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ON A THEOREM OF ALEXANDROV

G. CARLIER

Abstract. We give an elementary variational proof of classical theorems of
Minkowski and Alexandrov on the existence and uniqueness, up to translations,
of a closed convex hypersurface with a given Gaussian curvature (as a function
of the exterior unit normal) or with a given surface function.

1. Introduction

1.1. The surface function of a convex body. Denoting by M+(Sn−1) the cone
of nonnegative Radon measures defined on the sphere Sn−1, we recall that any
convex compact set A of Rn with full dimension n (a convex body in the sequel) can
be associated with a nonnegative measure µA ∈M+(Sn−1) defined by:

(1) ∀ϕ ∈ C0(Sn−1),
∫

Sn−1

ϕ(y) dµA(y) =
∫

∂A
ϕ(νA(x)) dHn−1(x).

Here νA(x) denotes the unit outer vector at x ∈ ∂A, we recall that νA is uniquely
defined Hn−1-a.e. on ∂A. We shall, in the sequel, say that x ∈ ∂A is singular, if
the unit outer vector at x ∈ ∂A is not well defined i.e. x belongs to several distinct
supporting hyperplanes of A at x. Similarly x ∈ ∂A will be called regular if x is
not a singular point of ∂A. Note that, by definition, µA simply is the image of
Hn−1x∂A by the Gauss map of ∂A.

As a consequence of the definition (1) of µA we have µA(Sn−1) = Hn−1(∂A) and

(2)
∫

Sn−1

y dµA(y) = 0.

Moreover the fact that A has nonempty interior implies a certain nondegeneracy
of the measure µA i.e. there exists no hyperplane in which µA is supported, more
precisely:

(3)
∫

Sn−1

|(y0, y)|dµA(y) > 0, for any y0 ∈ Sn−1

For example, if A is a polyhedron, then µA =
∑

αiδνi , where νi is the unit outer
normal vector to the face i, and αi the corresponding surface area.

When A is a convex compact subset of Rn with nonempty interior, µA is called the
surface function or surface area measure of the closed convex hypersurface ∂A. The
notion of surface function, which essentially is an invention of Alexandrov around
1937, is a key tool to study curvature properties of convex bodies with a non smooth
boundary.

Remark 1. Note that the surface area can be defined similarly in the degener-
ate case dim A < n. In the following we will only consider convex bodies of full
dimension, which is of course without loss of generality.
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If the Gaussian curvature of the closed convex hypersurface ∂A is prescribed as
a positive continuous function K(.) of the unit exterior normal y then the surface
function is given, for every Borel subset B of Sn−1 by the formula:

(4) µA(B) =
∫

B

dy

K(y)

where dy denotes the Haar measure of Sn−1.
Let us remark that in the class of convex bodies, those (smooth) ones whose

Gaussian curvature can be expressed as a positive continuous function of the unit
exterior normal are exceptional (in the sense of Baire’s category) as the striking
results of Zamfirescu [15, 16] show.

1.2. Minkowski and Alexandrov’s theorems. The classical Minkowski problem
is the inverse problem of existence and uniqueness of a closed convex hypersurface
with prescribed Gaussian curvature expressed as a function of the exterior normal
unit vector. In 1937, Alexandrov has considered the following generalization of this
inverse problem : given a measure µ ∈ M+(Sn−1), can one find a convex closed
hypersurface ∂A such that µ = µA? Alexandrov proved that conditions (2) and (3)
appear as not only necessary but also as sufficient for the existence of such a convex
hypersurface ∂A, moreover A is unique up to translations.

Theorem 1 (Alexandrov). Let µ be some positive measure on Sn−1 which satisfies
∫

Sn−1

ydµ(y) = 0,

∫

Sn−1

|(y0, y)|dµ(y) > 0, for any y0 ∈ Sn−1

then there exists a convex body A, which is unique up to translation, for which µ is
its surface function : µ = µA.

