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QUALITATIVE APPROACHES TO BOUNDARY VALUE
PROBLEMS OF FUZZY DIFFERENTIAL EQUATIONS BY
THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

SEIJI SAITO

Dedicated to the memory of Dr. Michihiro Nagase

Abstract. In this paper we introduce a parametric representation of fuzzy num-
bers and definitions of the differential and integral of fuzzy functions. More-
over we show that fuzzy numbers mean bounded continuous curves of the two-
dimensional metric space. Finally we consider boundary value problems con-
cerning fuzzy differential equations and fuzzy boundary conditions. By applying
Schauder’s fixed point theorem and the contraction principle the existence and
uniqueness theorems are given in a similar way to the theory of ordinary differ-
ential equations.

1. Introduction

There have been many fruitful results on the representations of fuzzy numbers,
differentials and integrals of fuzzy functions ( see, e.g., in Goetschel-Voxman [7, 8],
Dubois-Prade [2, 3, 4, 5], Puri-Ralescue [13], Furukawa [6], Kaleva [10, 11]). They
established fundamental results concerning differentials, integrals and fuzzy differen-
tial equations of fuzzy functions which map R to a set of fuzzy numbers. However,
it seems to be difficult to apply these results to all the practical and significant
problems. In this study we introduce a parametric representation(see [15]) corre-
sponding to the representation of fuzzy numbers due to Goetschel-Voxman so that
it is easy to solve fuzzy differential equations.

In Buckley [1], Kaleva [10, 11], Park [12] and Song [19], etc. various types of
conditions were obtained for the existence and the uniqueness of solutions to fuzzy
differential equations. By the parametric representation stability theory of fuzzy
differential equations can be easily treated in an analogous way with the real analysis
(see [14]). In Section 2 we denote a fuzzy number x by (x1, x2), where x1, x2 are
endpoints of the α−cut set of the membership function µx, respectively. Then we
consider a metric space which includes the set of fuzzy numbers and also note that
x1, x2 are continuous. In Section 3 we give definitions of the differential and integral
of fuzzy functions and sufficient conditions for fuzzy functions to be differentiable or
integrable. In Section 4 we treat a fuzzy differential equation x

′′
= f(t, x, x

′
) with

fuzzy boundary conditions x(a) = A, x(b) = B ,where f is a fuzzy valued function
defined on J = [a, b] in the set of real numbers R and A,B are fuzzy numbers.
Moreover we discuss the existence and the uniqueness of solutions for the fuzzy
boundary problems.
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2. Parametric Representation of Fuzzy Numbers

Denote I = [0, 1]. The following definition means that fuzzy numbers are identi-
fied with membership functions.

Definition 1. Consider a set of fuzzy numbers with bounded supports as follows.

Fst
b = {µ : R → I satisfying (i)-(iv) below}.

(i) There exists a unique m ∈ R such that µ(m) = 1.
(ii) The set supp(µ) = cl({ξ ∈ R : µ(ξ) > 0}) is bounded in R.
(iii) One of the following conditions holds:

(a) µ is strictly fuzzy convex on supp(µ), i.e.,

µ(cξ1 + (1− c)ξ2) > min[µ(ξ1), µ(ξ2)]

for ξ1, ξ2 ∈ supp(µ), 0 < c < 1;
(b) µ(m) = 1 and µ(ξ) = 0 for ξ 6= m.

(iv) µ is upper semi-continuous on R.

Remark 1. The above condition (iiia) is stronger than one in the usual case where
µ is fuzzy convex. From (iiia) it follows that µ(ξ) is strictly increasing in ξ ∈
(min supp(µ),m) and strictly decreasing in ξ ∈ (m,max supp(µ)). This condition
plays an important role in Theorem 1.

We introduce the following parametric representation of µ ∈ Fst
b as

x1(α) = min Lα(µ),

x2(α) = max Lα(µ)

for 0 < α ≤ 1 and

Lα(µ) = {ξ ∈ R : µ(ξ) ≥ α},
x1(0) = min supp(µ),

x2(0) = max supp(µ).

Let C(I) be the set of continuous functions from I to R. The following theorem
is given in [14], where the continuity of functions x1, x2 on I are proved.

