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A NUMERICALLY STABLE METHOD FOR CONVEX OPTIMAL
CONTROL PROBLEMS

VADIM AZHMYAKOV

Abstract. This paper is concerned with linear and finite-difference approxi-
mations for a class of convex optimal control problems with state constraints.
We consider control systems governed by ordinary differential equations. For
constructive solving the convex optimal control problems we propose a numer-
ical method derived from the proximal-point algorithm. We study convergence
properties of the obtained method and show that it can be used to compute
approximate optimal controls.

1. Introduction

Linearization and discrete approximation techniques have been long time recog-
nized as a powerful tool for solving optimal control problems (see e.g., [10, 11, 12,
22, 31, 25]. Discrete approximations can be applied directly to the problem at hand
or to auxiliary problems used in the solution procedure. The numerical methods for
optimal control problems with constraints (with the exception of the works [14] and
[25]) are either the methods based on the full discretizations (parametrization of
state and control variables), or they are function space algorithms. The first group
of methods assumed a priori discretization of system equations. The second group
of methods is, in fact, theoretical work on the convergence of algorithms which have
never been implemented. The major drawback of some numerical schemes from the
first group is the lack of the corresponding convergence analysis. This is especially
true in regard to the multiple shooting and collocation methods (see e.g., [8, 29]).

There is a number of results scattered in the literature on discrete approximations
that are very often closely related, although apparently independent. Note that the
complete convergence analysis for a class of numerical methods for optimal control
problems with state constraints is presented in [25].

The gradient algorithms [23] can also be applied to optimal control problems with
constraints if the problem is discretized a priori and the discretization for states
coincides with that for controls. If the second condition does not hold then the
optimal control problem can have redundant constraints and as a result the rate of
convergence of numerical methods can deteriorate [25]. There are many variants of
gradient algorithms depending on whether the problem is a priori discretized in time,
and on the optimization solver used. A gradient-based method evaluates gradients of
the objective functional. The calculation of second order derivatives of the objective
functional can be avoided by applying an SQP (Sequential Quadratic Programming)
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type optimization algorithm in which these derivatives are approximated by quasi-
Newton formulas. The application of SQP type methods to optimal control is
comprehensively discussed in [20, 9].

Computational methods based on the Bellman Optimality Principle were among
the first proposed for optimal control problems [4, 7]. These methods are especially
attractive when an optimal control problem is discretized a priori and the discrete
version of the Bellman equation is used to solve it. Application of necessary condi-
tions of optimal control theory, specifically of the Pontryagin Maximum Principle,
yields a boundary-value problem with ordinary differential equations. Clearly, the
necessary optimality conditions and the corresponding boundary-value problems
play an important role in optimal control computations (see e.g., [28, 6]). An opti-
mal control problem with state constraints can also be solved by using some modern
numerical algorithms of nonlinear programming. For example, the implementation
of the interior point method is presented in [34]. The application of the trust-region
method to optimal control is discussed in [16, 21].

In this paper we are going to analyze the convergent (numerically stable) a priori
discretizations of optimal control problems with inequalities state constraints. We
consider the optimal control problems under some convexity assumptions. The dis-
cretization of optimization problems is an approximation procedure whose accuracy,
as it is typical in numerical analysis, depends on the regularity properties of the
solutions. In this paper we mainly focus our attention on the application of a reg-
ularization method, namely, on the application of a proximal-based method to the
discrete approximations of optimal control problems. We are particulary interested
in studying the convergence of these discrete approximations. We consider the first
order Riemann-Euler approximations [10, 11, 12]. Some alternative discretization
procedures are described in [33]. The application of the proximal-based regulariza-
tion method makes it possible to obtain the convergence results also in the case of
relatively easy discretization schemes, namely, for Riemann-Euler approximations.
Clearly, the same method can be combined with other discretization procedures.

The proximal-based methods are useful tools for solving convex (see e.g., [1, 19])
and nonconvex (see e.g., [15, 18]) optimization problems. The first application of
the proximal-point method to optimal control problems is presented in [5]. A great
amount of works is devoted to the classical variant of the proximal point method
and its various modifications. One can find a fairly complete review of the main
results in [18, 30].

The rest of the paper is organized as follows. In Section 2 we formulate the op-
tiomal control problem and consider the corresponding discretizations. Section 3
contains the relevant technical results. In Section 4 we study convergence proper-
ties of some approximation schemes for the abstract convex optimization problems
in Hilbert spaces. In Section 5 we apply the results for the convex optimization
problems to the optimal control problems with constraints. Section 6 is devoted to
computational aspects of the proposed proximal-based algorithm.
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2. Statement of the Problem

Consider the following optimal control problems with inequalities constraints

minimize J(x(·), u(·)) =
∫ 1

0
f0(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)) a.e. on t ∈ [0, 1], x(0) = x0,

u(t) ∈ U a.e. on t ∈ [0, 1],

hj(x(1)) ≤ 0 ∀j ∈ I,

q(t, x(t)) ≤ 0 ∀t ∈ [0, 1],

(1)

where f0 : [0, 1]× Rr × Rm → R is a continuously differentiable function,

f : [0, 1]× Rr × Rm → Rr, hj : Rr → R for j ∈ I, q : [0, 1]× Rr → R

and x0 ∈ Rr is a fixed initial state. By I we denote a finite set of index values. The
control set

