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CONTROL PROBLEMS GOVERNED BY FUNCTIONAL
EVOLUTION INCLUSIONS WITH YOUNG MEASURES

C. CASTAING, A. JOFRE, AND A. SALVADORI

Abstract. We study some Bolza-type problems governed by two classes of func-
tional evolution inclusions where the controls are Young measures. In particular,
we present some variational properties of the value function associated to these
control problems, and we show that the lower value function is a viscosity sub-
solution of the associated Hamilton-Jacobi-Bellman equation in these classes of
evolution inclusions.

1. Introduction and background

The pioneering works concerning control problems governed by ordinary differ-
ential equations and evolution inclusions with Young measures are developed in
[17], [16]. In the same spirit, we consider in this paper some dynamic control prob-
lems governed by functional evolution inclusions (FEI) [14], [21] where the controls
are Young measures. Essentially, we present some variational properties of the
value function of these dynamics and we show that the lower value function asso-
ciated to a continuous cost function is a viscosity subsolution of the corresponding
Hamilton-Jacobi-Bellman equation. This shed a new light in the study of the viscos-
ity solutions for the dynamics governed by ordinary differential equations. Here we
also extend a number of results in the literature dealing with undelayded evolution
inclusions and ordinary differential equations.

In the sequel, (Ω,S, P ) is a probability space, L([0, 1]) is the σ-algebra of
Lebesgue-measurable sets in [0, 1]. For any Polish space X,B(X) denotes the Borel
tribe of X and Y(Ω,S, P ;X) denotes the set of Young measures defined on X.
For the sake of completeness, we summarize some useful facts concerning Young
measures. Let X be a Polish space and let Cb(X) be the space of all real-valued
bounded continuous functions defined on X. Let M1

+(X) be the set of all Borel
probability measures on X equipped with the narrow topology. A Young measure
λ : Ω → M1

+(X) is, by definition, a scalarly measurable mapping from Ω into
M1

+(X), that is, for every f ∈ Cb(X), the mapping

ω 7→ 〈f, λω〉 :=
∫

X
f(x) dλω(x)

is S-measurable. Let us denote by Y(Ω,S, P ;X) the space of all Young measures
defined on X. A sequence (λn) in Y(Ω,S, P ;X) stably converges to a Young measure
λ ∈ Y(Ω,S, P ;X) if the following holds

lim
n

∫

A
[
∫

X
f(x) dλn

ω(x)] dP (ω) =
∫

A
[
∫

X
f(x) dλω(x)] dP (ω)

for every A ∈ S and for every f ∈ Cb(X). Finally, we recall, for the sake of
completeness the following result concerning the fiber product lemma for Young
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measures. See ([17], Theorem 2.3.1). For more on Young measures, see e.g. [2],
[17], [40], [41], and the references therein.

Proposition 1.1. Assume that S and T are Polish spaces. Let (µn) be a sequence
in Y(Ω,S, P ;S) and (νn) be a sequence in Y(Ω,S, P ;T ). Assume that
(i) (µn) converges in probability to µ∞ ∈ Y(Ω,S, P ;S),
(ii) (νn) stably converges to ν∞ ∈ Y(Ω,S, P ;T ).
Then (µn ⊗ νn) stably converges to µ∞ ⊗ ν∞.

For the sake of completeness, let us mention a general result of convergence for
Young measures ([17], Corollary 2.3.2) that we need in the statement of next results.

Proposition 1.2. Assume that S and T are Polish spaces. Let (un) be sequence of
S-measurable mappings from Ω into S such that (un) converges in probability to a
S-measurable mapping u∞ from Ω into S and (vn) be a sequence of S-measurable
mappings from Ω into T such that (vn) stably converges to ν∞ ∈ Y(Ω,S, P ;T ).
Let h : Ω × S × T → R be a Carathéodory integrand such that the sequence
(h(., un(.), vn(.)) is uniformly integrable. Then the following result holds

lim
n→∞

∫

Ω
h(ω, un(ω), vn(ω)) dP (ω) =

∫

Ω
[
∫

T
h(ω, u∞(ω), t) dν∞ω (t)] dP (ω).

2. Functional evolution inclusions governed by a nonconvex
sweeping process

We consider a multifunction C : [0, 1] → E(E = Rd) and we assume that
(H1): For each t ∈ [0, 1], C(t) is a nonempty closed subset in Rd that is ρ-prox-
regular [23], [37] for some fixed ρ ∈ [0,∞],
(H2): C(t) varies in an absolutely continuous way, that is, there exists an absolutely
continuous function v : [0, 1] → R such that

|d(x,C(t))− d(y, C(s))| ≤ ||x− y||+ |v(t)− v(s)|
for all x, y ∈ Rd and s, t ∈ [0, 1].

Recall that a nonempty subset S of Rd is ρ-proximal regular [37] or equivalently
ρ-proximally smooth [23] when every nonzero proximal normal to S can be realized
by a ρ-ball. This is equivalent to say that for every x ∈ S, and for every 0 6= v ∈
Np(S;x),

〈 v

||v|| , x
′ − x〉 ≤ 1

2ρ
||x′ − x||2

for all x′ ∈ S where Np(S;x) is the proximal normal cone [23], [37] of S at the
point x ∈ S. Actually, Np(S;x) coincides with the Clarke normal cone N(S;x) of
S at the point x ∈ S. We make the convention 1

ρ = 0 for ρ = +∞. Recall that
for ρ = +∞, the ρ-proximal regularity of S is equivalent to the convexity of S.
One of the key properties of proximally regular sets S is that for all xi ∈ S and all
vi ∈ Np(S;xi) with ||vi|| ≤ ρ (i = 1, 2) one has ([37])

(Hypomonotonicity): 〈v1 − v2, x1 − x2〉 ≥ −||x1 − x2||2.
Let r > 0 be a finite delay, C0 = CRd([−r, 0]) be the Banach space of all continuous

Rd-valued functions defined on [−r, 0] equipped with the norm ||.||0 of uniform
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convergence. For any t ∈ [0, 1], let τ(t) : CRd([−r, t]) → C0 defined by (τ(t)u)(s) =
u(t + s), for all s ∈ [−r, 0] and for all u ∈ CRd([−r, t]).

We summarize first a preliminary result that is a combined effort of the tech-
niques of Theorem 2.1 and Proposition 3.1 in [21] regarding the compactness of the
solutions set for a FEI governed by a nonconvex sweeping process. However this
result needs a careful look because we deal with the uniqueness of solutions and the
compactness of the solutions set for a new class of FEI. Compare with Proposition
3.2 in [19] dealing with convex sweeping process.

Proposition 2.1. Assume that (H1), (H2) are satisfied and the sets C(t) are com-
pact. Let ϕ ∈ CRd([−r, 0]) be given with ϕ(0) ∈ C(0) and let g : [0, 1]× C0 → Rd be
such that:

(i) for every u ∈ C0, g(., u) is Lebesgue-measurable on [0, 1],
(ii) for every η > 0 there exists a nonnegative Lebesgue-integrable function lη(.)

defined on [0, 1] such that ||g(t, u)− g(t, v)|| ≤ lη(t)||u− v||0 for all t ∈ [0, 1]
and for all u, v ∈ BC0(0, η)×BC0(0, η),

(iii) there exist nonnegative Lebesgue-integrable functions p(.) and q(.) on [0, 1]
such that ||g(t, u)|| ≤ p(t) + q(t)||u(0)|| for all (t, u) ∈ [0, 1]× C0.

Then there exists a unique continuous function uϕ : [−r, 1] → Rd such that its
restriction on [−r, 0] is equal to ϕ and its restriction to [0, 1] is absolutely continuous,
(i.e uϕ(t) = ϕ(0) +

∫ t
0 u̇ϕ(s) ds, for all t ∈ [0, 1] with u̇ϕ ∈ L1

Rd([0, 1])) and satisfies

(Pτ )
{

u̇ϕ(t) ∈ −N(C(t);uϕ(t)) + g(t, τ(t)uϕ) a.e. t ∈ [0, 1],
uϕ(s) = ϕ(s),∀s ∈ [−r, 0];uϕ(t) ∈ C(t),∀t ∈ [0, 1],

with ||u̇ϕ(t)|| ≤ γ(t) for a.e. t ∈ [0, 1], where γ is a nonnegative Lebesgue-integrable
function which depends only on v̇, p, q and C[0, 1] := ∪t∈[0,1]C(t). Consequently,
if K denotes the compact set in CRd([−r, 0]) with ϕ(0) ∈ C(0) for all ϕ ∈ K, then
the solution sets {uϕ : ϕ ∈ K} is relatively compact for the topology of uniform
convergence.

