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A NOTE ON DIFFERENCE SEQUENCE SPACES

SATIT SAEJUNG

Abstract. In this short note we prove that the difference sequence spaces, ap-
pearing in [4] are actually isometrically isomorphic to Musielak-Orlicz sequence
spaces endowed with the Luxemburg norm. Thus, all results in [4] are easily
deduced from known results. Furthermore, the characterizations are obtained
under weaker assumptions.

1. Introduction

A convex function ϕ : R→ R+ = [0,∞) is called an Orlicz function if it vanishes
at zero and is even on the whole line R and is not identically equal to zero. Denote by
l the space of all real sequences x = (xn)∞n=1. For a given Musielak-Orlicz function
Φ, i.e. a sequence (ϕn) of Orlicz functions, the Musielak-Orlicz sequence space lΦ is
the space

lΦ :=
{

x ∈ l :
∞∑

n=1

ϕn(λxn) < ∞ for some λ > 0
}

equipped with the Luxemburg norm defined by

‖x‖ = inf
{

λ > 0 :
∞∑

n=1

ϕn(xn/λ) ≤ 1
}

.

It is known that lΦ := (lΦ, ‖ · ‖) is a Banach space (see [5]).
We say that a Musielak-Orlicz function Φ = (ϕn) satisfies the δ2-condition (Φ ∈

δ2) if there exist constants K ≥ 2, u0 > 0 and a sequence (cn) of positive numbers

such that
∞∑

n=1
cn < ∞ and the inequality ϕn(2u) ≤ Kϕn(u) + cn holds for every

n ∈ N and u ∈ R satisfying ϕn(u) ≤ u0 (see [2]).
We also say that a Musielak-Orlicz function Φ = (ϕn) satisfies the (∗)-condition

if for any ε ∈ (0, 1) there exists a δ > 0 such that, for all n ∈ N and u ∈ R,
ϕn((1 + δ)u) ≤ 1 whenever ϕn(u) ≤ 1− ε (see [3]).

2. Difference Sequence Spaces

For a given Musielak-Orlicz sequence space lΦ, we define a difference sequence
space lΦ(4) by

lΦ(4) := {(xn)∞n=1 : (4xn)∞n=1 ∈ lΦ} .

Here (4xn)∞n=1 = (x1, x2 − x1, x3 − x2, . . . ). For (xn)∞n=1 ∈ lΦ(4), we also define

‖(xn)‖4 = ‖(4xn)‖.
In general, the spaces lΦ(4) and lΦ need not be the same. However, we have
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Proposition 2.1. lΦ(4) and lΦ are isometrically isomorphic.

Proof. Define T : lΦ(4) → lΦ by T (xn) = (4xn) for (xn) ∈ lΦ(4). It is easy to see
that T is an isomorphism. Moreover, ‖T (xn)‖ = ‖(xn)‖4 for all (xn) ∈ lΦ(4) and
this implies that T is an isometry. ¤

Let us now recall some known characterizations:

Theorem 2.2. (1) [6, Theorem 4.1] The Musielak-Orlicz sequence space lΦ is
rotund if and only if Φ ∈ δ2, each ϕi vanishes only at zero, and there exists a
sequence {ai} ⊂ [0,∞) such that ϕi is strictly convex on [0, ai] for all i ∈ N
and ϕj(aj) + ϕk(ak) ≥ 1 for every j 6= k.

(2) [1, Theorem 2] If, in addition, Φ = (ϕi) satisfies the (∗)-condition and each
ϕi vanishes only at zero, then lΦ has property (H) if and only if Φ ∈ δ2.

So we can characterize all geometric properties of the difference sequence space
lΦ(4) via characterizations of the corresponding properties of lΦ.

Example 2.3. [4] Let p = {pn}∞n=1 ⊂ [1,∞). Define

l(4,p) =
{

(xn) : |x1|+
∞∑

n=1

|λ(xn+1 − xn)|pn < ∞ for some λ > 0
}

equipped with the norm defined by

‖(xn)‖4 = inf
{

λ > 0 :
∣∣∣x1

λ

∣∣∣ +
∞∑

n=1

∣∣∣xn+1 − xn

λ

∣∣∣
pn ≤ 1

}
.

It is easy to see that l(4,p) = lΦ(4) where Φ = (ϕn) is defined by ϕ1(u) = |u|
and ϕn(u) = |u|pn−1 for all n ≥ 2 and u ∈ R. As consequences of Theorem 2.2, we
obtain

(1) l(4,p) is strictly convex if and only if lim sup
n→∞

pn < ∞ and pn > 1 for all n.

(2) l(4,p) has property (H) if and only if lim sup
n→∞

pn < ∞.

Let us note that the above results are obtained without the assumption that
lim sup

n→∞
pn < ∞ as was the case in [4].
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