U := {u ∈ Rm : bi
− ≤ ui ≤ bi

+, i = 1, ..., m},
where bi−, bi

+, i = 1, ..., m are constants, is a compact and convex subset of Rm.
We assume that the functions hj(·), j ∈ I and q(t, ·), t ∈ [0, 1] are continuously
differentiable. The ensuing analysis is restricted to a proper convex on Rr × Rm

function f0(t, ·, ·), t ∈ [0, 1]. The admissible controls u : [0, 1] → Rm are square
integrable functions in time. Let

U := {v(·) ∈ L2
m([0, 1]) : v(t) ∈ U a.e. on [0, 1]}

be the set of admissible control functions. We introduce the following hypothesis:
(i) f(t, ·, ·) is differentiable,
(ii) f, fx, fu are continuous and there exists a constant S < ∞ such that

||fx(t, x, u)|| ≤ S

for all (t, x, u) ∈ [0, 1]× Rr × U .
Then for each u(·) ∈ U the following initial value problem

(2) ẋ(t) = f(t, x(t), u(t)) a.e. on t ∈ [0, 1], x(0) = x0

has a unique solution (see e.g., [25]). Given an admissible control function the
solution to the initial value problem (2) is an absolutely continuous function x :
[0, 1] → Rr. It is denoted by xu(·). We assume that the problem (1) has an
optimal solution. The class of optimal control problems of the type (1) is broadly
representative [12, 17, 25].

In parallel with (2) we examine the corresponding linearized control system

(3) ẏ(t) = fx(t, xu(t), u(t))y(t) + fu(t, xu(t), u(t))d(t), y(0) = 0,

where u(·) ∈ U , d(·) ∈ L2
m([0, 1]). For each u(·) ∈ U and d(·) ∈ L2

m([0, 1]) the initial
value problem (3) has a unique solution [25]. The solution to (3), which depends
on u(·) ∈ U and d(·) ∈ L2

m([0, 1]), is written yu,d(·). Evidently,

yu,d(t) =
∫ t

0
Φ(t, s)fu(s, xu(s), u(s))d(s)ds a.e. t ∈ [0, 1],
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where Φ(·, s) is the fundamental solution matrix prescribed by the initial value
problem

∂

∂t
Φ(t, s) = fx(t, xu(t), u(t))Φ(t, s) a.e. t ∈ [0, 1], Φ(s, s) = E, s ∈ [0, 1].

It is common knowledge that an optimal control problem involving ordinary dif-
ferential equations can be formulated in various ways as an optimization problem
in a suitable function space (see e.g., [12, 17]). The original problem (1) can be
expressed as an infinite-dimensional optimization problem

minimize J̃(u(·))
subject to u(·) ∈ U ,

h̃j(u(·)) ≤ 0 ∀j ∈ I,

q̃(u(·))(t) ≤ 0 ∀t ∈ [0, 1],

(4)

with the aid of the functions J̃ : L2
m([0, 1]) → R, h̃j : L2

m([0, 1]) → R for j ∈ I and
q̃ : L2

m([0, 1]) → C([0, 1]):

J̃(u(·)) := J(xu(·), u(·)) =
∫ 1

0
f0(t, xu(t), u(t))dt,

h̃j(u(·)) := hj(xu(1)) ∀j ∈ I,

q̃(u(·))(t) := q(t, xu(t)) ∀t ∈ [0, 1].

Fix u(·) ∈ U and consider the linearized optimal control problem as an optimization
problem over the set U − u(·)

minimize Ĵ(d(·))
subject to d(·) ∈ U − u(·),
h̃j(u(·)) + 〈∇h̃j(u(·)), d(·)〉 ≤ 0 ∀j ∈ I,

q̃(u(·))(t) + 〈∇q̃(u(·))(t), d(·)〉 ≤ 0 ∀t ∈ [0, 1],

(5)

where

Ĵ(d(·)) := J(yu,d(·), u(·) + d(·)) =
∫ 1

0
f0(t, yu,d(t), u(t) + d(t))dt,

〈∇h̃j(u(·)), d(·)〉 := (hj)x(xu(1))yu,d(1) for j ∈ I,

〈∇q̃(u(·))(t), d(·)〉 := qx(t, xu(t))yu,d(t) for t ∈ [0, 1].

Note that the objective functional Ĵ(d(·)) in (5) is nonlinear. Since the function
f0(t, ·, ·), t ∈ [0, 1] is convex and the differential equation (3) is linear, Ĵ(d(·)) is
convex. The introduced convex-linear optimization problem (5) provided a basis for
numerical solving the original problem (1). This problem can be solved by using
some minimization algorithms (e.g., by applying a first order method [23]). For
example, the implementation of the method of feasible directions is presented in
[25].
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Using a discretization of (5) (see e.g., [22]), we obtain a finite-dimensional mini-
mization problem. Let N be a sufficiently large positive integer number and

GN := {t0 = 0, t1, ..., tN = 1}
be a (possible nonequidistant) partition of [0, 1] with

max
0≤k≤N−1

|tk+1 − tk| ≤ ξN .

