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OPTIMALITY CONDITIONS AND MIXED DUALITY IN
NONDIFFERENTIABLE PROGRAMMING

IZHAR AHMAD

Abstract. We establish the Kuhn-Tucker sufficient optimality conditions for a
class of nondifferentiable programming in the framework of generalized (F, ρ)-
convex functions. A mixed type dual is presented for nondifferentiable program-
ming problem and various duality theorems are derived. This mixed dual formu-
lation unifies the two existing symmetric dual formulation in the literature.

1. Introduction

Consider the nonlinear programming problem:

Primal (P) Minimize ψ(x) = f(x) + (xtBx)1/2

Subject to x ∈ X = {x ∈ S : g(x) ≤ 0}, (1)

where S is an open subset of Rn, f : S → R and g : S → Rm are differentiable
functions and B is an (n × n) positive semi-definite matrix. If B=0, then ψ is
differentiable and (P) is the usual nonlinear programming problem. Special cases
of (P), with f not differentiable have appeared in [2, 6, 10, 11]. An application of a
special case of (P) to the problem of minimizing cost function which includes costs
directly proportional to Euclidean distances appears in [4].

The formulation of stochastic linear programming leads to a deterministic non-
linear programming problem [11], where the nonlinearity occurs in the objective
function as the sum of square roots of positive semidefinite quadratic forms. How-
ever, it is difficult to solve directly this problem because of the nondifferentiability
of the terms in objective function. Then it is very useful to establish a dual to the
nonolinear problem of which a solution may be easily obtained. A solution of the
dual problem helps to obtain a solution of the primal problem. Mond [7] obtained
a set of necessary and suffficient optimality conditions for (P) involving convex
functions. A Wolfe type dual to (P) is then formulated and duality theorems are
established under convexity assumptions. Chandra, Craven and Mond [3] proposed
a Mond-Weir type dual of (P) and discussed duality results under pseudoconvexity
and quasiconvexity assumptions.

In this paper, we discuss sufficient optimality conditions for (P) under generalized
(F, ρ)-convexity assumptions. A mixed type dual is formulated for (P) on the lines
of Bector, Chandra and Abha [1] and various duality theorems are established.
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2. Notations and Preliminary Results

Let x̄ satisfy (1). Define the set

Z(x̄) =
{

z : zt 5 gi(x̄) ≤ 0 (i ∈ I), zt 5 f(x̄) + ztBx̄/(x̄tBx̄)
1
2 < 0

if Bx̄ 6= 0, zt 5 f(x̄) + (ztBz)
1
2 < 0 if Bx̄ = 0

}
,

where I = {i : gi(x̄) = 0, i ∈ M = {1, 2, · · · ,m}}.
For readers convenience, we write the following definitions of the generalized

(F, ρ) convexity from [9]:

Definition 2.1. A functional F : S×S×Rn −→ R is sublinear if for any x, x̄ ∈ S,
(i) F (x, x̄; a + b) ≤ F (x, x̄; a) + F (x, x̄; b) for any a, b ∈ Rn,

and
(ii) F (x, x̄; αa) = αF (x, x̄; a) for any α ∈ R, α ≥ 0, and a ∈ Rn.

From (ii) it follows that F (x, x̄; 0) = 0.
Let F be sublinear functional and the numerical function φ : S → R be differen-

tiable at x̄ ∈ S and ρ ∈ R. Let d(., .) : S × S −→ R. Assume d(x, x) = 0 for all
x.

Definition 2.2. The function φ is said to be (F, ρ)-quasiconvex at x̄ ∈ S, if for all
x ∈ S,

φ(x) ≤ φ(x̄) ⇒ F (x, x̄;5φ(x̄)) ≤ −ρd2(x, x̄).

Definition 2.3. The function φ is said to be (F, ρ)- pseudoconvex at x̄ ∈ S, if for
all x ∈ S,

F (x, x̄;5φ(x̄)) ≥ −ρd2(x, x̄) ⇒ φ(x) ≥ φ(x̄).

Note that, the above definitions are slightly different from those in [9], since we
do not assume d(., .) to be a pseudometric.