Theorem 1. Denote the left-, right-end points of the α−cut set of µ ∈ Fst
b by

x1, x2, respectively. Here x1, x2 : I → R. The following properties (i)-(iii) hold.
(i) x1, x2 ∈ C(I).
(ii) max x1(α) = x1(1) = m = min x2(α) = x2(1).
(iii) One of the following statements holds:

(a) x1 is non-decreasing and x2 is non-increasing. There exists a positive
c ≤ 1 such that x1(α) < x2(α) for 0 ≤ α < c and that x1(α) = m = x2(α)
for c ≤ α ≤ 1;
(b) x1(α) = x2(α) = m for 0 ≤ α ≤ 1.

Conversely, under the above conditions (i) -(iii), if we denote

µ(ξ) = sup{α ∈ I : x1(α) ≤ ξ ≤ x2(α)}
then µ ∈ Fst

b .



BVP OF FUZZY DIFFERENTIAL EQUATIONS 123

In what follows denote µ = (x1, x2) for µ ∈ Fst
b . The parametric representation

of µ is very useful in analyzing binary operations of fuzzy numbers and qualitative
behaviors of fuzzy differential equations. From the extension principle of Zadeh, it
follows that

µx+y(ξ)

= max
ξ=ξ1+ξ2

min
i=1,2

(µi(ξi))

= max{α ∈ I : ξ = ξ1 + ξ2, ξi ∈ Lα(µi)}
= max{α ∈ I : ξ ∈ [x1(α) + y1(α), x2(α) + y2(α)]},

where µ1, µ2 are membership functions of x, y ∈ Fst
b , respectively. Thus we get

x + y = (x1 + y1, x2 + y2). In the similar way x− y = (x1 − y2, x2 − y1).
Denote a metric by

d(x, y) = sup
α∈I

(|x1(α)− y1(α)|+ |x2(α)− y2(α)|)

for x = (x1, x2), y = (y1, y2) ∈ Fst
b . We show that R ⊂ Fst

b and that Fst
b is a

complete metric space in C(I)2 in [9].

Remark 2. From the above Condition (i) a fuzzy number x = (x1, x2) means a
bounded continuous curve of R2 and x1(α) ≤ x2(α) for α ∈ I.

In the following example we illustrate typical three types of fuzzy numbers.

Example 1. Consider the following L−R fuzzy number x ∈ Fst
b with a membership

function as follows:

µx(ξ) =
{

L(m−ξ
l )+ for ξ ≤ m

R( ξ−m
r )+ for ξ > m

where m ∈ R, l > 0, r > 0 and L,R are into mappings defined on R+ = [0,∞). Let
L(ξ)+ = max(L(ξ), 0) etc. We identify µx with x = (x1, x2). Since there exist L−1

and R−1, we have x1(α) = m− L−1(α)l and x2(α) = m + R−1(α)r.
Let L(ξ) = −c1ξ + 1, where c1 > 0. We illustrate the following cases (i)-(iii).

(i) Let R(ξ) = −c2ξ + 1, where c2 > 0. Then c2l(x2 −m) = c1r(m− x1).
(ii) Let R(ξ) = −c2

√
ξ + 1, where c2 > 0. Then c2l(x2 −m)2 = c1r

2(m− x1).
(iii) Let R(ξ) = −c2ξ

2 + 1, where c2 > 0. Then c2
2l

2(x2 −m) = c2
1r(x1 −m)2.

3. Differential and Integral of Fuzzy Functions

Let J be an interval in R. Denote an Fst
b −valued function x : J → Fst

b by x(t) =
(x1, x2)(t). Here x1, x2 are functions defined on J × I to R and x1(t, α), x2(t, α) are
left- and right-end points of the α−cut set of the membership function µx(t) for the
function x at t, respectively. The α−cut set [x1(t, α), x2(t, α)] ⊂ R can be identified
by a point (x1(t, α), x2(t, α))T ∈ R2, then it can be seen that

x(t) = {(x1(t, α), x2(t, α))T ∈ R2 : α ∈ I}
for t ∈ J .

Define the continuity and differentiability of fuzzy-valued function (see [10, 11]).
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Definition 2. A function x : J → Fst
b is continuous at t ∈ J if

lim
h→0

d(x(t + h), x(t)) = 0.

Let x(t) = (x1, x2)(t) for t ∈ J. The function x is said to be differentiable at t ∈ J

if for any α ∈ I there exist
∂x1

∂t
(t, α),

∂x2

∂t
(t, α) such that

∂x1

∂t
(t, α) ≤ ∂x2

∂t
(t, α)

and µx′ (t) ∈ Fst
b , where µx′ (t)(ξ) = sup{α ∈ I : ∂x1

∂t (t, α) ≤ ξ ≤ ∂x2
∂t (t, α)}. The

function x is said to be differentiable on J if x is differentiable at any t ∈ J. Denote
dx

dt
= x

′
= (

∂x1

∂t
,
∂x2

∂t
) and it is said to be the derivative of x.