Proof. By using Theorem 2.1 and the remark of Lemma 1.3 in [21], it is easily seen
that, for each ϕ ∈ CRd([−r, 0]) with ϕ(0) ∈ C(0), there is at least one solution u of
the problem (Pτ ) with ||u̇ϕ(t)|| ≤ γ(t) for a.e. t ∈ [0, 1], where γ is a nonnegative
Lebesgue-integrable function which depends only on v̇, p, q and C[0, 1]. In order to
prove the uniqueness, let us assume that x and y are two solutions of (Pτ ). Then
we have, for a.e. t ∈ [0, 1]

g(t, τ(t)x)− ẋ(t) ∈ N(C(t);x(t)),

and
g(t, τ(t)y)− ẏ(t) ∈ N(C(t); y(t)).

Put m(t) = ||g(t, τ(t)x)|| + ||g(t, τ(t)y)||, by ([21], Prop. 1.1), we have, for a.e.
t ∈ [0, 1]

||g(t, τ(t)x)− ẋ(t)|| ≤ ||ẋ(t)||+ m(t) ≤ v̇(t) + m(t),

and
||g(t, τ(t)y − ẏ(t)|| ≤ ||ẏ(t)||+ m(t) ≤ v̇(t) + m(t).
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Then for a.e. t ∈ [0, 1]

ρ

|v̇(t)|+ m(t)
(g(t, τ(t)x)− ẋ(t)) ∈ NC(t)(x(t)),

and

|| ρ

|v̇(t)|+ m(t)
(g(t, τ(t)x)− ẋ(t))|| ≤ ρ,

and similarly
ρ

|v̇(t)|+ m(t)
(g(t, τ(t)y)− ẏ(t)) ∈ NC(t)(y(t)),

and

|| ρ

|v̇(t)|+ m(t)
(g(t, τ(t)y)− ẏ(t))|| ≤ ρ.

By virtue of the hypomonocity property of the normal cone, we have for a.e. t ∈ [0, 1]

〈g(t, τ(t)x)− ẋ(t)− (g(t, τ(t)y)− ẏ(t)), x(t)− y(t)〉

≥ −ρ−1(|v̇(t)|+ m(t))||x(t)− y(t)||2.
Let η > 0 be such that η > supt∈[0,1](||τ(t)x||0+||τ(t)y||0). Using Lipschitz property
(i) and integrating on [0, t], from the inequality above we derive

||x(t)− y(t)||2 ≤ 2
∫ t

0
lη(s)||τ(s)x− τ(s)y||0||x(s)− y(s)|| ds

+ 2
∫ t

0
ρ−1(|v̇(s)|+ m(s))||x(s)− y(s)||2 ds.

Now we repeat some arguments in ([19], Prop. 2.2). Indeed, as x = y = ϕ on
[−r, 0], by the preceding inequality, we see that

||x− y||2t ≤ 2
∫ t

0
lη(s)||x− y||2s ds + 2

∫ t

0
ρ−1(|v̇(s)|+ m(s))||x− y||2s ds

= 2
∫ t

0
(lη(s) + ρ−1(|v̇(s)|+ m(s)))||x− y||2s ds,

where ||.||t denotes the norm of Ct := CRd([−r, t]) As t 7→ ||x− y||t is continuous, by
applying Gronwall’s lemma we conclude that

||x− y||t = 0, ∀t ∈ [0, 1].

Hence x = y.
The relative compactness of {uϕ : ϕ ∈ K} follows because uϕ(t) ∈ C(t) for all

t ∈ C(t) and ||u̇ϕ(t)|| ≤ γ(t) for all ϕ ∈ K and for a.e. t ∈ [0, 1]. ¤

Remark. The growth condition (ii) allows to recover the case when τ is the zero
mapping that corresponds to undelayed evolution inclusion and the known case
||g(t, u)|| ≤ m for all (t, u) ∈ [0, 1]× C0 for some positive constant m.
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3. Functional evolution inclusion governed by a m-accretive
operator

For simplicity, we consider here a functional evolution inclusion in the finite
dimensional space E = Rd, althought the results given below hold for a reflexive
Banach space such that its strong dual is uniformly convex. See [14] for details.
Recal that a multivalued operator A(t) : E ⇒ E, (t ∈ [0, 1]) is m-accretive, if, for
each t ∈ [0, 1] and each λ > 0, R(IE + λA(t)) = E, and for each x1 ∈ D(A(t)), x2 ∈
D(A(t)), y1 ∈ A(t)x1, y2 ∈ A(t)x2, we have

(j) ||x1 − x2|| ≤ ||(x1 − x2) + λ(y1 − y2)||
where D(A(t)) := {x ∈ E : A(t)x 6= ∅}. If A(t) is m-accretive, then, for every λ > 0,

(jj) 1
λ ||x− JλA(t)x|| = ||Aλ(t)x|| ≤ |A(t)x|0 := infy∈A(t)x ||y||, ∀x ∈ D(A(t)),

where JλA(t)x = (IE + λA(t))−1x. We refer to [1], [12], [42] for the theory of
accretive operators We will consider the following assumptions regarding the m-
accretive operator A(t).

(H1) There exist a continuous function ρ : [0, 1] → E and a nondecreasing func-
tion L : [0,∞[→ [0,∞[ such that

||JλA(t)x− JλA(s)x|| ≤ λ|ρ(t)− ρ(s)|L(||x||),
for all λ ∈]0, 1], for all (t, s) ∈ [0, 1]× [0, 1], and for all x ∈ E.

(H2) For every s > 0, there exists δ(s) > 0 such that

||JλA(0)x− x|| ≤ λδ(s),

for all λ ∈]0, 1] and for all x ∈ D(A(0)) with ||x|| ≤ s.
(H3) (a) For every L2

E([0, 1])-mapping u : [0, 1] → E satisfying u(t) ∈ D(A(t))
for all t ∈ [0, 1], the multifunction t → A(t)u(t) is Lebesgue-measurable, (b)
for every x ∈ E and for every λ > 0, t 7→ (IE + λA(t))−1x is Lebesgue-
measurable, (c) there exists g ∈ L2

E([0, 1]) such that t 7→ (IE +λA(t))−1g(t)
belongs to L2

E([0, 1]) for for all λ > 0.
Remarks. 1) Assumption (H1) is similar to that adopted by [12], [25] in the study
of quasi-autonomuous evolution equations. By ([25], Lemma 3.1), (H1) implies that
the sets D(A(t)) are constant, i.e D(A(t)) := D for all t ∈ [0, 1].
2) In view of (jj) (H2) is satisfied if, 0 ∈ D(A(0)) = D(A(0)) and A(0) satisfies
the following boundedness type condition, namely, for any closed ball B(0, η), the
set {|A(0)x|0 : x ∈ D(A(0)) ∩ B(0, η)} is bounded in R. In particular, (H2) is
satisfied if A(0) : D(A(0)) → E is convex compact-valued upper semicontinuous
multifunction, because the set {A(0)x : x ∈ D(A(0)) ∩B(0, η)} is compact.

Let us recall and summarize the following existence and uniqueness result ([14],
Theorem 2.4 and Prop. 2.9) which is a variant of Proposition 2.1.

Proposition 3.1. Suppose that A(t) : E ⇒ E; t ∈ [0, 1], is a closed convex-valued
m-accretive operator and assumptions (H1), (H2), (H3) are satisfied. Let K denotes
the compact set in C([−r, 0]) with ϕ(0) ∈ D for all ϕ ∈ K. Let ϕ ∈ K and let
g : [0, 1]× C0 → Rd be a Carathéodory mapping such that:

(i) there exits η > 0 such that ||g(t, u) − g(t, v)|| ≤ η||u − v||C
Rd ([−r,0]), for all

t ∈ [0, 1] and for all u, v ∈ CRd([−r, 0]),
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(ii) there exists K > 0 such that ||g(t, u)|| ≤ K, for all (t, u) ∈ [0, 1] ×
CRd([−r, 0]).