We assume that limN→∞ ξN = 0. Define ∆tk+1 := tk+1 − tk, k = 0, ..., N − 1 and
consider the following finite-dimensional optimization problem

minimize Ĵ(dN (·))
subject to dN (·) ∈ UN − uN (·),
h̃j(uN (·)) + 〈∇h̃j(uN (·)), dN (·)〉 ≤ 0 ∀j ∈ I,

q̃(uN (·))(t) + 〈∇q̃(uN (·))(t), dN (·)〉 ≤ 0 ∀t ∈ [0, 1],

(6)

where

Ĵ(dN (·)) :=
N−1∑

k=0

f0(tk, yN (tk), uk + dk)∆tk+1,

UN := {vN (·) ∈ L2,N
m (GN ) : vN (t) ∈ U},

yN (tk+1) = yN (tk) + ∆tk+1(fx(tk, xu(tk), uk)yN (tk)+

+ fu(tk, xu(tk), uk)dk), yN (t0) = 0,

and

uN (t) :=
N−1∑

k=0

φk(t)uk, uk = u(tk), dN (t) :=
N−1∑

k=0

φi(t)dk, dk = d(tk),

t ∈ [0, 1], k = 0, 1, ...N − 1 , φk(t) :=

{
1 if t ∈ [tk, tk+1[,
0 otherwise.

Clearly, uk ∈ U and uk + dk ∈ U . In effect, we deal with the finite-dimensional
Hilbert space L2,N

m (GN ) of the piecewise constant control functions uN (·). The
scalar product and the norm in the space L2,N

m (GN ) are defined as follows

〈uN (·), vN (·)〉L2,N
m (GN )

:=
N−1∑

k=0

〈uk, vk〉Rm ,

||uN (·)||L2,N
m (GN )

:= (〈uN (·), uN (·)〉L2,N
m (GN )

)1/2 = (
N−1∑

k=0

||uk||2Rm)1/2.

The space L2,N
m (GN ) is in one-to-one correspondence with the Euclidean space RmN .

The Hilbert space L2
m([0, 1]) and the set U are replaced by the finite-dimensional

Hilbert space L2,N
m (GN ) and by UN , respectively. Evidently, we have a restriction

of the function Ĵ(·) on L2,N
m (GN ).

The discrete minimization problem (6) approximates the continuous-time prob-
lem (5). We mainly focus our attention on the application of a proximal-based
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method to the convex-linear optimization problem (5) and on the convergence of
the corresponding discrete approximation schemes (6). For this purpose we exam-
ine approximations for an abstract convex optimization problem in Hilbert space.
At first, we establish the convergence properties of these approximations. We next
apply the results for the abstract optimization problem to problem (5).

3. Proximal point method for convex optimization

This section contains some preliminary results. Let Z be a real Hilbert space.
Consider the following problem of convex minimization

minimize f(z)
subject to z ∈ Q,

(7)

where Q ⊂ Z is a bounded, convex, closed set, f : Z → R̄ is a proper convex
functional and R̄ := R

⋃{∞}. In addition to these assumptions we suppose that
f(·) is bounded on Q + εB. Here B is the open unit ball of Z and ε > 0. Clearly,
Q + εB ⊂ int domf := {z ∈ Z

∣∣ f(z) < ∞}.
The existence of an optimal solution of the convex minimizing problem (7) is

guaranteed. Since f(·) is bounded on Q+ εB, it follows that f(·) is a continuous on
Q+ εB functional (see e.g., [17]). That is, f(·) is lower semicontinuous. The proper
convex, lower semicontinuous functional f(·) attains its minimum on the bounded,
convex, closed set Q [13]. Thus (7) has an optimal solution zopt ∈ Q.

Note that a convex function on a convex subset of an infinite dimensional topo-
logical vector space does not need to be continuous on the interior of its domain. For
instance, any discontinuous linear functional on an infinite dimensional topological
vector space provides such an example.

Let F be the set of optimal solutions of (7). The next result is an immediate
consequence of the boundedness hypothesis.

Lemma 1. The functional f(·) is Lipschitz on Q.

