-

ogy. Since F, G are bounded on the bounded sets one has (passing to subsequence
if necessary) that ẏk(·) ⇀ ẏ(·) and ẋk(·) ⇀ ẋ(·) in L1–weak topology. By virtue
of Mazur’s lemma taking into account that F and G are almost USC one has that
(x(·), y(·)) is a solution of (3)–(4). That is the system (1)–(2) has a solution.

It remains to show that the solution set depends continuously on the initial
conditions and on the right-hand sides. To this end we will show that for every
solution (x(·), y(·)) of (1) there exists a solution (x1(·), y1(·)) of

ẋ(t) ∈ F (t, x, y), x(0) = x1,

ẏ(τ) ∈ H(τ, x, y), y(0) = y1.

which is sufficiently close to (x(·), y(·)), when (x1, y1) is near enough to (x0, y0). We
will follow the arguments above. Define

F1(t, u, v) = {w ∈ F (t, u, v) :
〈
J(x(t)− u), ẋ(t)− v

〉

≤ A|x(t)− u|2 + B|x(t)− u||y(t)− v|}.
It is standard to prove, proceeding as above, that F1 is almost USC with nonempty
convex compact values. Let x1(·) be a solution of

ẋ(t) ∈ F1(t, x, y), x(0) = x1,

Thus |x(t) − x1(t)| ≤ s1(t), where ṡ1(t) ≤ As1(t), s(0) = |x1 − x0| = s0. Hence
s1(t) ≤ eAts0. Analogously define

H1(τ, u, v)

= {z ∈ F (τ, u, v) :
〈
J(y(τ)−u), ẏ(τ)−w

〉 ≤ D|y(τ)−v|2+D|x(τ)−u||y(τ)−v|}.
The multifunction H1 is almost USC with convex compact values. Let y1(·) be a
solution of

ẏ(τ) ∈ H1(τ, x, y), y(0) = y1.

Consequently, |y(τ)− y1(τ)| ≤ r1(τ), where

ṙ1(τ) ≤ Cs1(τ) + Dr1(τ), r1(0) = |y1 − y0| = r0,

recall that τ = 1− t. Therefore

r1(τ) ≤ eDτr0 + eDτ

∫ τ

0
Cs1(t)e−Dt dt ≤ eDτr0 + CeDτ

∫ τ

0
e−DteA(1−t)s0 dt

≤ Cs0

A + D
eAeDτ (1− e−(D+A)τ ) + eDτr0 ≤ Cs0

A + D
(eD+A − 1) + eDr0.

Due to the assumptions of the theorem and using the construction above one can
obtain successively the sequences {xn(·)}∞n=1 and {yn(·)}∞n=1 such that denoting
s̄n+1 = |xn+1(t) − xn(t)|C and r̄n+1 = |yn+1(t) − yn(t)|C we will have s̄n+1 < qs̄n

and r̄n+1 < qr̄n. Consequently there exists a solution (x∞(·), y∞(·)) of the system

(3) - (4) such that |x∞(·) − x(·)|C ≤ s0

∞∑

n=0

qn =
s0

1− q
and |y∞(·) − y(·)|C ≤
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r0

∞∑

n=0

qn =
r0

1− q
. Therefore the solution set of 3) - 4) depends continuously on the

initial conditions.
Let now DH(F (t, x, y), F1(t, x, y)) ≤ ε and DH(H(τ, x, y),H1(τ, x, y)) ≤ ε for

every (t, x, y). Let also F1,H1 satisfy the assumptions A1 and A2. Arguing as
above for any solution (x(·), y(·)) of (1) we will find a solution (u(·), v(·)) of (1) with
F, H replaced by F1,H1, such that |u(t) − x(t)| ≤ s(t), |v(τ) − y(τ)| ≤ r(τ) such
that ṡ(t) ≤ As(t) + Br(t) + ε, s(0) = 0 and ṙ(τ) ≤ As(τ) + Br(τ) + ε, r(0) = 0.
We have to repeat the calculus above to complete the proof.

Step 3. The compactness of the solution set.
Let u(·) and v(·) be two different initial functions. Denote by R(u) and R(v)

the solution set of (4), when x(·) is replaced by u(·) or v(·) respectively. Using
the same fashion as in the previous steps one can show that DH(R(u), R(v)) ≤ M
(with respect to the Hausdorff distance in C(I, E2)), where m = max

τ∈[0,1]
r(τ) and

ṙ(τ) = C|u(τ) − v(τ)| + Dr(τ), r(0) = 0. Denote by S(R(u)) and S(R(v)) the
solution set of (3), where y(·) is replaced by R(u) or R(v) respectively. Analogously
DH(S(R(u)), S(R(v)) ≤ M , where M = maxt∈[0,1] s(t) and ṡ(t) = As(t) + Br(t),
s(1) = 0. Denote by Xn the solution set of (3)–(4) obtained in the n-th stage in Step
2. It is easy to see that DH(Xn, Xn+1) ≤ max{r(A,D), s(A,D)}. Consequently
there exists a C(I, E1×E2) compact set X = lim

n→∞Xn (with respect to the Hausdorff

distance in C(I, E1×E2)). Obviously X is a subset of the solution set of (1)–(2). Let
(x(·), y(·)) be a solution of (1)–(2). One can consider xn(t) ≡ x(t) and yn(τ) ≡ y(τ).
Consequently dist