Then there exists a unique continuous function uϕ : [−r, 1] → Rd such that its
restriction on [−r, 0] is equal to ϕ and its restriction to [0, 1] is absolutely continuous,
(i.e. uϕ(t) = ϕ(0)+

∫ t
0 u̇ϕ(s) ds, for all t ∈ [0, 1] with u̇ϕ ∈ L1

Rd([0, 1])) and satisfies

(Pτ )
{

u̇ϕ(t) ∈ −A(t)uϕ(t) + g(t, τ(t)uϕ) a.e. t ∈ [0, 1],
uϕ(s) = ϕ(s),∀s ∈ [−r, 0];uϕ(t) ∈ D, ∀t ∈ [0, 1].

Moreover, the solution sets {uϕ : ϕ ∈ K} is relatively compact for the topology of
uniform convergence and ||u̇ϕ(t)|| ≤ m, for all ϕ ∈ K and for a.e. t ∈ [0, 1], where
m is a positive constant which depends only on K(0), ρ, L, K.

4. Control problems governed by a nonconvex
sweeping process with Young measures

We assume that (S, dS) and (Z, dZ) are two compact metric spaces. Let k(Z) be
the set of all compact subsets of Z, Γ : [0, 1] → k(Z) be a compact valued Lebesgue-
measurable multifunction and M1

+(Z) be the set of all probability Radon measures
on Z. It is well-known that M1

+(S) (resp. M1
+(Z)) is a compact metrizable space

for the σ(C(S)′, C(S)) (resp. σ(C(Z)′, C(Z))) topology. Let us consider a mapping
f : [0, 1]× C0 × S × Z → E satisfying:

(i) for every t ∈ [0, 1], f(t, ., ., .) is continuous on C0 × S × Z,
(ii) for every (u, s, z) ∈ C0 × S × Z, f(., u, s, z) is Lebesgue-measurable on [0, 1],
(iii) there is a Lebesgue-integrable function c such that ||f(t, u, s, z)|| ≤ c(t), for

all (t, u, s, z) in [0, 1]× C0 × S × Z,
(iv) there exists a Lipschitz constant η > 0 such that

||f(t, u1, s, z)− f(t, u2, s, z)|| ≤ η ||u1 − u2||0
for all (t, u1, s, z), (t, u2, s, z) ∈ [0, 1]× C0 × S × Z.

Let H be a subset of Y(Ω,S, P ;S). We consider the solutions sets of the two
following functional evolution inclusions

(IK,H,O)





u̇ϕ,µ,ζ(t) ∈ −N(C(t);uϕ,µ,ζ(t))
+

∫
S f(t, τ(t)uϕ,µ,ζ , s, ζ(t))µt(ds),

uϕ,µ,ζ(s) = ϕ(s),∀s ∈ [−r, 0],

where ϕ ∈ K, µ ∈ H, and ζ belongs to the set SΓ of all original controls, i.e.
Lebesgue-measurable selections of Γ, and

(IK,H,R)





u̇ϕ,µ,ν(t) ∈ −N(C(t);uϕ,µ,ν(t))
+

∫
Γ(t)[

∫
S f(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz),

uϕ,µ,ν(s) = ϕ(s),∀s ∈ [−r, 0],

where ϕ ∈ K, µ ∈ H and ν belongs to the set R of relaxed controls, i.e. Lebesgue-
measurable selections of the multifunction

Σ(t) := {ν ∈M1
+(Z) : ν(Γ(t)) = 1}.

Taking Proposition 2.1 into account, for each (ϕ, µ, ζ) ∈ K×H×O (resp. (ϕ, µ, ν) ∈
K ×H ×R), there is a unique continuous solution uϕ,µ,ζ (resp. uϕ,µ,ν) of (IK,H,O)



CONTROL PROBLEMS GOVERNED BY FUNCTIONAL EVOLUTION INCLUSIONS 137

(resp. (IK,H,R)). Indeed, it is sufficient to observe that, for each (µ, ν) ∈ H × R,
the function

(t, u) ∈ [0, 1]× C0 → fµ,ν(t, u) :=
∫

Γ(t)
[
∫

S
f(t, u, s, z)µt(ds)] νt(dz)

inherits the properties the function g given in Proposition 2.1 and so for each
(ϕ, µ, ν) ∈ K ×H×R the evolution inclusion

u̇(t) ∈ −N(C(t), u(t)) + fµ,ν(t, τ(t)u), t ∈ [0, 1]; u(s) = ϕ(s),∀s ∈ [−r, 0],

admits a unique continuous solution.
We aim to present a Bolza-type problem for the two above functional evolution

inclusions. In particular, we show the continuous dependence of the solutions uϕ,µ,ν

with respect to the data (ϕ, µ, ν) ∈ K×H×R and also the compactness with respect
to the topology of uniform convergence of the solutions set {uϕ,µ,ν : (ϕ, µ, ν) ∈
K×H×R}. This allows to study the semicontinuity property of the value function
associated to a given bounded lower semicontinuous (resp. upper semicontinuous)
function l : E → R, namely

(ϕ, µ, t) 7→ inf
ν∈R

l(uϕ,µ,ν(t))

and
(ϕ, µ, t) 7→ sup

ν∈R
l(uϕ,µ,ν(t))

respectively. See [3], [15], [17], [28], [29], [43], [44] for other related results. The
results we present in this section are essentially a continuation of the work devel-
oped in [16] dealing with an undelayed evolution inclusion governed by nonconvex
sweeping process with one class of relaxed controls (i.e. Young measures). For fur-
ther results on nonconvex sweeping process and related results, see [4], [5], [6] [7],
[8], [9], [10], [11], [20] [21], [22], [27], [38] and the references therein. For sweeping
process, evolution equations and related results, see [12], [20], [15], [18], [19], [25],
[30], [31], [32], [33], [34], [35], [39].

Theorem 4.1. Assume that the hypotheses and notations of Proposition 2.1 are
satisfied and H is compact for the convergence in probability, I : [0, 1] × E × S ×
Z → R is a L1- bounded Carathéodory integrand, (that is, I(t, ., ., .) is continuous
on E × S × Z, for all t ∈ [0, 1] and I(., x, s, z) is Lebesgue-measurable on [0, 1],
for all (x, s, z) ∈ E × S × Z) which satisfies the condition: there is a positive
Lebesgue-integrable function h such that |I(t, x, s, y)| ≤ h(t), for all (t, x, s, z) ∈
[0, 1]× E × S × Z. Let us consider the control problems

(PK,H,O) : inf
(ϕ,µ,ζ)∈K×H×O

∫ 1

0
[
∫

S
I(t, uϕ,µ,ζ(t), s, ζ(t))µt(ds)] dt,

and

(PK,H,R) : inf
(ϕ,µ,ν)∈K×H×R

∫ 1

0
[
∫

Z
[
∫

S
I(t, uϕ,µ,ν(t), s, z))µt(ds)]νt(dz)] dt,

where uϕ,µ,ζ (resp. uϕ,µ,ν) is the unique solution associated to (ϕ, µ, ζ)
(resp. (ϕ, µ, ν)) to the FEI (IK,H,O) (resp. (IK,H,R). Then one has inf(PK,H,O) =
min(PK,H,R).
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Proof. Claim 1. The graph of the mapping (ϕ, µ, ν) 7→ uϕ,µ,ν defined on the compact
space K × H × R with value in the Banach space CE([−r, 1]) of all continuous
mappings from [−r, 1] into E endowed with the sup norm is compact.