Proof. See [26], Theorem 10.4. ¤
We introduce the proximal mapping

Pf,Q,χ : α → Argminz∈Q[f(z) +
χ

2
||z − α||2], χ > 0, α ∈ Z

and define the classical proximal point method [27, 18]

zi+1
cl ≈ Pf,Q,χi

(zi
cl),

z0
cl ∈ Q, i = 0, 1, ... ,

where {χi} is a given sequence with 0 < χi ≤ C < ∞. Thus the original problem
of convex minimization is replaced by a sequence of the auxiliary problems

f(z) +
χi

2
||z − zi

cl||2 → min,

z ∈ Q, i = 0, 1, ...

with strong convex objective functionals. Evidently, for constructive solving the
given problem of convex minimization the proximal point method must be combined
with some numerical procedures for the auxiliary problems.
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Suppose that the approximation {zi
cl}, i = 0, 1, ... satisfies the estimate

||zi+1
cl − Pf,Q,χi

(zi
cl)|| ≤ εi,

∞∑

i=0

εi

χi
< ∞,

for all i = 0, 1, ... . Under these conditions the sequence {zi
cl} converges in the

weak topology to a point zopt ∈ F [18]. Besides, {zi
cl}, i = 0, 1, ... is a minimizing

sequence. In specific cases we have the strong convergence of the corresponding
minimizing sequences (see e.g., [27, 3, 2]).

4. Convex approximations

This section is devoted to constructing some approximation schemes for the con-
vex problems of the type (7). Let {ZN}, N ∈ N be a sequence of subspaces of Z
such that

Z ⊇ ... ⊇ ZN+1 ⊇ ZN , ...,⊇ Z1 , N ∈ N.

The norm || · ||ZN
of the subspace ZN is induced by the norm || · ||Z of the Hilbert

space Z. In parallel with (7) we consider the sequence of the minimization problems

minimize f(z)
subject to z ∈ QN ,

(8)

where {QN}, QN ⊂ ZN is a sequence of bounded, convex, closed subsets of ZN .
We assume that

Q ⊇ ... ⊇ QN+1 ⊇ QN , ...,⊇ Q1 , N ∈ N
and intQN 6= ∅. In fact we deal with some restrictions of the function f(·) on ZN ,
however, we use the same notation f(·). Denote

fopt := inf
z∈Q

f(z), fopt,N := inf
z∈QN

f(z).

We shall use the familiar concept.

Definition 1. The sequence of problems (8) is called an approximating sequence
for (7) if

lim
N→∞

fN,opt = fopt.

Let zopt
N ∈ QN be an optimal solution of (8). The following theorem is an exten-

sion of the convergence results of Vasil’ev [32].

Theorem 1. Assume that for all zopt ∈ F there exists a mapping

PN : Z → ZN , N ∈ N
such that f(PN (zopt)) − f(zopt) ≤ γN , where limN→∞ γN = 0. Then (8) is an
approximating sequence for problem (7).

Proof. The sequence {f(zopt
N )−f(zopt)} is a monotonically decreasing and bounded

below sequence. This means that {f(zopt
N ) − f(zopt)} is a convergent sequence.

Moreover, f(zopt
N )− f(zopt) ≥ 0 and

γN ≥ f(PN (zopt))− f(zopt) ≥ f(zopt
N )− f(zopt) ≥ 0.
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We conclude that

0 = lim
N→∞

γN ≥ lim
N→∞

f(zopt
N )− f(zopt) ≥ 0.

In other words, (8) is an approximating sequence for (7). ¤

Let Pn
f,QN ,KN

(zN ) := (Pf,QN ,KN
◦ ... ◦ Pf,QN ,KN︸ ︷︷ ︸

n

)(zN ), n ∈ N. Using the classical

proximal point method, we define the sequence of approximations

z1 ∈ Q1,

zN+1 = Pf,QN+1,KN+1
(Pn

f,QN ,KN
(zN )),

∞ > K̃ > KN ↓ K > 0, n ∈ N, N = 1, 2, ...,

(9)

where K̃, K are constants and

Pf,QN+1,KN+1
(Pn

f,QN ,KN
(zN )) := Argminz∈QN+1

[f(z)+

+
KN+1

2
||z − Pn

f,QN ,KN
(zN )||2ZN+1

], zN ∈ QN .

We now examine some properties of the introduced sequence of approximations (9).

Lemma 2. Let {zN} be the sequence generated by the method (9). Then the fol-
lowing inequality

(10) ||zN+1 − Pn
f,QN ,KN

(zN )||ZN+1
≤

√
2

KN+1
(f(zN )− f(zN+1)),

holds.

Proof. By definition of Pf,QN ,KN
(·),

Pf,QN ,KN
(zN ) := Argminz∈QN

[f(z) +
KN

2
||z − zN ||2ZN

].

Hence

f(zN ) = f(zN ) +
KN

2
||zN − zN ||2ZN

≥ f(Pf,QN ,KN
(zN ))+

+
KN

2
||Pf,QN ,KN

(zN )− zN ||2ZN
≥ f(Pf,QN ,KN

(zN )) = f(Pf,QN ,KN
(zN ))+

+
KN

2
||Pf,QN ,KN

(zN )− Pf,QN ,KN
(zN )||2ZN

≥ f(P2
f,QN ,KN

(zN ))+

+
KN

2
||P2

f,QN ,KN
(zN )− Pf,QN ,KN

(zN )||2ZN
≥ ... ≥ f(Pn

f,QN ,KN
(zN )) ≥

≥ f(Pn+1
f,QN ,KN

(zN )) +
KN

2
||Pn+1

f,QN ,KN
(zN )− Pn

f,QN ,KN
(zN )||2ZN

.