In view of (4), this result appears as a generalization of an earlier theorem proved
by Minkowski in 1903 [9]:

Theorem 2 (Minkowski). Let K be a positive continuous function on Sn−1 satis-
fying: ∫

Sn−1

y

K(y)
dµ(y) = 0

then there exists a convex body A, which is unique up to translation, for which K(y)
is the Gaussian curvature at any point x ∈ ∂A with exterior unit normal y.

Theorems 1 and 2 are well-known : see the original articles of Minkowski [9],
Alexandrov [1], and for a more modern presentation, for instance, Bakelman’s book
[2]. The usual strategy for proving theorem 1 is to prove the result for convex
polyhedra (for convex polyhedra, i.e. when µ is a weighted sum of Dirac masses,
the theorem was proved by Minkowski himself, in the case n = 3, in 1897, see [10])
and then to use an approximation argument to prove Alexandrov’s theorem in its
generality.
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1.3. Variational characterizations: how and why? As a matter of fact, the
classical proof of theorem 1 for polyhedra and Minkowski’s original approach rely on
an optimization problem, for which the Euler-Lagrange equation exactly yields the
result. The purpose of the present article is firstly to answer the following natural
question: given µ which satisfies the assumptions of theorem 1, is there a simple
variational characterization of convex bodies A for which µ = µA? Secondly, can
one give an elementary and direct (i.e. not using approximation by polyhedra) proof
of theorem 1 using some extremum problem which generalizes that introduced by
Minkowski?

Some motivations for obtaining and emphasizing a variational characterization
are: investigation of numerical methods for solving Minkowski-Alexandrov inverse
problem as well as the study of some shape optimization problems subject to a
convexity constraint (see [4], [5]).

As far as I know, the known variational characterization of solutions of Minkowski-
Alexandrov problem actually uses theorem 1 and Minkowski’s first inequality for
convex bodies. This characterization reads as : if A is a convex solution of µA = µ
then, up to an homothety, A minimizes the functional:

L 7→
∫

Sn−1

sup
x∈L

(x · y) dµ(y)

under the condition vol(L) = 1 (see for instance the recent article of Gardner [8],
where connections with the Wulff equilibrium shape of crystals are mentioned).
The idea of the present work is to directly study a variational problem (not the one
mentioned above, but a kind of dual one) and to deduce from an elementary study
of this problem theorem 1 as well as a variational characterization.

In the following section, we introduce a variational problem related to Alexan-
drov’s problem. More precisely, we shall show that this problem admits a unique
(up to some normalizations) solution and that the Euler-Lagrange equation of this
problem is equivalent to solving µ = µA with A convex.

2. A variational problem related to Alexandrov-Minkowski’s
problem

Given a nonnegative Borel measure µ which satisfies (2) and (3), our goal is to
find some Alexandrov body associated with µ i.e. a convex body A such that µ = µA.

To that end, we consider the following maximization problem:

(5) sup
ϕ∈S

J(ϕ)

where we define:

(6) S := {ϕ ∈ C0(Sn−1,R) : ϕ ≥ 0,
∫

Sn−1

ϕdµ = 1}

(7) J(ϕ) := vol(A(ϕ))

and:
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(8) A(ϕ) := {x ∈ Rn : x · y ≤ ϕ(y), for all y ∈ Sn−1}
Let us first remark that the condition ϕ ≥ 0 is equivalent to 0 ∈ A(ϕ) which is

some normalization condition on A(ϕ). Secondly, note that J
1
n is concave (hence

J is quasiconcave) on S, indeed for (ϕ,ψ) ∈ S2 and t ∈ [0, 1], one obviously has
tA(ϕ) + (1− t)A(ψ) ⊂ A(tϕ + (1− t)ψ), hence Brunn-Minkowski inequality yields:

J1/n(tϕ + (1− t)ψ) ≥ tJ1/n(ϕ) + (1− t)J1/n(ψ)

and the inequality is strict unless A(ϕ) and A(ψ) are dilates or translates to each
other. Concerning Brunn-Minkowski inequality and its numerous applications, we
refer the reader to the books of Bakelman [2], Schneider [14] and to the recent
inspiring article of Gardner [8].