Let (ϕn, µn, νn) be a sequence in K × H × R. As K is compact in CE([−r, 0]),
we may suppose that (ϕn) converges uniformly on [−r, 0] to a function ϕ∞ ∈
CE([−r, 0]). As H ⊂ Y(Ω,S, P ;S) is compact for the convergence in probability, we
may assume that (µn) converges in probability to a Young measure µ∞ ∈ H. As R
is compact for the stable convergence, we may suppose that (νn) stably converges
to a Young measure ν∞ with ν∞t (Γ(t)) = 1 a.e.. In view of Proposition 2.1, the se-
quence (uϕn,µn,ζn) is relatively compact in CE([−r, 1]), hence we may suppose that
(uϕn,µn,νn) converges uniformly on [−r, 1] to a continuous function u∞ ∈ CE([−r, 1])
with u∞ = ϕ∞ on [−r, 0] and ϕ∞(0) ∈ C(0), and (u̇ϕn,µn,νn) σ(L1, L∞) converges
to u̇∞ ∈ L1

E([0, 1]). So, for every t ∈ [0, 1], (τ(t)uϕn,µn,νn) converges to τ(t)u∞ in
the Banach space C0. By Proposition 1.1, we conclude that (δτ(.)uϕn,µn,νn ⊗µn⊗νn)
stably converges to δτ(.)u∞ ⊗ µ∞ ⊗ ν∞. Let h ∈ L∞E ([0, 1]). As the mapping f is
L1-bounded by (iii), so is the integrand (t, u, s, z) 7→ 〈h(t), f(t, u, s, z)〉 defined on
[0, 1]× C0 × S × Z. Let us put

vn(t) =
∫

Z
[
∫

S
f(t, τ(t)uϕn,µn,νn , s, z)µn

t (ds)] νn
t (dz)], ∀t ∈ [0, 1],

and

v∞(t) =
∫

Z
[
∫

S
f(t, τ(t)u∞, s, z)µ∞t (ds)] ν∞t (dz)], ∀t ∈ [0, 1].

Then, by the very property of the stable convergence (cf. Proposition 1.2), we get

lim
n→∞

∫ 1

0
〈h(t), vn(t)〉 dt =

∫ 1

0
〈h(t), v∞(t)〉 dt.

Now, using the weak convergence in L1
E([0, 1]) of (u̇ϕn,µn,νn) to u̇∞ and the preceding

limit, we conclude that the sequence (u̇ϕn,µn,νn − vn) weakly converges in L1
E([0, 1])

to u̇− v∞. As uϕn,µn,νn is the solution of the corresponding FEI, we have

(∗) u̇ϕn,µn,νn(t)− vn(t) ∈ −N(C(t);uϕn,µn,νn(t)) a.e. t ∈ [0, 1],

with uϕn,µn,νn(s) = ϕn(s) for all s ∈ [−r, 0]. In view of [38], this inclusion is
equivalent to

(∗∗) u̇ϕn,µn,νn(t)− vn(t) ∈ −ψ(t)∂[dC(t)](uϕn,µn,νn(t)) a.e. t ∈ [0, 1],

where ψ(t) = 2c(t)+ v̇(t) for all t ∈ [0, 1], and ∂[dC(t)] denotes the subdifferential of
the distance function dC(t) : x 7→ d(x,C(t)). Since (uϕn,µn,νn) converges uniformly
to u∞(.), by (∗∗) and by virtue of a closure-type lemma in ([13], Theorem VI-4), we
get

u̇∞(t) ∈ −ψ(t)∂[dC(t)](u
∞(t)) +

∫

Z
[
∫

S
f(t, τ(t)u∞, s, z)µ∞t (ds)] ν∞t (dz),

with u∞(s) = ϕ∞(s), for all s ∈ [−r, 0] and u∞(t) ∈ C(t) for all t ∈ [0, 1]. So, we
have necessarily u∞(.) = uϕ∞,µ∞,ν∞(.), where uϕ∞,µ∞,ν∞ is the unique continuous
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solution (Cf. Proposition 2.1) of the FEI

(IK,H,R)





u̇ϕ∞,µ∞,ν∞(t) ∈ −N(C(t);uϕ∞,µ∞,ν∞(t))
+

∫
Γ(t)[

∫
S f(t, τ(t)uϕ∞,µ∞,ν∞ , s, z)µ∞t (ds)]µ∞t (dz),

uϕ∞,µ∞,ν∞(s) = ϕ∞(s),∀s ∈ [−r, 0].

Claim 2. inf(PK,H,R) = min(PK,H,R).
As O is dense in R for the stable topology (see e.g. [14], [17], [21]), it is enough

to show that the mapping

Ψ : (ϕ, µ, ν) →
∫ 1

0
[
∫

Z
[
∫

S
I(t, uϕ,µ,ν(t), s, z) µt(ds)]νt(dz)] dt

is continuous on K×H×R. This fact follows easily from Claim 1 and the arguments
therein. Indeed let (ϕn, µn, νn) be a sequence in K × H × R with ϕn → ϕ ∈ K
in the Banach space C0, µn → µ ∈ H in probability, and νn → ν ∈ R stably.
Then (uϕn,µn,νn) converges uniformly on [−r, 1] to a continuous function uϕ,µ,ν ∈
CE([−r, 1]) with uϕ,µ,ν = ϕ on [−r, 0], and

{
u̇ϕ,µ,ν(t) ∈ −N(C(t);uϕ,µ,ν(t))
+

∫
Γ(t)[

∫
S f(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz), a.e. t ∈ [0, 1].

The continuity of Ψ follows because (δuϕn,µn,νn⊗µn⊗νn) stably converges to δuϕ,µ,ν⊗
µ⊗ ν and I is a L1-bounded Carathéodory integrand. ¤

Now we are able to present two variational properties for the value function
associated to a cost function mentioned above. We only deal with the lower semi-
continuous cost with the upper semicontinuous case being analoguous.

Proposition 4.1. Assume that the hypotheses of Theorem 4.1 are satisfied. Let
uϕ,µ,ν be the unique solution of

(IK,H,R)





u̇ϕ,µ,ν(t) ∈ −N(C(t);uϕ,µ,ν(t))
+

∫
Γ(t)[

∫
S f(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz),

uϕ,µ,ν(s) = ϕ(s),∀s ∈ [−r, 0];uϕ,µ,ν(t) ∈ C(t),∀t ∈ [0, 1].

Let l : E → R be a bounded lower semicontinuous function and let Vl the value
function

Vl : (t, ϕ, µ) 7→ inf
ν∈R

l(uϕ,µ,ν(t)),∀(t, ϕ, µ) ∈ [0, 1]×K ×H.

Let (li) be an increasing sequence of bounded Lipshitzean functions defined on E
converging pointwisely to l, let (ϕi) be a sequence in K converging uniformly to ϕ,
let (µi) be a sequence in H converging in probability to µ and let (ti) be a sequence
in [0, 1] converging to t, then we have

lim inf
i

Vli(t
i, ϕi, µi) ≥ Vl(t, ϕ, µ).

Proposition 4.2. Assume that the hypotheses of Theorem 4.1 are satisfied. Let
uϕ,µ,ν be the unique solution of

(IK,H,R)





u̇ϕ,µ,ν(t) ∈ −N(C(t);uϕ,µ,ν(t))
+

∫
Γ(t)[

∫
S f(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz),

uϕ,µ,ν(s) = ϕ(s),∀s ∈ [−r, 0];uϕ,µ,ν(t) ∈ C(t),∀t ∈ [0, 1].
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Let h : [0, 1]×E×S×Z → R+ be a L1-bounded normal integrand, that is h(t, ., ., .)
is lower semicontinuous on E×S×Z and h is L([0, 1])×B(E)×S×Z)-measurable
and is dominated by a positive Lebesgue-integrable function and let

Wh(ϕ, µ) = inf
ν∈R

∫ 1

0
[
∫

Γ(t)
[
∫

S
h(t, uϕ,µ,ν(t), s, z)µt(ds)] νt(dz)]dt.

Let (hi) be an increasing sequence of L1-bounded Carathéodory integrands defined
on [0, 1]× E × S × Z such that h = supi h

i, let (ϕi) be a sequence in K converging
uniformly to ϕ, let (µi) be a sequence in H converging in probability to µ ∈ H. Then
we have

lim inf
i

Whi(ϕi, µi) ≥ Wh(ϕ, µ),

where for all i,

Whi(ϕi, µi) := inf
ν∈R

∫ 1

0
[
∫

Γ(t)
[
∫

S
hi(t, uϕi,µi,ν(t), s, z)µi

t(ds)]νt(dz)]dt.