(
(x(·), y(·)), Xn

)
≤ qn max{|x(·)−x0(·)|, |y(·)−y0(·)|}. Therefore

(x, y) ∈ X. ¤

Remark 2. Using the result of [9] one can prove similar result in case of arbitrary
Banach spaces when, however, F (·, ·, ·) and G(·, ·, ·) are almost continuous. Here〈
J(x(t)), ẋ(t)

〉
has to be replaced by [x(t), ẋ(t)]+, where [x, y]+ = lim

h 7→0+
h−1{|x +

hy| − |x|} (cf. [13] p. 7). Notice also that even for (single valued) differential
equations in first order the successive approximations do not necessarily converge
(see [13] §2 for instance).

Furthermore using more careful computations one can obtain better inequality
for the constants A,B, C, D. In fact If x0(t) = x0 one has that |x1(t)−x0(t)| ≤ Mt.
Using technical, but straightforward calculation one can prove for example:

If A = D = 1 then the problem (1) - (2) has a solution for BC ≤ 1. However, in
general case we have difficulties to obtain the exact estimations. So we hope that
the reader will be able to find better inequalities in the general case.

It is very important to notice that our estimations are valid only on the
interval [0, 1]. If we consider (1) – (2) on an interval [0, T ] one has to assume that
T 2BC ≤ max{r(A,D), s(A,D)} = q < 1.

Proof of Theorem 2. Due to corollary 6.2 of [7] the maps ext F (·, ·, ·) and G(·, ·, ·) are
almost LSC. Furthermore the solution set of (1) – (2) consists of M–Lipschitz func-
tions (with appropriate constant M). From theorem 2 of [5] we know that there exist
Γ2M+1 continuous selections f(t, x, y) ∈ ext F (t, x, y) and g(t, x, y) ∈ ext G(t, x, y).
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Let (xn(·), yn(·)) ∈ Xn be arbitrary. it is easy to see that {(xn(·), yn(·))}∞n=1

is C(I, E1 × E2) precompact set, i.e. passing to subsequences (xn(·), yn(·)) →
(x(·), y(·)) ∈ (X, Y ). If ẋn = f(t, xn, yn) and ẏn = g(t, xn−1, yn), then ẋ =
f(t, x, y) and ẏ = g(t, x, y) (cf. [7] ch. 6). Therefore the solution set of (6)–(7)
is nonempty. Furthermore for every almost LSC F̃ (t, x, y) ⊂ ext F (t, x, y) and
G̃(t, x, y) ⊂ G(t, x, , y) one has that the system

ẋ(t) ∈ F̃ (t, x, y), x(0) = x0,(14)

ẏ(t) ∈ G̃(t, x, y), y(1) = y0.(15)

has a solution. Let (x(·), y(·)) ∈ X (in accordance of the proof of Theorem 1 X is
the solution set of (1)– (2)). Fix ε > 0 and define

F̃ε(t, u, v)

= cl({w ∈ ext F (t, x, y) : [x(t)− u, ẋ(t)− w]+ < A|x(t)− u|+ B|y(t)− v|+ ε})
(where cl means the closure), and

G̃ε(t, u, v) = cl({z ∈ ext G(t, x, y) : [y(t)−v, ẏ(t)−z]+ < C|x(t)−u|+D|y(t)−v|+ε}.
Using standard arguments (cf. [9]) one can show that F̃ε and G̃ε are almost LSC
with nonempty compact values. Therefore the system:

ẋ(t) ∈ F̃ε(t, x, y), x(0) = x0,

ẏ(t) ∈ G̃ε(t, x, y), y(1) = y0

has a solution (x̃(·), ỹ(·)). Due to the definition of F̃ε and G̃ε we have |x(t)− x̃(t)| ≤
r(t) and |y(t)− ỹ(t)| ≤ s(t), where

ṙ(t) = Ar + Bs + ε, r(0) = 0,

ṡ(t) = Cr + Ds + ε, s(1) = 0.

It is easy to see that lim
ε→0

[
‖r(·)‖C + ||s(·)||C

]
= 0. The proof is therefore

complete. ¤
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A TWO POINT BOUNDARY VALUE PROBLEM 69

[5] A. Bressan and G. Colombo, Selections and representations of multifunctions in paracompact
spaces, Studia Math. 102 (1992), 209-216.

[6] F. De Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differ-
ential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303-313.

[7] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin 1992.
[8] T. Donchev, Semicontinuous differential inclusions, Rend. Sem. Mat. Univ. di Padova 101

(1999), 147-160.
[9] T. Donchev, Qualitative properties of a class differential inclusions, Glasnik Matematički
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