The sequence {KN} is a monotonically decreasing sequence KN ↓ K. Since

inf
z∈QN

[f(z) +
KN

2
||z − α||2ZN+1

] ≥ inf
z∈QN+1

[f(z) +
KN+1

2
||z − α||2ZN+1

], α ∈ QN ,
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we conclude

f(Pn+1
f,QN ,KN

(zN )) +
KN

2
||Pn+1

f,QN ,KN
(zN )− Pn

f,QN ,KN
(zN )||2ZN+1

≥

≥ f(zN+1) +
KN+1

2
||zN+1 − Pn

f,QN ,KN
(zN )||2ZN+1

≥ f(zN+1).

We have

f(zN ) ≥ f(zN+1) +
KN+1

2
||zN+1 − Pn

f,QN ,KN
(zN )||2ZN+1

.

It follows that

f(zN )− f(zN+1) ≥ KN+1

2
||zN+1 − Pn

f,QN ,KN
(zN )||2ZN+1

≥ 0

and √
2

KN+1
(f(zN )− f(zN+1)) ≥ ||zN+1 − Pn

f,QN ,KN
(zN )||ZN+1

.

Thus the inequality (10) holds. ¤

Using the uniform convexity of the function

f(·) +
KN

2
|| · −α||ZN+1

, α ∈ QN ,

one can obtain the following estimate [2]

||zN+1 − Pn
f,QN ,KN

(zN )||ZN+1
≤ 2√

3KN+1

√
(f(zN )− f(zN+1)).

By Lemma 1, the function f(·) is Lipschitz on Q. Denote by L the corresponding
Lipschitz constant. We see that

||zN+1 − Pn
f,QN ,KN

(zN )||ZN+1
≤

√
2L

KN+1
||zN − zN+1||ZN+1

.

Our next result presents a convergence property of the introduced sequence of
approximations (9).

Theorem 2. Let {zN} be the sequence generated by the method (9). Assume that
for all zopt ∈ F there exists a mapping PN : Z → ZN , N ∈ N such that

f(PN (zopt))− f(zopt) ≤ γN , lim
N→∞

γN = 0.

Then limN→∞ limn→∞ f(zN ) = fopt and

lim
N→∞

lim
n→∞ ||zN − Pn

f,QN ,KN
(zN )||Z = 0.
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Proof. From the minimizing properties of Pf,QN ,KN
(·) and Pf,QN+1,KN+1

(·) we de-
duce

f(Pn
f,QN ,KN

(zN )) = f(Pn
f,QN ,KN

(zN ))+

+
KN

2
||Pn

f,QN ,KN
(zN )− Pn

f,QN ,KN
(zN )||2ZN

≥ f(Pn+1
f,QN ,KN

(zN ))+

+
KN

2
||Pn+1

f,QN ,KN
(zN )− Pn

f,QN ,KN
(zN )||2ZN

≥

≥ f(zN+1) +
KN+1

2
||zN+1 − Pn

f,QN ,KN
(zN )||2ZN+1

≥ f(zN+1).

Using the convergence properties of the classical proximal point method, we obtain
limn→∞ |f(Pn

f,QN ,KN
(zN ))− f(zopt

N )| = 0. Hence

lim
n→∞ |f(zN+1)− f(zopt

N )| = 0.

By Theorem 1, we have limN→∞ f(zopt
N ) = fopt. Since f(zN+1) ≥ fopt, we conclude

that limN→∞ limn→∞ f(zN+1) = fopt. By Lemma 2,

||zN+1 − Pn
f,QN ,KN

(zN )||ZN+1
≤

√
2

KN+1
(f(zN )− f(zN+1)).

It follows that limN→∞ limn→∞ ||zN+1 − Pn
f,QN ,KN

(zN )||Z = 0, as claimed. Thus
the assertions of the theorem are proved. ¤

The sequence of solutions of the auxiliary problems

f(z) +
KN+1

2
||z − Pn

f,QN ,KN
(zN )||2ZN+1

→ min,

subject to z ∈ QN+1,

is a minimizing sequence for the initial problem (7) subject to the condition that
n →∞.

Corollary 1. Let {zN} be the sequence generated by the method (9). Assume that
for all zopt ∈ F there exists a mapping PN : Z → ZN , N ∈ N such that

f(PN (zopt))− f(zopt) ≤ γN , lim
N→∞

γN = 0.

Then there exists a sequence of numbers {ni}, ni ∈ N such that

lim
N→∞

lim
ni→∞

||zN+1 − zopt
N ||Z = 0.

Proof. Using the convergence properties of the classical proximal point method, we
establish the convergence in the weak topology of the sequence

{ξn}, ξn := Pn
f,QN ,KN

(zN )

to an optimal solution zopt
N of (8). Evidently, there exists a subsequence

{ξni}, ξni := Pni
f,QN ,KN

(zN ), ni ∈ N
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such that limni→∞ ||Pni
f,QN ,KN

(zN )− zopt
N ||Z = 0. By Lemma 2,

||zN+1 − Pni
f,QN ,KN

(zN )||ZN+1
≤

√
2

KN+1
(f(zN )− f(zN+1)).