The following result from [7] is needed in the sequel.

Theorem 2.1 (Necessary Conditions). Let x̄ be an optimal solution of (P) and
let Z(x̄) be empty. Then there exist u ∈ Rm and w ∈ Rn such that

5f(x̄) +5utg(x̄) + Bw = 0 (2)

utg(x̄) = 0 (3)

(x̄tBx̄)
1
2 = x̄tBw (4)

wtBw ≤ 1 (5)

u ≥ 0. (6)

3. Optimality Conditions

In this section, we derive sufficient conditions for optimality of (P) under the
assumption of generalized (F, ρ)-convexity.

Theorem 3.1 (Sufficient Conditions). Assume that (x̄, u, w) satisfies relations
(2)-(6). If f(.)+(.)tBw is (F, ρ)-pseudoconvex at x̄ ∈ X, utg(.) is (F, σ)-quasiconvex
at x̄ ∈ X, and ρ + σ ≥ 0, then x̄ is an optimal solution of (P).
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Proof. Let x be any feasible solution of (P). From (1), (3) and (6), we have

utg(x) ≤ 0 = utg(x̄).

Using the (F, σ)-quasiconvexity of utg(.) at x̄, we get

F (x, x̄;5utg(x̄)) ≤ −σd2(x, x̄). (7)

Therefore from (2) and (7)

F (x, x̄;5f(x̄) + Bw) ≥ σd2(x, x̄).

Since ρ + σ ≥ 0, we have

F (x, x̄;5f(x̄) + Bw) ≥ −ρd2(x, x̄).

The (F, ρ)-pseudoconvexity of f(.) + (.)tBw at x̄, we get

f(x) + xtBw ≥ f(x̄) + x̄tBw.

Hence x̄ is an optimal solution of (P). ¤

4. MIXED TYPE DUALITY

For M = {1, 2, · · · ,m}, J ⊆ M, let K = M \ J be the set of indices j which
are in M but not in J . Let g(x) be partitioned as g(x) = (gJ(x), gK(x))t. We now
introduce the following mixed type dual for the problem (P):

Dual(MD) Maximize G(y, u, w) = f(y) + ut
JgJ(y) + ytBw

Subject to

5f(y) +5utg(y) + Bw = 0 (7)

ut
KgK(y) ≥ 0 (8)

wtBw ≤ 1 (9)

u = (uJ , uK) ≥ 0, (10)

where y, w ∈ Rn and u ∈ Rm and 5f(y) denotes the gradient vector of f at y.
Let Y denote the set of all feasible solutions of the dual problem (MD).

Theorem 4.1 (Weak Duality). Let x ∈ X and (y, u, w) ∈ Y . Let φ(.) = f(.) +
ut

JgJ(.)+(.)tBw be (F, ρ)-pseudoconvex and ut
KgK(.) be (F, σ)-quasiconvex at y over

X with ρ + σ ≥ 0. Then

infimum (P) ≥ supremum (MD).

Proof. Since x ∈ X and (y, u, w) ∈ Y, we have

ut
KgK(x) ≤ ut

KgK(y).

The (F, σ)-quasiconvexity of ut
KgK(.), at y gives

F (x, y;5ut
KgK(y)) ≤ −σd2(x, y). (12)

The sublinearity of F and (8) imply that

0 = F (x, y;5f(y) +5utg(y) + Bw)

≤ F (x, y;5f(y) +5ut
JgJ(y) + Bw) + F (x, y;5ut

KgK(y))
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≤ F (x, y;5f(y) +5ut
JgJ(y) + Bw)− σd2(x, y) (using (12)).

Since ρ + σ ≥ 0, we have

F (x, y;5f(y) +5ut
JgJ(y) + Bw) ≥ −ρd2(x, y).