We consider the following definition of the integral of Fst
b − valued functions.

Definition 3. Let x : J → Fst
b be x(t) = (x1, x2)(t) for t ∈ J. The function x is

said to be integrable over [t1, t2], if x1, x2 are Riemann integrable over [t1, t2]. Then
we define the integral as follows:

∫ t2

t1

x(s)ds = {(
∫ t2

t1

x1(s, α)ds,

∫ t2

t1

x2(s, α)ds)T ∈ R2 : α ∈ I}.

Remark 3. Let x be an Fst
b −valued function and t ∈ J.

(i) If x : J → Fst
b is differentiable at t, we get the integral over [t1, t2] ⊂ J as

follows: ∫ t2

t1

x
′
(s)ds + x(t1) = x(t2).

(ii) If x : J → Fst
b is integrable over [t1, t2], then we have

∫ t2
t1

x(s)ds ∈ Fst
b and

d(
∫ t2

t1

x(s)ds, 0) ≤
∫ t2

t1

d(x(s), 0)ds.

(iii) If x, y are integrable Fst
b −valued functions and t1, t2 ∈ J, then

∫ t2

t1

(x(s) + y(s))ds =
∫ t2

t1

x(s)ds +
∫ t2

t1

y(s)ds.

4. Fuzzy Boundary Value Problems

Let J = [a, b] ⊂ R. In this section we consider the following fuzzy differential
equation with fuzzy boundary conditions

(4.1)
d2x

dt2
(t) = f(t, x, x

′
), x(a) = A, x(b) = B,

where t ∈ J, x = (x1, x2) ∈ Fst
b , A = (A1, A2), B = (B1, B2) ∈ Fst

b . Then we get
the following boundary value problem of ordinary differential equations

d2x1

dt2
(t) = f1(t, x1, x2, x

′
1, x

′
2),

d2x2

dt2
(t) = f2(t, x1, x2, x

′
1, x

′
2),

x1(a) = A1, x2(a) = A2,

x1(b) = B1, x2(b) = B2.
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In case where functions f1, f2 satisfy Conditions (i) - (iii) of Theorem 1, then so are
solutions of (4.1).

Putting y1 = x
′
1, y2 = x

′
2 we have

d

dt




x1

x2

y1

y2


 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







x1

x2

y1

y2




+




0
0

f1(t, x1, x2, y1, y2)
f2(t, x1, x2, y1, y2)


 .

The parameter α ∈ I is fixed. Then, denoting z = (x1, x2, y1, y2)T ∈ R4, we get

(4.2)
dz

dt
(t) = Mz + F (t, z), L(z) = c.

Here

(4.3) M =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , F (t, z) =




0
0

f1(t, z)
f2(t, z)


 , c =




A1(α)
A2(α)
B1(α)
B2(α)




for α ∈ I and L is a bounded linear operator from C(J)4 to R4 as follows:

L(z) = (x1(a, α), x2(a, α), x1(b, α), x2(b, α))T .

In this case we get the fundamental matrix

X(t) = etM =




1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1




with X(0) = E, where E is the identity matrix. Let U satisfy

L(X(·)z0) =




1 0 a 0
0 1 0 a
1 0 b 0
0 1 0 b


 z0 = Uz0

for z0 ∈ R4. It follows that

U−1 =
1

b− a




b 0 −a 0
0 b 0 −a
−1 0 1 0
0 −1 0 1


 .

We denote a norm in R4 by ‖ z ‖= |x1|+ |x2|+ |y1|+ |y2| and ‖ U ‖= sup
‖z‖=1

‖ Uz ‖.

Then ‖ U ‖= max(2, a + b) and ‖ U−1 ‖= b + 1
b− a

.
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In what follows we give the existence and the uniqueness theorems by applying
Schauder’s fixed point theorem or the contraction principle as in the similar way as
in [16] and [17]. Let r > 0. Denote a set of continuous functions from J to Fst

b by
C(J ;Fst

b ) and D = {z = (x, y) : x = (x1, x2), y = (y1, y2) ∈ C(J ;Fst
b )}. Denote a

subset in D by

S = {z = (x1, x2, y1, y2) : (x, y) ∈ D, d∞(z, 0) ≤ r}.
Here

d∞(z, z̄) = sup
t∈J

d(x(t), x̄(t)) + sup
t∈J

d(y(t), ȳ(t))

for z = (x, y), z̄ = (x̄, ȳ) ∈ S. Then the following functions

µx(t)(ξ) = sup{α ∈ I : x1(t, α) ≤ ξ ≤ x2(t, α)}
µy(t)(ξ) = sup{α ∈ I : y1(t, α) ≤ ξ ≤ y2(t, α)}

are membership functions of fuzzy numbers x(t), y(t) in Fst
b for t ∈ J, respectively.

