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CONVEX INTERIOR MAPPING THEOREMS FOR
CONTINUOUS NONSMOOTH FUNCTIONS AND

OPTIMIZATION∗

V. JEYAKUMAR AND D. T. LUC

Abstract. We present a convex interior mapping theorem for (not necessarily
locally Lipschitz) continuous maps by using unbounded approximate Jacobians.
As an application we derive a general Lagrange multiplier rule for a constrained
optimization problem involving both equality and inequality constraints, and
continuous functions.

1. Introduction

One of the key results of classical variational analysis is the interior mapping
theorem for differentiable functions. It asserts that if f : Rn → Rm is stritcly dif-
ferentiable and the derivative ∇f(x) is surjective then f(x) ∈ intf(Rn), the interior
of f(Rn). The interior mapping theorem plays an important role in optimization
and particularly, in the derivation of a Lagrange multiplier rule which dominates
many issues of mathematics, engineering, and economics. Over the years, a great
deal of attention has been focused on generalizing this result for functions which
are not necessarily differentiable at all of its points (see [3, 4, 14, 15, 21]). Pourciau
[14, 15] extended this theorem for Lipschitz continuous functions using the Clarke
generalized Jacobian, and consequently derived Lagrange multiplier conditions for
optimization problems involving equality constraints. A more subtle interior map-
ping theorem is needed for deriving multiplier conditions for optimization prob-
lems involving both equality and inequality constraints. Pourciau [14, 15] obtained
such an interior mapping theorem, called the convex interior mapping theorem. It
states for locally Lipschitz maps that if every matrix M ∈ ∂cf(x) is surjective, then
f(x) ∈ intf(C), where x ∈ C ⊆ Rn and C is the closure of a convex set C, and
∂cf(x) is the Clarke generalized Jacobian of f at x. As a consequence Lagrange
multiplier conditions for a constrained nonsmooth Lipschitz optimization problem
were presented.

The purpose of this paper is to establish a convex interior mapping theorem
for (not necessarily Lipschitz) continuous functions using unbounded approximate
Jacobians and to derive Lagrange multiplier conditions for constrained optimization
problems. These approximate Jacobians, which enjoy rich calculus ([7, 8, 9, 10,
11]), always exist for continuous functions and yield sharp conditions for locally
Lipschitz functions (see [20]). The techniques of recession directions of unbounded
approximate Jacobians and of partial approximate Jacobians play a central device
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in deriving the convex interior mapping theorem. We then apply the generalized
convex interior mapping theorem to obtain a general multiplier rule for optimization
problems with continuous data.

The outline of the paper is as follows. Section 2 presents approximate Jacobian
based basic calculus and preliminary results on recession directions which allow us to
describe results involving unbounded approximate Jacobians. Section 3 establishes
a convex interior mapping theorem. Section 4 provides convex interior mapping the-
orems using partial approximate Jacobians. Section 5 presents necessary optimality
conditions for a general constrained nonsmooth optimization problem.

2. Approximate Jacobians

We begin this section by presenting the definition of the approximate Jacobian
and its associated basic calculus.

Let f := (f1, f2, ..., fm) : Rn → Rm be a continuous function. We recall that
a closed set of (m × n)-matrices ∂f(x) ⊆ L(Rn, Rm) is said to be an approximate
Jacobian of f at x if for every u ∈ Rn and v ∈ Rm, we have

(vf)+(x, u) ≤ sup
M∈∂f(x)

〈v,M(u)〉,

where vf is the real function
∑m

i=1 vifi and (vf)+(x, u) is the upper Dini directional
derivative of the function vf at x in the direction u, that is

(vf)+(x, u) := lim sup
t↓0

(vf)(x + tu)− (vf)(x)
t

Let F : Rn ⇒ L(Rn, Rm) be a set-valued map. If at every x the set F (x) is an
approximate Jacobian of f at x, then we say that F is an approximate Jacobian
map of f . When m = 1, an approximate Jacobian ∂f(x) of f at x is also called a
generalized subdifferential of f at x.

As it was noted in the papers [7, 8, 9, 10], for locally Lipschitz functions, the
Clarke generalized Jacobian and the coderivative [17] are examples of approximate
Jacobians. However, a locally Lipschitz function may admit an approximate Jaco-
bian whose convex hull is strictly contained in the Clarke Jacobian. This implies
in particular that any necessary optimality conditons expressing in terms of ap-
proximate Jacobians will not only be valid for the Clarke Jacobian but also often
yield sharper conditions. Other examples of approximate Jacobians include Warga’s
unbounded derivate containers [21], Ioffe’s fan-prederivative [6] and the quasidiffer-
ential of Demyanov and Rubinov [2].

It is known (see [8]) that when m = 1 and x is a local minimum point of the
continuous function f , then

0 ∈ co∂f(x)

where ∂f(x) is a generalized subdifferential of f at x and co stands for the closed
convex hull. When we are looking for a local minimum of f on a convex subset
C ⊆ Rn the above rule can be generalized as follows.