Finally, given ϕ ∈ S define σ the support function of A(ϕ):

σ(y) := sup
x∈A(ϕ)

x · y, for all y ∈ Sn−1

obviously one has 0 ≤ σ ≤ ϕ and, by Hahn-Banach’s theorem, A(ϕ) = A(σ). Let
us define then

(9) ϕ̃ :=
σ∫

Sn−1 σdµ
∈ S

we have J(ϕ̃) ≥ J(ϕ) and the inequality is strict unless ϕ = σ = ϕ̃ on the support
of µ. Therefore, if the supremum of (5) is attained at ϕ ∈ S one has ϕ = ϕ̃ on the
support of µ.

2.1. Existence. Given e ∈ Sn−1, we denote in the sequel by e++ the open half
space e++ := {x ∈ Rn : x · e > 0}.
Lemma 1. There exists R > 0 such that A(ϕ) ⊂ B(0, R) for all ϕ ∈ S.

Proof. Assume on the contrary that there exists a sequence (ϕk)k ∈ SN and xk ∈
Ak := A(ϕk) such that limk |xk| = +∞. Up to a subsequence, we may assume that
xk/|xk| converges to some e ∈ Sn−1:

xk = |xk|(e + εk), with lim
k

εk = 0.

Define for δ ∈ (0, 1):
Sδ := {y ∈ Sn−1 : e · y ≥ δ}.

If y ∈ Sδ, then we have

ϕk(y) ≥ xk · y = |xk|(e + εk) · y ≥ |xk|(δ − |εk|)
so that:

(10)
∫

Sn−1

ϕkdµ ≥ |xk|(δ − |εk|)µ(Sδ)

Note now that since Sδ ↑ Sn−1 ∩ e++ as δ → 0+:

lim
δ→0+

µ(Sδ) = µ(Sn−1 ∩ e++)
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and µ(Sn−1 ∩ e++) > 0 since otherwise one would have e · y ≤ 0 µ-a.e., which
together with (2) would imply e · y = 0 µ-a.e., contradicting (3).

Let us now take δ ∈ (0, 1) such that µ(Sδ) > 0 in (10), we get:

lim
k

∫

Sn−1

ϕkdµ = +∞

which contradicts
∫
Sn−1 ϕkdµ = 1 for every k. ¤

Proposition 1. The maximization problem (5) admits at least one solution ϕ. If
ϕ and ψ are two solutions of (5), then A(ϕ) and A(ψ) are translates to each other:
there exists x0 ∈ −A(ϕ)∩A(ψ) such that A(ψ) = x0 +A(ϕ) and ψ(y) = ϕ(y)+x0 ·y
for all y in the support of µ.

Remark 2. Note that if ϕ and ψ are two solutions of (5), then defining ϕ̃ and
ψ̃ by (9), there exists x0 ∈ −A(ϕ) ∩ A(ψ) such that ψ̃(y) = ϕ̃(y) + x0 · y for all
y ∈ Sn−1.

Proof. Let us first prove the existence part. Let (ϕk)k ∈ SN be a maximizing
sequence of (5) and define Ak := A(ϕk). Thanks to Lemma 1, we may assume,
up to some subsequence that Ak converges to some compact set A for Hausdorff
distance and also in the sense of Kuratowski (see for instance [13]):

(11) A = lim
k

Ak = limkAk

Obviously we have 0 ∈ A, A is convex and limk vol(Ak) = vol(A) = supϕ∈S J(ϕ).

Let σ be the support function of A so that A = A(σ). Let x ∈ A and y ∈ Sn−1

; using (11), there exists a sequence xk ∈ Ak converging to x so that limkϕk(y) ≥
limkxk · y = x · y hence σ ≤ limkϕk so that

∫
Sn−1 σdµ ≤ 1. If we define:

ϕ̃ :=
σ∫

Sn−1 σdµ
∈ S

we have

sup
ϕ∈S

J(ϕ) ≥ J(ϕ̃) = vol(A)
(∫

Sn−1

σdµ

)−n

≥ sup
ϕ∈S

J(ϕ)

hence we have
∫
Sn−1 σdµ = 1, σ ∈ S and σ is a solution of (5).