Proof. We omit the details of the proofs since they are very similar to these of ([17],
Prop.3.1.4-3.1.5). We only observe that the function Ih where

Ih(ϕ, µ, ν) =
∫ 1

0
[
∫

Z
[
∫

S
h(t, uϕ,µ,ν(t), s, z)µt(ds)] νt(dz)]dt.

is lower semicontinuous on the compact space K×H×R since it is the supremum
of the continuous functions Ihi

Ihi(ϕ, µ, ν) =
∫ 1

0
[
∫

Z
[
∫

S
hi(t, uϕ,µ,ν(t), s, z)µt(ds)] νt(dz)]dt.

so that Wh is lower semicontinuous on the compact space K ×H. ¤
Remarks. The conclusions of Theorem 4.1 and Propositions 4.2-4.3 may fail if

one assumes that H is only compact for the stable topology (instead of the topology
of convergence in probablity) because the fiber product theorem is not valid: the
sequence (δτ(.)uϕn,µn,µn ⊗µn⊗ νn) does not necessarily stably converges to δτ(.)u∞ ⊗
µ∞ ⊗ ν∞. See [41] for a counter example.

We shall establish some new properties of the lower value function of a control
problem governed by a nonconvex sweeping process in the particular case when τ
is the zero mapping. Briefly we will deal with an undelayed evolution inclusion
governed by nonconvex sweeping process. Our aim is to produce a viscosity type
solution to this kind of evolution inclusion where the controls are Young measures.
This shed a new light on the classical Hamilton-Jacobi-Bellman equation associated
to ordinary differential equations. For this purpose we will impose some restrictions.
However, the reader will see that these conditions are necessary even for classical
ODE. We will assume that

(K1) f : [0, 1] × E × S × Z → E is bounded, say, ||f(t, x, s, z)|| ≤ M , for all
(t, x, s, z) ∈ [0, 1]×E×S×Z, continuous on [0, 1]×E×S×Z and uniformly
Lipschitzean in x ∈ E,

(K2) J : [0, 1] × E × S × Z → R is bounded, say, |J(t, x, s, z)| ≤ N , for all
(t, x, s, z) ∈ [0, 1]× E × S × Z, continuous on [0, 1]× E × S × Z,
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(K3) C : [0, 1] → E is a k-Lipschitzean multifunction with nonempty compact
ρ-proximal values in E, that is

|d(x,C(t))− d(y, C(s))| ≤ ||x− y||+ k|t− s|
∀(x, y ∈ E and ∀(s, t) ∈ [0, 1],

(K4) Assume further that H and R are the set of all Lebesgue-measurable map-
pings from [0, 1] into M1

+(S) and M1
+(Z) respectively. In particular, H

and R are compact for the stable topology in the space of Young measures
Y([0, 1], S) and Y([0, 1], Z) respectively.

By virtue of Theorem 1.5 in [21], for each τ ∈ [0, 1] and each x ∈ C(τ), for each
µ ∈ H and for each ν ∈ R, there is a unique absolutely continuous solution ux,µ,ν

of the evolution inclusion



u̇x,µ,ν(t) ∈ −N(C(t);ux,µ,ν(t))
+

∫
Z [

∫
S f(t, ux,µ,ν(t), s, z)µt(ds)] νt(dz), a.e. t ∈ [τ, 1],

ux,µ,ν(τ) = x ∈ C(τ).

Furthermore, ||u̇x,µ,ν(t)|| ≤ k + 2M for all (t, x, µ, ν). See e.g. ([21], Prop. 1.1).
Note that τ ∈ [0, 1] denotes here the intermediate time, and there is no risk of
confusion with the mapping τ given in the above functional evolution inclusions.
Before going further, it is worthy to recall [38] that ux,µ,ν is solution of the above
evolution inclusion iff




u̇x,µ,ν(t) ∈ −(k + 2M)∂[dC(t](ux,µ,ν(t))
+

∫
Z [

∫
S f(t, ux,µ,ν(t), s, z)µt(ds)] νt(dz), a.e. t ∈ [τ, 1],

ux,µ,ν(t) ∈ C(t),∀t ∈ [τ, 1],
ux,µ,ν(τ) = x ∈ C(τ).

The following is a dynamic programming principle theorem is similar to Theorem
3.2.1 in [17], using the fiber product lemma for Young measures (see Proposition
1.1 or [17], Theorem 2.3.1).

Theorem 4.2. Assume that (K1), (K2), (K3), (K4) are satisfied. Let us consider
the lower value function

UJ(τ, x) := sup
ν∈R

inf
µ∈H

{
∫ 1

τ
[
∫

Z
[
∫

S
J(t, ux,µ,ν(t), s, z) µt(ds)]νt(ds)] dt},

where ux,µ,ν is the unique trajectory solution of




u̇x,µ,ν(t) ∈ −N(C(t);ux,µ,ν(t))
+

∫
Z [

∫
S f(t, ux,µ,ν(t), s, z)µt(ds)] νt(dz), a.e. t ∈ [τ, 1],

ux,µ,ν(τ) = x ∈ C(τ).

Then for any σ ∈]0, 1[ with τ + σ < 1,

UJ(τ, x) = sup
ν∈R

inf
µ∈H

{
∫ τ+σ

τ
[
∫

S
J(ux,µ,ν(t), s, z) µt(ds)]νt(ds)] dt

+ UJ(τ + σ, ux,µ,ν(τ + σ))},
where
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UJ(τ + σ, ux,µ,ν(τ + σ)) =

sup
γ∈R

inf
β∈H

∫ 1

τ+σ
[
∫

Z
[
∫

S
J(vx,β,γ(t), s, z) βt(ds)]γt(ds)] dt,

where vx,β,γ denotes the trajectory solution of the above dynamic associated to the
controls (β, γ) ∈ H ×R with intial condition vx,β,γ(τ + σ) = uϕ,µ,ν(τ + σ).

We will use a technical result which extends Lemma 2.7 in [16].

Lemma 4.1. Assume that (K1), (K2), (K3), (K4) are satisfied. Let (t0, x0) ∈ [0, 1]×
C(t0). Assume that Λ1 : [0, 1] × E × M1

+(S) × M1
+(Z) → R is a continuous

integrand and Λ2 : [0, 1]× E ×M1
+(Z) → R is an upper semicontinuous integrand

such that, for any bounded subset B of E, Λ2|[0,1]×B×M1
+(Z) is bounded, and assume

that Λ := Λ1 + Λ2 satisfies the following condition

inf
µ∈M1

+(S)
sup

ν∈M1
+(Z)

Λ(t0, x0, µ, ν) < −η < 0 for some η > 0.

Then there is µ ∈M1
+(S) and σ > 0 such that

sup
ν∈R

∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µ, νt)dt < −ση/2,

where ux0,µ,ν denotes the unique trajectory solution of
{

u̇x0,µ,ν(t) ∈ −N(C(t);ux0,µ,ν(t)) +
∫
Z [

∫
S f(t, ux0,µ,ν(t), z)µ(ds)] νt(dz)

ux0,µ,ν(t0) = x0 ∈ C(t0),

associated with the controls (µ, ν) ∈M1
+(S)×R.

Proof. By hypothesis,

inf
µ∈M1

+(S)
sup

ν∈M1
+(Z)

Λ(t0, x0, µ, ν) < −η < 0,

that is,
inf

µ∈M1
+(S)

sup
ν∈M1

+(Z)

[Λ1(t0, x0, µ, ν) + Λ2(t0, x0, ν)] < −η < 0.

As the function Λ1 is continuous, the function

µ 7→ sup
ν∈M1

+(Z)

Λ1(t0, x0, µ, ν)

is continuous on M1
+(S), so is the function

µ 7→ sup
ν∈M1

+(Z)

[Λ1(t0, x0, µ, ν) + Λ2(t0, x0, ν)]

= sup
ν∈M1

+(Z)

Λ1(t0, x0, µ, ν) + sup
ν∈M1

+(Z)

Λ2(t0, x0, ν).

Hence there exists µ ∈M1
+(S) such that

sup
ν∈M1

+(Z)

Λ(t0, x0, µ, ν) = inf
µ∈M1

+(S)
sup

ν∈M1
+(Z)

Λ(t0, x0, µ, ν).
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As the function (t, x) 7→ supν∈M1
+(Z) Λ1(t, x, µ, ν) is continuous and the function

(t, x) 7→ supν∈M1
+(Z) Λ2(t, x, ν) is upper semicontinuous, there is ζ > 0 such that

sup
ν∈M1

+(Z)

Λ(t, x, µ, ν) < −η/2,

for 0 < t− t0 ≤ ζ and ||x− x0|| ≤ ζ. For all ν ∈ R, we recall the estimate (see also
the proof of Theorem 4.1)

||u̇x0,µ,ν(t)|| ≤ k + 2M a.e.