Proposition 2.1. Let C be a convex set in Rn and let f : Rn → R be continuous. If
x ∈ C is a local minimum point of f on C and if ∂f(x) is a generalized subdifferential
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of f at x, then
sup

ξ∈∂f(x)
〈ξ, u〉 ≥ 0 , ∀ u ∈ T (C, x)

where T (C, x) := {t(c− x) : x ∈ C, t ≥ 0} , is the tangent cone to C at x.

Proof. It suffices to show the inequality for those u ∈ T (C, x) of the form
u = c− x where c ∈ C. Suppose to the contrary that the inequality does not hold
for some u = c− x, c ∈ C, that is

sup
ξ∈∂f(x)

〈ξ, c− x〉 < 0.

It follows that

f+(x, c− x) = lim sup
t↓0

f (x + t(c− x))− f(x)
t

< 0.

Hence for t sufficiently small, we derive

f (x + t(c− x))− f(x) < 0,

which contradicts the hypothesis. �
Recall that for a nonempty subset A ⊆ Rn, a vector u ∈ Rn is said to be a

recession direction of A if there is a sequence of positive numbers {ti} converging
to 0 and a sequence {ai} ⊆ A such that u = lim

i→∞
tiai. The collection of all recession

directions of A is called the recession cone of A and denoted by A∞. Recession cones
play an important role in the study of unbounded sets and unbounded functions.
The interested reader is referred to [13, 17] for properties and uses of recession cones
of nonconvex sets. Given a cone K ⊆ Rn and 0 < ε < 1, the ε−conic neighborhood
of K is denoted by Kε and is defined by

Kε := {x + ε‖x‖y : y ∈ Bn(0, 1), x ∈ K}
where Bn(0, 1) denotes the closed ball in Rn centered at 0 with radius 1.

We recall further that a set valued map F : Rn ⇒ Rm is said to be upper
semicontinuous at x if for every ε > 0, there is some δ > 0 such that

F (x′) ⊆ F (x) + εBm(0, 1), for x′ ∈ x + δBn(0, 1).

We are now able to provide some calculus rules that were established in [7, 8, 9,
11].

(1) Differentiability. Let f : Rn → Rm be continuous. If it is Gâteaux
differentiable at x, then every approximate Jacobian of f at x contains
the Gâteaux derivative of f at x in its closed convex hull. Moreover, f is
Gâteaux differentiable at x if and only if it admits a singleton approximate
Jacobian at this point.

(2) Chain rule. Let f : Rn → Rm be continuous and g : Rm → R be con-
tinuously differentiable at some point f(x) ∈ Rm. If ∂f is an approximate
Jacobian map of f which is upper semicontinuous at x and if ∇g(f(x)) 6= 0,
then for every ε > 0, the closure of the set

∇g(f(x)) ◦ [∂f(x) + (∂f(x))ε
∞]

is an approximate Jacobian of g ◦ f at x.
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It is interesting to note that if ∂f(x) is bounded, then (∂f(x))∞ = {0} and
hence (∂f(x))ε

∞ = {0}, and the chain rule above becomes : ∇g(f(x))◦∂f(x)
is an approximate Jacobian of gof at x. The condition ∇g(f(x)) 6= 0 in this
case is in fact superfluous (see [9]). When ∂f(x) is unbounded, which is often
the case when f is not locally Lipschitz, neither condition ∇g(f(x)) 6= 0,
nor the term (∂f(x))ε

∞ in the expression of the chain rule can be neglected.
(3) Mean value condition: Let f : Rn → Rm be continuous and let ∂f(x)

be an approximate Jacobian of f at x for every x ∈ [a, b] where a, b ∈ Rn.
Then

f(b)− f(a) ∈ co(∂f([a, b])(b− a)).

Now let f : Rn1 ×Rn2 → Rm be continuous in both variables (x, y) ∈ Rn1 ×Rn2 .
An approximate Jacobian ∂xf(x, y) ⊆ L(Rn1 , Rm) of the function x 7→ f(x, y) where
y ∈ Rn2 is fixed, is called a partial approximate Jacobian of f at (x, y) with respect
to x. A partial approximate Jacobian of f at (x, y) with respect to y is similarly
defined. Note that if ∂xf(x, y) and ∂yf(x, y) are partial approximate Jacobians of
f at (x, y), then it is not necessary that the set

(∂xf(x, y), ∂yf(x, y)) := {MN : M ∈ ∂xf(x, y), N ∈ ∂yf(x, y)} ⊆ L(Rn1×n2 , Rm)

is an approximate Jacobian of f at (x, y). For instance if f is a continuous function
which is not Gâteaux differentiable at 0 and possesses partial derivatives ∂f(0,0)

∂x

and ∂f(0,0)
∂y (in the classical sense) at this point. Then these partial derivatives are

partial approximate Jacobians of f at 0. However, the singleton
{(

∂f(0,0)
∂x , ∂f(0,0)

∂y

)}
cannot be an approximate Jacobian of f at 0 since f is not Gâteaux differentiable
at this point.