Assume now that ϕ and ψ are two solutions of (5) and define ϕ̃, ψ̃ by (9). As
already noted, ϕ̃ and ψ̃ also are solutions of (5) and ϕ = ϕ̃, ψ = ψ̃ on the support
of µ. Now Brunn-Minkowski inequality implies that for all t ∈ (0, 1):

J(tϕ + (1− t)ψ) ≥ sup
ϕ∈S

J(ϕ) = vol(A(ϕ)) = vol(A(ψ))

and the inequality is strict unless A(ϕ) and A(ψ) are translates to each other. Hence
A(ψ) = x0 + A(ϕ) with x0 ∈ −A(ϕ) ∩ A(ψ) since 0 ∈ A(ϕ) ∩ A(ψ). This finally
implies ψ̃(y) = ϕ̃(y) + x0 · y for all y ∈ Sn−1, which ends the proof.

¤
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2.2. Euler-Lagrange Equation. We first need a preliminary result:

Lemma 2. Let g ∈ C0(Sn−1,R∗+), let σg be the support function of A(g):

σg(ν) := sup
x∈A(g)

x · ν, for all ν ∈ Sn−1

then for every regular point x of ∂A(g), with outer unit normal ν(x) one has
σg(ν(x)) = g(ν(x)). Let µg := µA(g) be the surface function of A(g) then we have:

µg({ν ∈ Sn−1 : σg(ν) 6= g(ν)}) = 0.

Proof. Let x ∈ ∂A(g) and let ν ∈ Sn−1 be such that x · ν = σg(ν). Assume that
σg(ν) 6= g(ν) hence σg(ν) < g(ν).

First, we claim that there exists ν ′ ∈ Sn−1 such that x · ν ′ = g(ν ′), otherwise, by
compactness of Sn−1 we would have:

sup
ν′∈Sn−1

x · ν ′ − g(ν ′) < 0

which would imply that x lies in the interior of A(g) ; since it is not the case, there
exists then ν ′ ∈ Sn−1 such that g(ν ′) = σg(ν ′) = x · ν ′, in particular ν ′ 6= ν.

This proves that x belongs to two different supporting hyperplanes of A(g), with
respective normal vectors ν and ν ′, x is therefore a singular point of ∂A(g).

By definition of µg we have:

µg({ν ∈ Sn−1 : σg(ν) 6= g(ν)}) ≤ Hn−1({x ∈ ∂A(g) : x is singular})
since the rightmost member of this inequality is 0, we are done. ¤
Proposition 2. Let ϕ ∈ C0(Sn−1,R∗+) and f ∈ C0(Sn−1,R), one has:

(12) lim
t→0+

1
t

[J(ϕ + tf)− J(ϕ)] =
∫

∂A(ϕ)
f(ν(x))dHn−1(x)

where ν(x) denotes the exterior normal unit vector to ∂A(ϕ) at x ∈ ∂A(ϕ).

Proof. Define A := A(ϕ) and At := A(ϕ + tf). For t > 0 small enough ϕ + tf > 0
and At ⊂ Bt with:

Bt := {x ∈ Rn : x.ν(z) ≤ ϕ(ν(z)) + tf(ν(z)), for every regular point z of ∂A}
Using Lemma 2, if z ∈ ∂A is regular, we have z.ν(z) = ϕ(ν(z)), so that:

Bt = {x ∈ Rn : (x− z).ν(z) ≤ tf(ν(z)), for every regular point z of ∂A}
we get then:

(13) vol(At) ≤ vol(Bt) = vol(A) + t

∫

∂A(ϕ)
f(ν(x))dHn−1(x) + o(t)

so that:

(14) limt→0+
1
t

[J(ϕ + tf)− J(ϕ)] ≤
∫

∂A
f(ν(x))dHn−1(x)

Similarly, we have

A ⊂ Ct := {x ∈ Rn : x.ν(z) ≤ ϕ(ν(z)), for every regular point z of ∂At}
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Using Lemma 2, for every regular point z of ∂At, one has:

z · ν(z) = ϕ(ν(z)) + tf(ν(z))

which yields:

Ct = {x ∈ Rn : (x− z).ν(z) ≤ −tf(ν(z)), for every regular point z of ∂At}
hence, we obtain:

(15) vol(A) ≤ vol(Ct) = vol(At)− t

∫

∂At

f(ν(x))dHn−1(x) + o(t)

so that

(16) limt→0+

1
t

[J(ϕ + tf)− J(ϕ)] ≥ limt→0+

∫

∂At

f(ν(x))dHn−1(x)

To achieve the proof, using (14) and (16) it is enough to prove that:

(17) limt→0+

∫

∂At

f(ν(x))dHn−1(x) =
∫

∂A
f(ν(x))dHn−1(x)

Denoting by µ0 the surface function of A and by µt the surface function of At, to
prove (17), it is enough to prove that µt converges weakly ∗ to µ0 inM(Sn−1) (where
M(Sn−1) denotes the space of Radon measures on Sn−1). The weak ∗ convergence
of µt to µ0 is a well-known result see for instance [2] and [14]. For the sake of
completness however, we prefer to prove (17) directly, closely following arguments
of Buttazzo and Guasoni (see [4]) based on a theorem of Reshetnyak (see [11]).

Denoting by χC the indicatrix function of a measurable set C ⊂ Rn, it is straight-
forward to see that χAt converges to χA in L1 as t goes to 0. Define the vector
measures of finite variation:

τt := DχAt , for t > 0, and τ0 := DχA

where DχC stands for the derivative in the sense of Schwartz’s distributions of χC .
Using Lemma 3.1 of [4], the sequence τt is compact with respect to the conver-

gence in variation, this obviously implies that τt converges to τ0 with respect to the
convergence in variation. Consider now the functional:

τ ∈M 7→ F (τ) :=
∫

Rn

f

(
− dτ

d|τ |
)

d|τ |

where M denotes the class of measures of finite variation with values in Rn, |τ |
denotes the variation measure associated to τ ∈ M and dτ

d|τ | denotes the Radon-
Nikodym derivative of τ with respect to |τ |. A theorem of Reshetnyak [11] states
that F is continuous with respect to the convergence in variation, this yields:

(18) lim
t→0+

F (τt) = F (τ0)

Since:
|τt| = Hn−1x∂At and

dτt

d|τt| = −ν∂At , for t ≥ 0

we have:

F (τt) =
∫

∂At

f(ν(x))dHn−1(x), for t > 0, and F (τ0) =
∫

∂A
f(ν(x))dHn−1(x)
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with (18), this finally establishes (17).
¤

As a consequence, the Euler-Lagrange equation of (5) turns out to be equivalent
(up to some normalizations) to finding an Alexandrov body associated with µ:

Theorem 3. Let ϕ ∈ S, then ϕ is a solution of (5) if and only if there exists λ > 0
such that µA(ϕ) = λµ i.e. A(ϕ) is an Alexandrov body associated with λµ.

Proof. Let ϕ be a solution of (5) as already noticed we may assume that ϕ = ϕ̃. If
0 belongs to the interior of A(ϕ) then ϕ > 0 and if 0 ∈ ∂A(ϕ) changing A(ϕ) into
A(ϕ) + εν(0) and ϕ(y) into ϕ(y) + εν(0) · y where ν(0) is the unit exterior vector
to some supporting hyperplane at 0 to A(ϕ) and ε > 0 is such that 0 is interior to
A(ϕ + εν(0)), we may assume in any case after this translation that ϕ > 0.