Theorem 2 implies that

lim
N→∞

lim
ni→∞

||zN+1 − Pni
f,QN ,KN

(zN )||Z = 0.

Then by using the triangle inequality we see that

lim
N→∞

lim
ni→∞

||zN+1 − zopt
N ||Z = 0.

The corollary is proved. ¤

5. Discretizations of the Optimal Control Problem

Let us apply the convex approximations given above to the optimal control prob-
lem (5). We describe an algorithm for numerical solving the optimization prob-
lem (5) and a convergence result associated with it. Our algorithm is based on
the proximal-like method (9). We will consider the first order method for solving
the auxiliary problems but similar results can also be obtained for a second order
scheme. Note that the convex-linear minimization problem (5) has a solution (see
Section 3).

Let dopt(·) be an optimal solution of (5). We introduce the sequence of spaces

L2
m([0, 1]) ⊇ ... ⊇ L2,N+1

m (GN ) ⊇ L2,N
m (GN ) ⊇ ... ⊇ L2,1

m (GN ),

and the sequence of sets U ⊇ ... ⊇ UN+1 ⊇ UN ⊇ ... ⊇ U1, N ∈ N such that
UN := U ⋂

L2,N
m (GN ). Let us consider the mapping

PN : L2
m([0, 1]) → L2,N

m (GN ), N ∈ N
defined as follows

PN (dopt(·)) = (d0, ..., dN−1)T , dk :=
1

∆tk+1

∫ tk+1

tk

dopt(t)dt,

k = 0, ..., N − 1.

We now establish an important fact: the value PN (dopt(·)) belongs to the set UN −
uN (·) for all N ∈ N.

Lemma 3. For every N ∈ N and for every solution dopt(·) of problem (5),

PN (dopt(·)) ∈ UN − uN (·).
Proof. We have u(·) ∈ U (see Introduction). Evidently, u(t) + dopt(t) ∈ U . Since U
is convex and closed, it follows [32] that

(u(t) +
1

∆tk+1

∫ tk+1

tk

dopt(t)dt) ∈ U, k = 0, ..., N − 1

and

(u(tk) +
1

∆tk+1

∫ tk+1

tk

dopt(t)dt) ∈ U, k = 0, ..., N − 1.
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Moreover, uN (·) + PN (dopt(·)) ∈ L2,N
m (GN ). Hence

(uN (·) + PN (dopt(·))) ∈ L2,N
m (GN )

⋂
U = UN .

We conclude that PN (dopt(·)) ∈ UN − uN (·). The proof is finished. ¤
Fix N ∈ N, uN (·) ∈ UN and consider the set UN+M − uN (·) and the mapping

PN+M (dopt(·)), M = 1, 2, ... .

Let GN+M := {t0 = 0, t1, ..., tN+M = 1} be the corresponding partition of [0, 1]. We
assume that GN ⊂ GN+M .

Lemma 4. For every N ∈ N and for every solution dopt(·) of problem (5),

PN+M (dopt(·)) ∈ UN+M − uN (·), M = 1, 2, ... .

Proof. The lemma can be proved in the same way as Lemma 3. ¤
For fixed N ∈ N, uN (·) and chosen dN (·) ∈ UN −uN (·) we introduce the discrete

approximations of the type (8) for problem (5)

minimize Ĵ(dN+M (·))
subject to dN+M (·) ∈ UN+M − uN (·),
h̃j(uN (·)) + 〈∇h̃j(uN (·)), dN+M (·)〉 ≤ 0 ∀j ∈ I,

q̃(uN (·))(t) + 〈∇q̃(uN (·))(t), dN+M (·)〉 ≤ 0 ∀t ∈ [0, 1],
M = 1, 2, ... ,

where

Ĵ(dN+M (·)) =
N+M−1∑

k=0

f0(tk, yN+M (tk), uN (tk) + dN+M (tk))∆tk+1,

yN+M (tk+1) = yN+M (tk) + ∆tk+1(fx(tk, xuN (tk), uN (tk))yN+M (tk)+

+ fu(tk, xuN (tk), uN (tk))dN+M (tk)), yN+M (t0) = 0, k = 0, 1, ..., N + M − 1.

By xuN (·) we denote here the solution to the initial value problem (2) for uN (·).
The proximal-like algorithm in this case is:

dN+M (·) = PĴ ,UN+M−uN (·),KN+M
(Pn

Ĵ,UN+M−1−uN (·),KN+M−1
(dN+M−1(·))),

n ∈ N, ∞ > K̃ > KN+M ↓ K > 0, M = 1, 2, ... ,
(11)

where
PĴ ,UN+M−uN (·),KN+M

(Pn
Ĵ,UN+M−1−uN (·),KN+M−1

(dN+M−1(·))) =

= Argmind(·)∈UN+M−uN (·)[Ĵ(d(·)) +
KN+M

2
||d(·)−

− Pn
Ĵ,UN+M−1−uN (·),KN+M−1

(dN+M−1(·))||2L2,N+M
m (GN+M )

].