Thus for σ > 0 such that σ(k + 2M) ≤ ζ, we get

||ux0,µ,ν(t)− ux0,µ,ν(t0)|| ≤ ζ,

for all t ∈ [t0, t0 + σ] and for all ν ∈ R. Hence the functions
Λ(t, ux0,µ,ν(t), µ, νt) bounded and Lebesgue-measurable on [t0, t0 + σ]. Then by
integrating

∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µ, νt)dt ≤
∫ t0+σ

t0

[ sup
ν′∈M1

+(Z)

Λ(t, ux0,µ,ν′(t), µ, ν ′)]dt

< −ση/2 < 0,

for all ν ∈ R and the result follows. ¤
Theorem 4.3. (Existence of viscosity solution)
Assume that (K1), (K2), (K3), (K4) are satisfied. Let us consider the lower value
function

UJ(τ, x) := sup
ν∈R

inf
µ∈H

{
∫ 1

τ
[
∫

Z
[
∫

S
J(t, ux,µ,ν(t), s, z) µt(ds)]νt(dz)] dt}.

Let us consider the upper Hamiltonian

H+(t, x, y) = inf
µ∈M1

+(S)
sup

ν∈M1
+(Z)

{〈y, f̃(t, x, µ, ν)〉+ J̃(t, x, µ, ν)},

where
f̃(t, x, µ, ν) :=

∫

Z
[
∫

S
f(t, x, s, z)µ(ds)]ν(dz),

J̃(t, x, µ, ν) :=
∫

Z
[
∫

S
J(t, x, s, z)µ(ds)]ν(dz),

and the perturbed Hamiltonian

H(t, x, y) := H+(t, x, y) + δ∗(y,−(k + 2M)∂[dC(t)](x)).

Then UJ is a viscosity subsolution of the perturbed Hamilton-Jacobi-Bellman equa-
tion

Ut(t, x) + H+(t, x,∇U(t, x)) + δ∗(∇U(t, x),−(k + 2M)∂[dC(t)](x)) = 0,

that is, if for any ϕ ∈ C1([0, 1]× E) for which UJ − ϕ reaches a local maximum at
(t0, x0) ∈ Graph C, then

∂ϕ

∂t
(t0, x0) + H+(t0, x0,∇ϕ(t0, x0))
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+δ∗(∇ϕ(t0, x0),−(k + 2M)∂[dC(t0)](x0)) ≥ 0.

Proof. We will make use of some arguments developed in [26], [24], [16], [17]. As-
sume by contradiction that there exists a ϕ ∈ C1([0, 1]× E) and a point (t0, x0) in
the graph of C for which

∂ϕ

∂t
(t0, x0) + H+(t0, x0,∇ϕ(t0, x0))

+ δ∗(∇ϕ(t0, x0),−(k + 2M)∂[dC(t0)](x0)) ≤ −η,

for some η > 0. Applying Lemma 4.1 to Λ := Λ1 + Λ2, with

Λ1 = J̃ + 〈∇ϕ, f̃〉+
∂ϕ

∂t
,

and

Λ2(t, x) = δ∗(∇ϕ(t, x),−(k + 2M)∂[dC(t)](x)), ∀(t, x) ∈ [0, 1]× E,

provides µ ∈M1
+(S) and σ > 0 such that

sup
ν∈R

{
∫ t0+σ

t0

[
∫

Z
[
∫

S
J(t, ux0,µ,ν(t), s, z)µ(ds)]νt(dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[
∫

S
〈∇ϕ(t, ux0,µ,ν(t)), f(t, ux0,µ,ν(t), s, z)〉µ(ds)]νt(dz)] dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ux0,µ,ν(t)),−(k + 2M)∂[dC(t)](ux0,µ,ν(t)))dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,µ,ν(t))dt}

≤ −ση/2.

Thus

(4.3.1) sup
ν∈R

inf
µ∈H

{
∫ t0+σ

t0

[
∫

Z
[
∫

S
J(t, ux0,µ,ν(t), s, z)µt(ds)]νt(dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[
∫

S
〈∇ϕ(t, ux0,µ,ν(t)), f(t, ux0,µ,ν(t), s, z)〉µt(ds)]νt(dz)] dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ux0,µ,ν(t)),−(k + 2M)∂[dC(t)](ux0,µ,ν(t)))dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,µ,ν(t))dt}

≤ −ση/2,

where ux0,µ,ν is the trajectory solution associated with the control (µ, ν) ∈ H ×R
of 




u̇x0,µ,ν(t) ∈ −N(C(t);ux0,µ,ν(t))
+

∫
Z [

∫
S f(t, ux0,µ,ν(t), s, z)µt(ds)] νt(dz), a.e. t ∈ [0, 1],

ux,µ,ν(t0) = x0 ∈ C(t0).
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From Theorem 4.2 (of dynamic programming) (see e.g [17], Theorem 3.2.1) we
deduce

(4.3.2) UJ(t0, x0) = sup
ν∈R

inf
µ∈H

{
∫ t0+σ

t0

[
∫

Z
[
∫

S
J(t, ux0,µ,ν(t), z)µt(ds)] νt(dz)]dt

+ UJ(t0 + σ, ux0,µ,ν(t0 + σ))}.
Since UJ − ϕ has a local maximum at (t0, x0), so for σ small enough

(4.3.3) UJ(t0, x0)−ϕ(t0, x0)

≥ UJ(t0 + σ, ux0,µ,ν(t0 + σ))− ϕ(t0 + σ, ux0,µ,ν(t0 + σ)).

From (4.3.2) and (4.3.3) we get

(4.3.4) sup
ν∈R

inf
µ∈H

{
∫ t0+σ

t0

[
∫

Z
[
∫

S
J(t, ux,µ,ν(t), s, z)µt(ds)] νt(dz)]dt

+ϕ(t0 + σ, ux0,µ,ν(t0 + σ))− ϕ(t0, x0)} ≥ 0.

As ϕ is C1 and ux0,µ,ν is the trajectory solution of our dynamic

(4.3.5) ϕ(t0 + σ, ux0,µ,ν(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ux0,µ,ν(t)), u̇x0,µ,ν(t)〉 dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,µ,ν(t)) dt

≤
∫ t0+σ

t0

[
∫

Z
[
∫

S
〈∇ϕ(t, ux0,µ,ν(t)), f(t, ux0,µ,ν(t), s, z)〉µt(ds)]νt(dz)] dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ux0,µ,ν(t)),−(k + 2M)∂[dC(t)](ux0,µ,ν(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,µ,ν(t)) dt.

Using the estimate (4.3.5) and coming back to (4.3.4), we have a contradiction to
(4.3.1). Therefore we must have

∂ϕ

∂t
(t0, x0) + H+(t0, x0,∇ϕ(t0, x0))

+ δ∗(∇ϕ(t0, x0),−(k + 2M)∂[dC(t0)](x0)) ≥ 0.