Then it can be seen that S is a convex and closed subset in D.
In the similar way of discussion as the theory of ordinary differential equations

it follows that z ∈ S is a continuous solution of (4.2) if and only if

z(t) = X(a)U−1(c− L(qz)) +
∫ t

a
Mz(s)ds +

∫ t

a
F (s, z(s))ds

for t ∈ J, where

qz(t) =
∫ t

a
X(t)X−1(s)F (s, z(s))ds.

Putting

Q =
∫ b

a
max

d(z,0)≤r
(b− s + 1)d(f(s, z), 0)ds,

we have d∞(qz, 0) ≤ Q for z ∈ S. By Schauder’s fixed point theorem we get the
existence of solutions for (4.1).

Theorem 2. Assume that positive numbers R, r satisfy R < e−(b−a) and

r >
Q ‖ L ‖ (b + 1) ‖ U−1 ‖

e−(b−a) −R
.

Let f satisfy ∫ b

a
max

d(z,0)≤r
d(f(s, z), 0)ds ≤ rR.

If A = (A1, A2), B = (B1, B2) ∈ Fst
b satisfy

d(A, 0) + d(B, 0) ≤ r(e−(b−a) −R)
(b + 1) ‖ U−1 ‖− ‖ L ‖ Q,

then (4.1) has at least one solution in S.
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Proof. Let u ∈ S and α ∈ I be fixed. Consider the following boundary linear
problem

dz

dt
= Mz(t) + F (t, u),L(z) = c.

Then there exists a unique solution zu of the above problem such that

zu(t) = X(t)U−1(c− L(qu)) + qu(t)

= X(a)U−1(c− L(qu)) +
∫ t

a
Mzu(s)ds +

∫ t

a
F (s, u(s))ds

for t ∈ J. Denote a mapping by [V(u)](t) = zu(t) for u ∈ S, t ∈ J. Then the solution
z of (4.1) means that z is a fixed point of V in S.

We shall prove V is an into mapping. From the definition of V and ‖ X(t) ‖≤ b+1
for t ∈ J , it follows that, putting C = d(A, 0) + d(B, 0),

‖ zu(t) ‖ ≤ (b + 1) ‖ U−1 ‖ (‖ C ‖ + ‖ L ‖ d∞(qu, 0)) +
∫ t

a
‖ M ‖‖ zu(s) ‖ ds

+
∫ t

a
‖ F (s, u(s)) ‖ ds

≤ (b + 1) ‖ U−1 ‖ (‖ C ‖ + ‖ L ‖ Q) +
∫ t

a
‖ zu(s) ‖ ds + rR

for t ∈ J. By Gronwall’s inequality we have

‖ zu(t) ‖≤ eb−a((b + 1) ‖ U−1 ‖ (‖ C ‖ + ‖ L ‖ Q) + rR) ≤ r.

Thus we have d∞(zu, 0) ≤ r for u ∈ S. It is clear that zu satisfies Conditions (i)-
(iii) in Theorem 1. Therefore zu ∈ S for u ∈ S. Thus V is uniformly bounded.

The continuity of qu on S means that V is continuous. The uniform continuity
of F leads to the equicontinuity of V and the compactness of V is proved by Ascoli-
Arzela’s theorem. By Schauder’s fixed point theorem it follows that there exists at
least one solution in S. This completes the proof. ¤

We illustrate the above theorem by showing the following example. Consider a
fuzzy function f = (f1, f2) such that

fi(t, x, y, α) =
mi(α)pi(t)|xi(α)|

|xi(α)|+ 1
+

ni(α)qi(t)(|yi(α)|+ yi(α))
2

for t ∈ J, α ∈ I, i = 1, 2. Here m = (m1,m2), n = (n1, n2), x = (x1, x2), y =
(y1, y2) ∈ Fst

b and continuous real-valued functions pi, qi : J → R+. Assume that
m1(0), n1(0) ≥ 0 and that f(t, x, y) ∈ Fst

b for t ∈ J, (x, y) ∈ Fst
b × Fst

b . Denote
ρ = e−(b−a) −R and assume that ρ > 0. Denote

K(t) = m2(0)
2∑

i=1

pi(t) + n2(0)
2∑

i=1

qi(t)

for t ∈ J and assume that

r ≥ 1
R

∫ b

a
K(s)ds,
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r >
(b + 1) ‖ L ‖

ρ(b− a)

∫ b

a
(b− s + 1)K(s)ds.