Using the method (11), we obtain a sequence of discrete approximations

{dN+M (·)}, M = 1, 2, ... .

The following theorem establishes the convergence properties of these finite-
dimensional approximations.
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Theorem 3. Let {dN+M (·)} be the sequence generated by the method (11). Then

lim
M→∞

lim
n→∞ Ĵ(dN+M (·)) = Ĵ(dopt(·))

and

lim
M→∞

lim
n→∞ ||dN+M (·)− Pn

Ĵ,UN+M−1−uN (·),KN+M−1
(dN+M−1(·))||L2

m([0,1]) = 0.

Proof. The objective functional

Ĵ(d(·)) =
∫ 1

0
f0(t, yu,d(t), u(t) + d(t))dt

is proper convex (with respect to d(·)). We establish that the objective functional
Ĵ(d(·)) is bounded on

U − u(·) + εBL2
m([0,1]),

where BL2
m([0,1]) is the open unit ball of L2

m([0, 1]) and ε > 0.
We have introduced the following hypothesis (see Introduction):

(i) f(t, ·, ·) is differentiable,
(ii) f, fx, fu are continuous and there exists a constant S < ∞ such that

||fx(t, x, u)|| ≤ S ∀ (t, x, u) ∈ [0, 1]× Rr × U.

That is, the unique solution yu,d(·) of (3) is bounded. More precisely, there exists a
constant c > 0 such that

||yu,d(·)||∞ ≤ c||d(·)||∞,

where d(·) ∈ U − u(·) (see e.g., [25]). Since the set U − u(·) is bounded, it follows
that yu,d is bounded and yu,d(t) belongs to a compact set A ⊂ Rr. The continuous
function f0 is bounded on the compact set [0, 1]×A× Ũ . This implies the bounded-
ness of the functional Ĵ(d(·)) on U −u(·) + εBL2

m([0,1]). By Lemma 1, the functional
Ĵ(d(·)) is a Lipschitz-continuous on U − u(·) functional. The sets

U − u(·), UN − uN (·), N ∈ N and UN+M − uN (·), M = 1, 2, ...

are bounded, convex and closed subsets of

L2
m([0, 1]), L2,N

m (GN ) and L2,N+M
m (GN+M ),

respectively. Thus all assumption of Section 3 and Section 4 are satisfied.
By Lemma 4, the value of the introduced mapping PN+M (dopt(·)) belongs to the

set UN+M − uN (·). The square integrable function d(·) ∈ U − u(·) is bounded on
[0, 1]. Moreover, limM→∞∆tk = 0, where tk ∈ GN+M . Therefore

lim
M→∞

||PN+M (dopt(·))− dopt(·)||L2
m([0,1]) =

= lim
M→∞

(
∫ 1

0
||PN+M (dopt(·))(t)− dopt(t)||2Rmdt)1/2 =

= lim
M→∞

(
∫ 1

0
||

N+M−1∑

k=0

φk(t)
1

∆tk+1

∫ tk+1

tk

dopt(τ)dτ − dopt(t)||2Rmdt)1/2 = 0.
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The convex functional Ĵ(·) is continuous (Lipschitz-continuous). Therefore,

lim
M→∞

|Ĵ(PN+M (dopt(·)))− Ĵ(dopt(·))| = 0

This means that for each dopt there exists a sequence {γM} such that

Ĵ(PN+M (dopt(·)))− Ĵ(dopt(·)) ≤ γM , lim
M→∞

γM = 0.

Thus the mapping PN+M (dopt) introduced above satisfies the assumptions of The-
orem 1 and Theorem 2. By Theorem 2, we have

lim
M→∞

lim
n→∞ Ĵ(dN+M (·)) = Ĵ(dopt(·)).

It also follows from Theorem 2 that

lim
M→∞

lim
n→∞ ||dN+M (·)− Pn

Ĵ,UN+M−1−uN (·),KN+M−1
(dN+M−1(·))||L2

m([0,1]) = 0.

The proof is finished. ¤

In other words, the sequence {dN+M (·)} generated by the proximal-like algorithm
(11) is a minimizing sequence for the optimal control problem (5) subject to the
condition that n → ∞. The presented proximal-like method (11) is a numerically
stable procedure for solving the linearized problem (5). This method can be used
as a tool for numerical treating the initial optimal control problem (1).