The (F, ρ)-pseudoconvexity of φ(.) = f(.) + ut
JgJ(.) + (.)tBw at y implies

f(x) + ut
JgJ(x) + xtBw ≥ f(y) + ut

JgJ(y) + ytBw. (13)

On the other hand let x∗ = B1/2x and w∗ = B1/2w. From the Schwartz inequality
and w∗tw∗ = wtBw ≤ 1,

xtBw = x∗tw∗ ≤ ‖x∗‖‖w∗‖ ≤ ‖x∗‖ = (xtBx)1/2. (14)

From (1), (11), (13) and (14), we obtain

f(x) + (xtBx)1/2 ≥ f(y) + ut
JgJ(y) + ytBw,

and hence
infimum (P) ≥ supremum (MD).

¤
Theorem 4.2 (Strong Duality). Let x̄ be a local or global optimal solution of
(P) and let Z(x̄) be empty. Then there exist ū ∈ Rm and w̄ ∈ Rn such that
(x̄, ū, w̄) ∈ Y and the objective function values of (P) and (MD) are equal. Also, if
the assumptions of weak duality theorem hold, then x̄ and (x̄, ū, w̄) are global optimal
solutions of (P) and (MD) respectively.

Proof. By Theorem 2.1, there exist ū ∈ Rm and w̄ ∈ Rn such that

5f(x̄) +5ūtg(x̄) + Bw̄ = 0 (15)

ūtg(x̄) = 0 (16)

(x̄tBx̄)1/2 = x̄tBw̄ (17)

w̄tBw̄ ≤ 1 (18)

ū ≥ 0. (19)

From equation (16),
ūt

KgK(x̄) = 0 and ūt
JgJ(x̄) = 0. (20)

Relations (15), (18), (19) and (20) imply that (x̄, ū, w̄) is feasible for (MD). Also,
from (17) and (20) we obtain that the both objective function values of (P)
and (MD) are equal. Now optimality of (P) and (MD) follow from weak duality
theorem. ¤
Theorem 4.3 (Converse Duality). Let (ȳ, ū, w̄) be an optimal solution of (MD).
Let

(i) the (n × n) Hessian matrix
[52f(ȳ) +52ūtg(ȳ)

]
be positive or negative

definite, and
(ii) 5ūt

KgK(ȳ) 6= 0.

Then ȳ is an optimal solution for (P) and the two optimal values of (P) and (MD)
are equal.
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Proof. Since (ȳ, ū, w̄) is an optimal solution for (MD), there exist α ∈ R, β ∈ Rn, γ ∈
R, ξ ∈ R and η ∈ Rm satisfying the following Fritz John conditions [5]:

α[5f(ȳ) +5ūt
JgJ(ȳ) + Bw̄]− [52f(ȳ) +52ūtg(ȳ)]β + γ 5 ūt

KgK(ȳ) = 0 (21)

αgJ(ȳ)−5gJ(ȳ)β + ηJ = 0 (22)

−5 gK(ȳ)β + γgK(ȳ) + ηK = 0 (23)

αBȳ −Bβ − 2ξBw̄ = 0 (24)

γūt
KgK(ȳ) = 0 (25)

ξ(1− w̄tBw̄) = 0 (26)

ηt
K ūK = 0 (27)

ηt
J ūJ = 0 (28)

(α, γ, ξ, η) ≥ 0 (29)

(α, β, γ, ξ, η) 6= 0. (30)

The first constraint of the dual problem (MD) and the equation (21) yield

(γ − α)5 ūt
KgK(ȳ)− [52f(ȳ) +52ūtg(ȳ)]β = 0. (31)

On multiplying (23) by ūK and using (25) and (27), we get

5ūt
KgK(ȳ)β = 0 (32)

On multiplying (31) by βt from the left and using (32), we obtain

βt[52f(ȳ) +52ūtg(ȳ)]β = 0.

Since [52f(ȳ) +52ūtg(ȳ)] is assumed to be positive or negative definite, the above
equation implies β = 0. Therefore (31) gives

(γ − α)5 ūt
KgK(ȳ) = 0.

Since 5ūt
KgK(ȳ) 6= 0, we get

γ = α. (33)
Now suppose α = 0. Then γ = 0. Then equation (22) and (23) imply ηJ = 0 and

ηK = 0 respectively. Equation (24) together with(26) gives ξ = 0, a contradiction
to (30). Thus α > 0. This gives γ > 0.