If A = (A1, A2), B = (B1, B2) ∈ Fst
b satisfy d(A, 0) + d(B, 0) ≤ rρ(b−a)

(b+1)2
− ‖ L ‖

∫ b
a (b− s + 1)K(s)ds, then, from the above theorem, (4.1) has at least one solution.

Finally we show the existence and uniqueness theorem concerning solutions of
(4.1) by the contraction principle.

Theorem 3. Assume that there exists an integrable function ` : J → R+ such
that

((b + 1) ‖ U−1 ‖ + ‖ L ‖)
∫ b

a
(b− s + 1)`(s)ds < 1.

Let f satisfy
d(f(t, z), f(t, z̄)) ≤ `(t)d(z, z̄)

for z = (x, y), z̄ = (u, v) and t ∈ J, where x, y, u, v ∈ Fst
b . Then (4.1) has one and

only one solution for any c in C2(J ;Fst
b ).

Proof. It follows that for z = (x, y), z̄ = (u, v) ∈ C(J ;Fst
b ) and t ∈ J

[V(z)](t)− [V(z̄)](t) = X(t)U−1(−L(qz) + L(qz̄)) + qz(t)− qz̄(t).

Here V is the mapping defined in Theorem 2. So we get

d∞(V(z),V(z̄)) ≤ [((b + 1) ‖ U−1 ‖ + ‖ L ‖)
∫ b

a
(b− s + 1)`(s)ds]d∞(z, z̄),

which means that V is a contraction, ı.e., (4.1) has one and only one solution. This
completes the proof. ¤

We illustrate the above theorem by showing the following example. Consider a
fuzzy function f = (f1, f2) such that

fi(t, x, y, α)

=
1
2
ji(α)gi(t)|x1(α) + sin x1(α)|+ ki(α)hi(t)|y1(α)|

+
mi(α)pi(t)|x2(α)|

|x2(α)|+ 1
+

ni(α)qi(t)(|y2(α)|+ y2(α))
2

for t ∈ J, α ∈ I, i = 1, 2. Here j = (j1, j2), k = (k1, k2),m = (m1,m2), n =
(n1, n2), x = (x1, x2), y = (y1, x2) ∈ Fst

b and continuous real-valued functions
gi, hi, pi, qi : J → R+. Assume that j1(0), k1(0),m1(0), n1(0) ≥ 0 and that
f(t, x, y) ∈ Fst

b for t ∈ J, (x, y) ∈ Fst
b ×Fst

b .
Denote

`(t) = max(j2(0)
2∑

i=1

gi(t), k2(0)
2∑

i=1

hi(t),m2(0)
2∑

i=1

pi(t), n2(0)
2∑

i=1

qi(t))

for t ∈ J and assume that

(
(b + 1)2

b− a
+ ‖ L ‖)

∫ b

a
(b− s + 1)`(s)ds < 1.
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Then we have for each α ∈ I, t ∈ J, i = 1, 2 and x, y, u, v ∈ Fst
b ,

|fi(t, x, y, α)− fi(t, u, v, α)|
≤ ji(α)gi(t)

∣∣|x1(α)| − |u1(α)|
∣∣ + ki(α)hi(t)

∣∣|y1(α)| − |v1(α)|
∣∣

+ mi(α)pi(t)
∣∣|x2(α)| − |u2(α)|∣∣ + ni(α)qi(t)

∣∣|y2(α)| − |v2(α)|∣∣
≤ j2(0)gi(t)|x1(α)− u1(α)|+ k2(0)hi(t)|y1(α)− v1(α)|

+ m2(0)pi(t)|x2(α)− u2(α)|+ n2(0)qi(t)|y2(α)− v2(α)|,
which means that

d(f(t, x, y), f(t, u, v)) ≤ `(t)(d(x, u) + d(y, v)).

Thus, for any A = (A1, A2), B = (B1, B2) ∈ Fst
b , there exists one and only one

solution of (4.1) in C(J ;Fst
b ).
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