6. The Numerical Aspect

For fixed N ∈ N and uN (·) we examine the sequence generated by the introduced
method (11). Let dN+M (·) ∈ UN+M − uN (·) be an element of this sequence such
that

|Ĵ(dN+M (·))− Ĵ(dopt(·))| < δM,N ,

where δM,N > 0 is a sufficiently small real number. We now define the next ap-
proximation of the control function for the nonlinear control problem (1) in the
following way uN+M (·) := uN (·) + dN+M (·). It is evident that uN+M (·) ∈ UN+M .
Given this control function the solution to the initial value problem (2) is denoted
by xuN+M (·). Using the computed trajectory xuN+M (·), we can consider the next
linearization step

ẏ(t) = fx(t, xuN+M (t), uN+M (t))y(t) + fu(t, xuN+M (t), uN+M (t))d(t),

y(0) = 0

and the corresponding linear optimization problem (5). If we replace N in (6) by
N + M , then we have the possible next discrete approximation for the obtained
linear problem with respect to the higher-order partition GN+M of [0, 1]. Note that
in this paper we don’t consider the convergence properties of the linear approxima-
tions given above. Convergence of some linearization schemes for optimal control
problems is examined in [31, 25].
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The proximal-like method (11) must be combined with an effective algorithm for
computing the solution of the following auxiliary optimization problems

Ĵ(d(·)) +
KN+M

2
||d(·)− α||2L2,N+M

m (GN+M )
→ min

d(·)∈UN+M−uN (·)
,

α ∈ L2,N+M
m (GN+M )

(12)

and

Ĵ(d(·)) +
KN+M−1

2
||d(·)− α||2L2,N+M−1

m (GN+M−1)
→ min

d(·)∈UN+M−1−uN (·)
,

α ∈ L2,N+M−1
m (GN+M−1).

(13)

We compute the solution of (12) in each step M and the solution of (13) in each
step n of the algorithm (11). In our paper we use a variant of the reduced gradient
method for this purpose (see e.g., [23, 31, 32]). The reduced gradient∇kĴ(dN+M (·))
for tk ∈ GN+M can be computed as follows

∇kĴ(dN+M (·)) = Hd(tk, yN+M (tk), uN (tk), dN+M (tk), p(tk+1)),
k = 0, ..., N + M − 1 ,

where p(tk), k = 1, ..., N + M are the adjoint variables

p(tk) = −Hy(tk, yN+M (tk), uN (tk), dN+M (tk), p(tk+1)), k = 1, ...N + M − 1,

p(tN+M ) = 0

and
H(tk, yN+M (tk), uN (tk), dN+M (tk), p(tk+1)) :=

= f0(tk, yN+M (tk), uN (tk) + dN+M (tk))∆tk+1−
− 〈p(tk+1),∆tk+1(fx(tk, xuN (tk), uN (tk))yN+M (tk)+

+ fu(tk, xuN (tk), uN (tk))dN+M (tk) + yN+M (tk)〉Rn , k = 0, ..., N + M − 1 ,

is the Hamiltonian of the discrete convex-linear control problem. Note that the full
reduced gradient in the step N + M of the algorithm (11) is

∇Ĵ(dN+M (·)) + KN+M (dN+M (·)− Pn
Ĵ,UN+M−1−uN (·),KN+M

(dN+M−1(·))).
As an example we consider the following ill posed optimal control problem

minimize J(u(·)) =
∫ 1

0
x2(t)dt

subject to ẋ = u a.e. on t ∈ (0, 1], x(0) = 0,

u(·) ∈ L2
m([0, 1]), |u(t)| ≤ 1 a.e., x(1) ≤ 0.

This optimal control problem has a unique optimal solution uopt(t) = 0 a.e., however
the following minimizing sequence ur(t) = sin(2πrt), r ∈ N does not converge.
Evidently, xr(t) = 1

2πr (1− cos(2πrt)), xr(1) = 0 and

lim
r→∞J(ur(·)) = lim

r→∞
3

8π2r2
= J(uopt(·)) = 0.
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The objective functional J(u(·)) =
∫ 1
0 (

∫ t
0 u(τ)dτ)2dt is convex and the set of admis-

sible control functions U = {v(·) ∈ L2
m([0, 1]) : |v(t)| ≤ 1 a.e. on [0, 1]} is bounded,

convex and closed. We apply the proximal-like algorithm (11) for 1 ≤ N ≤ 50 and
1 ≤ M ≤ 50. For N = 50, M = 50 the computed optimal control {uN+M (·)} has
the following property

max
0≤k≤N+M

|uN+M (tk)| = 0.0016521.

The constraints were satisfied with tolerance 10−4. The computed optimal objective
value is 8 ·10−7. The implementation of the algorithm, described above, was carried
out, using the ”Numerical Recipes in C” package [24] and the author program
written in C.

7. Concluding Remarks

In this paper, we have shown that the proximal approach can be used for creating
numerically stable discrete approximations for optimal control problems with state
constraints. The introduced proximal-like method (11) can be combined not only
with the used gradient-type method but also with a second order optimization
method (see [23]). We have considered the optimal control problem (1) under
convexity assumptions. Using a variant of the proximal point method for nonconvex
optimization [18], one can extend the presented proximal-type methods (9) and (11)
to some classes of nonconvex optimal control problems of the type (1).

Acknowledgements: The author is grateful to Professor A. Kaplan and to Pro-
fessor W.H. Schmidt for their helpful comments and suggestions.
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