¤

5. Control problems governed by an m-accretive operator with
Young measures

In this section the control spaces of Young measures are the same as given in
section 4. Let us consider now a closed convex valued m-accretive operator A(t) :
E ⇒ E (t ∈ [0, 1]) satisfying the hypotheses (H1) (H2) (H3) of Proposition 3.4 and
a compact set K in C([−r, 0]) with ϕ(0) ∈ D for all ϕ ∈ K where D := D(A(t)) for
all t ∈ [0, 1]. Let us consider a mapping g : [0, 1]× C0 × S × Z → E satisfying:
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(i) for every t ∈ [0, 1], g(t, ., ., .) is continuous on C0 × S × Z,
(ii) for every (u, s, z) ∈ C0 × S × Z, g(., u, s, z) is Lebesgue-measurable on [0, 1],
(iii) there is a constant c > 0 such that ||g(t, u, s, z)|| ≤ c for all (t, u, s, z) in
[0, 1]× C0 × S × Z,
(iv) there exists a Lipschitz constant η > 0 such that

||g(t, u1, s, z)− g(t, u2, s, z)|| ≤ η ||u1 − u2||0
∀(t, u1, s, z), (t, u2, s, z) ∈ [0, 1]× C0 × S × Z.
Let H be a subset of Young measures Y([0, 1], S). We consider the solutions sets of
the two following functional evolution inclusions

(JK,H,O)
{

u̇ϕ,µ,ζ(t) ∈ −A(t)uϕ,µ,ζ(t) +
∫
S g(t, τ(t)uϕ,µ,ζ , s, ζ(t))µt(ds),

uϕ,µ,ζ(s) = ϕ(s),∀s ∈ [−r, 0]; uϕ,µ,ζ(t) ∈ D, ∀t ∈ [0, 1],

where ϕ ∈ K, µ ∈ H, and ζ belongs to the set SΓ of all original controls, i.e.
Lebesgue-measurable selections of Γ, and

(JK,H,R)





u̇ϕ,µ,ν(t) ∈ −A(t)uϕ,µ,ν(t)
+

∫
Γ(t)[

∫
S g(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz),

uϕ,µ,ν(s) = ϕ(s),∀s ∈ [−r, 0]; uϕ,µ,ζ(t) ∈ D, ∀t ∈ [0, 1],

where ϕ ∈ K, µ ∈ H and ν ∈ R Taking Proposition 3.1 into account, for each
(ϕ, µ, ζ) ∈ K ×H ×O (resp. (ϕ, µ, ν) ∈ K ×H ×R), there is a unique continuous
solution uϕ,µ,ζ to (JK,H,O) (resp. uϕ,µ,ν to (JK,H,R). Indeed, it is enough to observe
that, for each (µ, ν) ∈ H ×R, the function

(t, u) ∈ [0, 1]× C0 → gµ,ν(t, u) :=
∫

Γ(t)
[
∫

S
g(t, u, s, z)µt(ds)] νt(dz)

inherits the properties of the function g given in this proposition, so that for each
(ϕ, µ, ν) ∈ K ×H ×R, there is a unique solution uϕ,µ,ν of the functional evolution
inclusion

u̇(t) ∈ −A(t)u(t) + gµ,ν(t, τ(t)u), t ∈ [0, 1]; u(s) = ϕ(s),∀s ∈ [−r, 0].

Now let us consider a Bolza-type problem for the above functional evolution inclu-
sion and discuss the continuous dependence of the solutions uϕ,µ,ν with respect to
the data (ϕ, µ, ν) ∈ K ×H×R and the compactness (with respect to the topology
of uniform convergence) of the solutions set {uϕ,µ,ν : (ϕ, µ, ν) ∈ K ×H ×R}. This
will allow to obtain the semicontinuity property of the value function associated
to a given bounded lower semicontinuous (resp. upper semicontinuous) function
l : E → R, namely

(ϕ, µ, t) 7→ inf
ν∈R

l(uϕ,µ,ν(t))

and
(ϕ, µ, t) 7→ sup

ν∈R
l(uϕ,µ,ν(t))

respectively and even for the case of when the cost function is an integral functional
in the same way as in Proposition 4.2.
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Theorem 5.1. Assume that H is compact for the convergence in probability, I :
[0, 1]×E×S×Z → R is a L1- bounded Carathéodory integrand, (that is, I(t, ., ., .) is
continuous on E×S×Z, for all t ∈ [0, 1] and I(., x, s, z) is Lebesgue-measurable on
[0, 1], for all (x, s, z) ∈ E × S × Z) which satisfies the condition: there is a positive
Lebesgue integrable function h such that |I(t, x, s, y)| ≤ h(t) for all (t, x, s, z) ∈
[0, 1]× E × S × Z. Let us consider the control problems

(PK,H,O) : inf
(ϕ,µ,ζ)∈K×H×O

∫ 1

0
[
∫

S
I(t, uϕ,µ,ζ(t), s, ζ(t))µt(ds)] dt

and

(PK,H,R) : inf
(ϕ,µ,ν)∈K×H×R

∫ 1

0
[
∫

Γ(t)
[
∫

S
I(t, uϕ,µ,ν(t), s, z))µt(ds)]νt(dz)] dt

where uϕ,µ,ζ (resp. uϕ,µ,ν) is the unique solution associated to (ϕ, µ, ζ)
(resp. (ϕ, µ, ν)) to the FEI (JK,H,O) (resp. (JK,H,R). Then one has inf(PK,H,O) =
min(PK,H,R).

Proof. Claim 1. The mapping (ϕ, µ, ν) 7→ uϕ,µ,ν defined on the compact space
K ×H ×R with value in the Banach space CE([−r, 1]) of all continuous mappings
from [−r, 1] into E endowed with the sup norm has a compact graph.

Let (ϕn, µn, νn) be a sequence in K × H × R. As K is compact in CE([−r, 0]),
we may suppose that (ϕn) converges uniformly on [−r, 0] to a function ϕ∞ ∈
CE([−r, 0]). As H ⊂ Y(Ω,S, P ;S) is compact for the convergence in probability, we
may assume that (µn) converges in probability to a Young measure µ∞ ∈ H. As R
is compact for the stable convergence, we may suppose that (νn) stably converges
to a Young measure ν∞ with ν∞t (Γ(t)) = 1 a.e.. In view of Proposition 3.1, the
sequence (uϕn,µn,νn) is relatively compact in CE([−r, 1]), so we may suppose that
(uϕn,µn,νn) converges uniformly on [−r, 1] to a continuous function u∞ ∈ CE([−r, 1])
with u∞ = ϕ∞ on [−r, 0], and (u̇ϕn,µn,νn) σ(L2, L2) converges to u̇∞ ∈ L2

E([0, 1]).
So, for every t ∈ [0, 1], (τ(t)uϕn,µn,νn) converges to τ(t)u∞ in the Banach space C0.
By Proposition 1.1, we conclude that (δτ(.)uϕn,µn,νn ⊗ µn ⊗ νn) stably converges to
δτ(.)u∞ ⊗ µ∞ ⊗ ν∞. Let h ∈ L2

E([0, 1]). As the mapping g is bounded by (iii), the
integrand (t, u, s, z) 7→ 〈h(t), g(t, u, s, z)〉 defined on [0, 1]×C0×S×Z is L1-bounded.
Let us set

vn(t) =
∫

Z
[
∫

S
g(t, τ(t)uϕn,µn,νn , s, z)µn

t (ds)] νn
t (dz)], ∀t ∈ [0, 1]

and

v∞(t) =
∫

Z
[
∫

S
g(t, τ(t)u∞, s, z)µ∞t (ds)] ν∞t (dz)], ∀t ∈ [0, 1].

Then, by the very property of the stable convergence (cf. Proposition 1.2), we get

lim
n→∞

∫ 1

0
〈h(t), vn(t)〉 dt =

∫ 1

0
〈h(t), v∞(t)〉 dt.

Now, using the weak L2
E([0, 1])-convergence of (u̇ϕn,,µn,νn) to u̇∞ and the preceding

limit, we conclude that the sequence (u̇ϕn,µn,νn − vn) weakly L2
E([0, 1])-converges to
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u̇∞ − v∞. As uϕn,µn,νn is the solution of the corresponding FEI, we have

(∗) u̇ϕn,µn,νn(t)− vn(t) ∈ −A(t)uϕn,µn,νn(t) a.e. t ∈ [0, 1],

with uϕn,µn,νn = ϕn on [−r, 0]. Since (uϕn,µn,νn) converges uniformly to u∞, by
virtue of a closure-type lemma in ([14], Lemma 2.3) we conclude that

u̇∞(t) ∈ −A(t)u∞(t) +
∫

Z
[
∫

S
g(t, τ(t)u∞, s, z)µ∞t (ds)] ν∞t (dz),

with u∞ = ϕ∞ on [−r, 0]. So, by virtue of the uniqueness of the solution of our
FEI (cf. Proposition 3.1), we have u∞(.) = uϕ∞,µ∞,ν∞(.), where uϕ∞,µ∞,ν∞ is the
unique continuous solution of the FEI

(IK,H,R)
{

u̇ϕ∞,µ∞,ν∞(t) ∈ −A(t)uϕ∞,µ∞,ν∞(t)
+

∫
Γ(t)[

∫
S g(t, τ(t)uϕ∞,µ∞,ν∞ , s, z)µ∞t (ds)]µ∞t (dz).