Since β = 0, equations (22) and (23) lead to

gJ(ȳ) = −ηJ

α
≤ 0, (34)

and
gK(ȳ) = −ηK

γ
≤ 0.

That is, ȳ is feasible for (P). Also, (24) gives

Bȳ = 2ξBw̄/α. (35)

and hence ȳtBw̄ = (ȳBȳ)1/2(w̄tBw̄)1/2. In case ξ > 0, (26) gives w̄tBw̄ = 1 and so
ȳtBw̄ = (ȳBȳ)1/2. In case ξ = 0, (35) gives Bȳ = 0 and so ȳtBw̄ = (ȳBȳ)1/2 = 0.

Thus, in either case ȳtBw̄ = (ȳBȳ)1/2.
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On the other hand (28) and (34) gives

ūt
JgJ(ȳ) = 0.

Hence G(ȳ, ū, w̄) = f(ȳ) + ȳtBw̄ = f(ȳ) + (ȳtBȳ)1/2. The result, then follows
from weak duality Theorem 4.1. ¤

5. Special Cases

(i) Let J = φ, then (MD) becomes the Mond-Weir type dual obtained by Chandra
Craven and Mond [3].

(ii) Let K = φ, then (MD) reduces to the following problem:

Maximize G(y, u, w) = f(y) + utg(y) + ytBw

Subject to

5f(y) +5utg(y) + Bw = 0

wtBw ≤ 1
u ≥ 0.

This problem may be equivalently written as:

Maximize G(y, u, w) = f(y) + utg(y)− yt[5f(y) +5utg(y)]
Subject to

5f(y) +5utg(y) + Bw = 0

wtBw ≤ 1
u ≥ 0,

which is the Wolfe type dual considered by Mond [7].
(iii) For B = 0, K = φ, the dual (MD) reduces to the Wolfe dual. Similarly for

B = 0, J = φ, we get the Mond Weir dual [8].

Acknowledgement

The author wish to thank anonymous referee for their valuable suggestions which
improve the presentation of the paper.

References

[1] C. R. Bector, S. Chandra, and Abha, On Mixed Duality in Mathematical Programming, J.
Math. Anal. Appl. 259 (2001), 346–356.

[2] D. Bhatia, A Note on Duality Theorem for a Nonlinear Programming Problem, Man. Sci. 16
(1970), 604–606.

[3] S. Chandra, B. D. Craven and B. Mond, Generalized Concavity and Duality with a Square
Root Term, Optimization 16 (1985), 653–662.

[4] R. L. Francis and A. V. Cabot, Properties of a Multifacility Location Problem Involving Eu-
clidean Distances, Nav. Res. Log. Quart. 19 (1972), 335–353.

[5] O. L. Mangasarian and S. Fromovitz, The Fritz John Necessary Optimality Conditions in the
Presence of Equality and Inequality Constraints, J. Math. Anal. Appl. 17(1967), 37–47.

[6] B. Mond, On a Duality Theorem for a Nonlinear Programming Problem, Oper. Res. 21 (1973),
369–370.

[7] B. Mond, A Class of Nondifferentiable Mathematical Programming Problems, J. Math. Anal.
Appl. 46 (1974), 169–174.



OPTIMALITY CONDITIONS AND MIXED DUALITY 119

[8] B. Mond and T. Weir, Generalized Concavity and Duality, Generalized Concavity in Opti-
mization and Economics, Edited by S. Schaible and W. T. Ziemba , (Academic Press, New
York 1981), 263–280.

[9] V. Preda, On Efficiency and Duality for Multiobjective Programs, J. Math. Anal. Appl. 166
(1992), 265–277.

[10] O. Rani and R. N. Kaul, Nonlinear Programming in Complex Space, J. Math. Anal. Appl. 43
(1973), 1–14.

[11] S. M. Sinha, A Duality Theorem for Nonlinear Programming, Man. Sci. 12 (1966), 385–390.

Manuscript received April 6, 2003

revised December 19, 2003

Izhar Ahmad
Department of Mathematics, Aligarh Muslim University, Aligarh -202 002, India

E-mail address: iahmad@postmark.net