Let f ∈ C0(Sn−1,R) be such that
∫
Sn−1 fdµ = 0, for small enough t we have

ϕ + tf ∈ S so that, with proposition 2

lim
t→0+

1
t

[J(ϕ + tf)− J(ϕ)] =
∫

∂A(ϕ)
f(ν(x))dHn−1(x) ≤ 0

changing f into −f we obtain
∫
Sn−1 fdµA(ϕ) = 0 so that µ and µA(ϕ) are pro-

portional : µA(ϕ) = λµ the fact that λ > 0 follows from
∫
Sn−1 dµ > 0 and∫

Sn−1 dµA(ϕ) > 0.
Conversely assume that there exists λ > 0 such that µA(ϕ) = λµ, without loss of

generality we may assume again that ϕ = ϕ̃ > 0. Let ψ ∈ S, since J1/n is concave
and using proposition 2 we have

J1/n(ψ) ≤ J1/n(ϕ) +
1

nJ
n−1

n (ϕ)

∫

∂A(ϕ)
(ψ − ϕ)(ν(x))dHn−1(x)

since: ∫

∂A(ϕ)
(ψ − ϕ)(ν(x))dHn−1(x) = λ

(∫

Sn−1

ψdµ−
∫

Sn−1

ϕdµ

)
= 0

we obtain that ϕ is a solution of (5).
¤

Remark 3. Let us remark that λ in the previous result (a Lagrange multiplier
associated with the constraint

∫
Sn−1 ϕdµ = 1) is unique i.e. does not depend on

the maximizer ϕ. Indeed let ϕi = ϕ̃i, i = 1, 2 be two maximizers of (5), so that
µA(ϕi) = λiµ, i = 1, 2. Note that:

vol(A(ϕi)) =
1
n

∫

∂A(ϕi)
x.ν(x)dHn−1(x) =

1
n

∫

∂A(ϕi)
ϕi(ν(x))dHn−1(x)

=
λi

n

∫

Sn−1

ϕidµ =
λi

n

since vol(A(ϕ1)) = vol(A(ϕ2)) we obtain:

λ1 = λ2 = n sup
ϕ∈S

J(ϕ).
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3. Link with Alexandrov’s theorem

Let us shortly prove that theorem 3 actually implies Alexandrov’s theorem (and
Minkowski’s as well in the special case where µ has a continuous positive density
with respect to the Haar measure of Sn−1). Indeed, if ϕ is a solution of (5) then

A :=
(

µ(Sn−1)
Hn−1(∂A(ϕ))

) 1
n−1

A(ϕ)

obviously is an Alexandrov body associated with µ.

Theorem 3 also implies uniqueness up to translations of Alexandrov’s bodies.
Assume there are two such convex bodies Ai, µAi = µ for i = 1, 2. Translating
those sets if necessary assume 0 ∈ A1 ∩ A2, define σi as the support function of Ai

and

ϕi :=
σi∫

Sn−1 σidµ
, for i = 1, 2

since ϕ1 and ϕ2 satisfy the requirement of theorem 3, they are both solutions of (5),
we then have:

(19)
vol(A1)(∫

Sn−1 σ1dµ
)n =

vol(A2)(∫
Sn−1 σ2dµ

)n

and A1/(
∫
Sn−1 σ1dµ) and A2/(

∫
Sn−1 σ2dµ) are translates to each other. Note now

that

vol(A1) =
1
n

∫

∂A1

x.ν(x)dHn−1(x) =
1
n

∫

∂A1

σ1(ν(x))dHn−1(x) =
1
n

∫

Sn−1

σ1dµ

using a similar formula for A2 and (19) we get
∫
Sn−1 σ1dµ =

∫
Sn−1 σ2dµ so that A1

and A2 are translates to each other.

This actually proves Alexandrov’s theorem.

Remark 4. We conclude this paper by two remarks. It is easy to check that the
variational characterization provided by theorem 3 is equivalent to the dual one
mentioned in section 1.3. More precisely, ϕ ∈ S is a solution of (5) if and only if
A(ϕ) minimizes the functional:

L 7→
∫

Sn−1

sup
x∈L

(x · y) dµ(y)

under the condition vol(L) = v0 where v0 := supϕ∈S J(ϕ). Eventhough (5) and
the previous problem are equivalent, it is clear that (5), as a very simple concave
programming problem, is much easier to study.

Finally, we would like to mention a formal analogy with the variational approach
used in this paper to prove Alexandrov’s theorem and the method used by Gangbo
[7] to prove Brenier’s polar factorization theorem [3].
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