Claim 2. inf(PK,H,R) = min(PK,H,R).
As O is dense in R for the stable topology (see e.g. [14], [17], [21]), it is sufficient

to show that the mapping

Ψ : (ϕ, µ, ν) →
∫ 1

0
[
∫

Z
[
∫

S
I(t, uϕ,µ,ν(t), s, z))µt(ds)]νt(dz)] dt

is continuous on K×H×R. This fact easily follows from Claim 1 and the arguments
therein. Indeed let (ϕn, µn, νn) be a sequence in K × H ×R with ϕn → ϕ ∈ K in
the Banach space C0, µn → µ ∈ H in probability, and νn → ν ∈ R stably. Then
uϕn,µn,νn converges uniformly on [−r, 1] to a continuous function uϕ,µ,ν ∈ CE([−r, 1])
with uϕ,µ,ν = ϕ on [−r, 0], and

{
u̇ϕ,µ,ν(t) ∈ −A(t)uϕ,µ,ν(t)
+

∫
Γ(t)[

∫
S g(t, τ(t)uϕ,µ,ν , s, z)µt(ds)] νt(dz), a.e. t ∈ [0, 1].

The continuity of Ψ follows because (δuϕn,µn,νn⊗µn⊗νn) stably converges to δuϕ,µ,ν⊗
µ⊗ ν and J is a L1-bounded Carathéodory integrand. ¤

Let us consider now a viscosity variant of Theorem 4.3 concerning our second dy-
namic model. For simplicity, we will assume that A(t) : E → ck(E)∪{∅} (t ∈ [0, 1])
is a convex compact-valued m-accretive operator with closed domain D(A) satisfy-
ing the assumption (H1) of Proposition 3.1 and such that A : [0, 1]×D(A) → ck(E)
is upper semicontinuous. It is obvious that (H2), (H3)(a), (H3)(b) are satisfied. In-
deed, (H2) is satisfied by using property (jj) for m-accretive operators and the upper
semicontinuity assumption of A. (H3)(a) is obvious: for any Lebesgue-measurable
mapping u : [0, 1] → D(A), the multifunction t 7→ A(t)u(t) is Lebesgue-measurable
because A : [0, 1]×D(A) → ck(E) is upper semicontinuous. Let g : [0, 1] → E be a
Lebesgue-measurable mapping and λ > 0. Then the graph Gr(hλ) of the mapping
hλ : t 7→ (IE + λA(t))−1g(t) is given by

Gr(hλ) = {(t, y) ∈ [0, 1]×D(A) : g(t) ∈ y + λA(t)y}
= {(t, y) ∈ [0, 1]×D(A) : d(g(t), y + λA(t, y)) = 0}

= {(t, y) ∈ [0, 1]×D(A) : inf
n
||g(t)− (y + λσn(t, y))|| = 0}
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where (σn) is a countable dense B([0, 1])⊗B(D(A))-measurable selections of A (see
e.g. ([13], Theorem III.9). Since each function (t, y) ∈ [0, 1] × E → ||g(t) − (y +
λσn(t, y))|| is L([0, 1])⊗B(E)-measurable, the graph of hλ belongs to L([0, 1])⊗B(E).
Furthermore, for any continuous function v : [0, 1] × E → E, the function G :
(t, y, x) 7→ δ∗(v(t, y), A(t)x) is upper semicontinuous on [0, 1] × E × D(A) (e.g.
A(t) = ∂ft where f : [0, 1] × E → R is a convex continuous integrand and ∂ft

denotes the subdifferential of the convex continuous function ft). Further, in this
special case, (H3)(c) is superfluous because the upper semicontinuity assumption
on A allows to apply the classical closure type lemma in ([13], Theorem VI-4) in
the proofs of existence results (see [14], Theorem 2.4 for details) and the continuous
dependence of the solution uϕ,µ,ν with respect to the data (ϕ, µ, ν) ∈ K × H × R
given in Theorem 5.1. If A(t) is constant, (H1) is superfluous.
We will assume that

(L1) g : [0, 1] × E × S × Z → E is bounded, continuous, uniformly Lipschitzian
in x ∈ E and the family (g(., ., s, z))(s,z)∈S×Z is equicontinuous,

(L2) J : [0, 1] × E × S × Z → R is a bounded, continuous, and the family
(J(, ., ., s, z))(s,z)∈S×Z is equicontinuous.

(L3) H and R are the set of all Lebesgue-measurable mappings from [0, 1] into
M1

+(S) and M1
+(Z) respectively. In particular, H and R are compact

for the stable topology in the space of Young measures Y([0, 1], S) and
Y([0, 1], Z) respectively.

The preceding considerations allow to obtain a variant of Theorem 4.3.

Theorem 5.2. Assume that (L1), (L2) (L3) are satisfied and A(t) : E → ck(E)∪{∅}
(t ∈ [0, 1]) is a convex compact-valued m-accretive operator with closed domain D(A)
satisfying (H1) of Proposition 3.1 and such that A : [0, 1]×D(A) → ck(E) is upper
semicontinuous. Let us consider the lower value function

UJ(τ, x) = sup
ν∈R

inf
µ∈H

{
∫ 1

τ
[
∫

Z
[
∫

S
J(t, ux,µ,ν(t), s, z) µt(ds)]νt(ds)] dt},

where ux,µ,ν is the unique trajectory solution of





u̇x,µ,ν(t) ∈ −A(t)ux,µ,ν(t)
+

∫
Z [

∫
S g(t, ux,µ,ν(t), s, z)µt(ds)] νt(dz), a.e. ∈ [τ, 1],

ux,µ,ν(τ) = x ∈ D(A).

Let us consider the upper Hamiltonian defined on [0, 1]×D(A)× E by
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H+(t, x, y) = inf
µ∈M1

+(S)
sup

ν∈M1
+(Z)

{〈y,

∫

Z
[
∫

S
g(t, x, s, z)µt(ds)]νt(dz)〉

+
∫

Z
[
∫

S
J(t, x, s, z)µt(ds)]νt(dz)}.

Then UJ is a viscosity subsolution of the perturbed Hamilton-Jacobi-Bellman equa-
tion Ut(t, x)+H+(t, x,∇U(t, x))+δ∗(∇U(t, x)),−A(t)x) = 0, that is, if for any ϕ ∈
C1([0, 1]×E) for which UJ −ϕ reaches a local maximum at (t0, x0) ∈ [0, 1]×D(A),
then

∂ϕ

∂t
(t0, x0) + H+(t0, x0,∇ϕ(t0, x0)) + δ∗(∇ϕ(t0, x0),−A(t0)x0) ≥ 0.

In particular, if A is single-valued, then UJ is a viscosity solution of the above
perturbed Hamilton-Jacobi-Bellman equation.

Proof. It is similar to the proof of Theorem 4.3 and Theorem 3.2.1 in [17] using
the DP principle ([17], Theorem 3.2.1). Equicontinuity assumptions on J and g are
necessary to prove that UJ is a viscosity solution of the associated HJB equation,
in the particular case when A is single-valued, by applying Lemma 3.2.2(b) in [17].
For shortness, we omit the details.

¤
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Portugaliae Matematica, Vol 53(2) (1996), 187–208.

[6] H. Benabdellah, C. Castaing, A. Salvadori and A. Syam, Nonconvex sweeping process, J. Appl.
Anal. Vol 2(2) (1996), 217-240.

[7] H. Benabdellah, C. Castaing and A. Salvadori, Compactness and discretization methods for
differential inclusions and evolution problems, Atti. Sem. Fis. Univ. Modena, Vol 95, (1997),
9–51.

[8] M. Bounkhel and L. Thibault, Sweeping process with nonconvex closed sets with bounded
variation (to appear).

[9] M. Bounkhel and L. Thibault, On various notions of regularity of sets (to appear).
[10] M. Bounkhel and L. Thibault, Further characterizations of regular sets in Hilbert spaces and

their applications to nonconvex sweeeping process (to appear).
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d’Analyse Convexe, Montpellier (1984), exposé 1.
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Département de Mathématiques, Université Montpellier II, 34095 Montpellier Cedex 5, France

E-mail address: castaing@math.univ-montp2.fr

A. Jofre
Departamento de Ingenieria Matematica, Universidade de Chile, Casilla, 170/3, Correo 3, Santiago,
Chile

E-mail address: ajofre@dim.uchile

A. Salvadori
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