The relationship between approximate Jacobians and partial approximate Jaco-
bians is seen in the following results.

For a subset Q ⊆ L(Rn1 × Rn2 , Rm), we denote by projx Q the set of matrices
M ∈ L(Rn1 , Rm) such that (MN) ∈ Q for some N ∈ L(Rn2 , Rm). The notation
projy Q is defined in a similar way.

We need first the following standard result on the continuity of sup-functions.

Lemma 2.1. Let F : Rn ⇒ L(Rn, Rm) be a set-valued map with closed values, which
is upper semicontinuous at x. Then for each u ∈ Rn and v ∈ Rm, the sup-function

h(y) := sup
M∈F (y)

〈v,M(u)〉

is a real-valued upper semicontinuous function at x.

Proof. We first observe that

|〈v,M(u)〉| ≤ ‖v‖ · ‖M‖ · ‖u‖

for every u ∈ Rn, v ∈ Rm and M ∈ L(Rn, Rm) and so

sup
‖M‖≤1

〈v,M(u)〉 ≤ ‖u‖ · ‖v‖.
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Let ε > 0. Then by the upper semicontinuity of F , there exists some δ > 0 such
that F (x′) ⊆ F (x)+ εBm×n(0, 1) whenever x′ ∈ x+ δBn(0, 1). Then, it follows that

lim sup
x′→x

h(x′) = lim sup
x′→x

sup
M∈F (x′)

〈v,M(u)〉

≤ lim sup
x′→x

sup
M∈F (x)+εBm×n(0,1)

〈v,M(u)〉

≤ sup
M∈F (x)

〈v,M(u)〉+ sup
N∈εBm×n(0,1)

〈v,N(u)〉

≤ h(x) + ε‖u‖ · ‖v‖.
Since ε > 0 is arbitrary, we conclude that

lim sup
x′→x

h(x′) ≤ h(x)

which shows that h is upper semicontinuous at x. �

Proposition 2.2. Let f : Rn1 × Rn2 → Rm be continuous. If ∂f(x, y) ⊆ L(Rn1 ×
Rn2 , Rm) is an approximate Jacobian of f at (x, y), then projx∂f(x, y) and
projy∂f(x, y) are partial approximate Jacobians of f at (x, y). Conversely, if
∂xf(x, y) and ∂yf(x, y) are partial approximate Jacobians of f at (x, y), and if
the set valued map ∂yf(·, ·) : Rn1 × Rn2 ⇒ L(Rn2 , Rm) is upper semicontinuous at
(x, y), then the set (∂xf(x, y), ∂yf(x, y)) is an approximate Jacobian of f at (x, y).

Proof. For the first part let u ∈ Rn1 and w ∈ Rm. Then

(wf(·, y))+(x, u) = lim sup
t↓0

(wf)((x, y) + t(u, 0))− (wf)(x, y)
t

≤ sup
(MN)∈∂f(x,y)

〈w, (MN)(u, 0)〉

≤ sup
M∈projx ∂f(x,y)

〈w,M(u)〉.

This shows that projx∂f(x, y)is an approximate Jacobian of the function f(·, y) at
x.

To prove the second part, let (u, v) ∈ Rn1 × Rn2 and w ∈ Rm. Then

(wf)+((x, y), (u, v)) = lim sup
t↓0

(wf)(x + tu, y + tv)− (wf)(x, y)
t

≤ lim sup
t↓0

(wf)(x + tu, y + tv)− (wf)(x + tu, y)
t

+ lim sup
t↓0

(wf)(x + tu, y)− (wf)(x, y)
t

≤ lim sup
t↓0

(wf)(x + tu, y + tv)− (wf)(x + tu, y)
t

+ sup
M∈∂xf(x,y)

〈w,M(u)〉.

To estimate the first term of the last sum, let us apply the mean value theorem to
the function f(x + tu, ·) on the interval [y, y + tv]. Thus, for ε > 0, there is some
Nt ∈ co∂yf(x + tu, [y, y + tv]) such that

(wf)(x + tu, y + tv)− (wf)(x + tu, y) ≤ 〈w,Nt(tv)〉+ tε.
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This and Lemma 2.1 yield

lim sup
t↓0

(wf)(x + tu, y + tv)− (wf)(x + tu, y)
t

≤ lim sup
t↓0

sup
N∈co∂yf(x+tu,[y,y+tv])

(〈w,N(v)〉+ ε)

≤ lim sup
t↓0

sup
N∈∂yf(x+tu,[y,y+tv])

(〈w,N(v)〉+ ε)

≤ sup
N∈∂yf(x,y)

〈w,N(v)〉+ ε.

Summing up the above inequalities and taking into account the fact that ε is arbi-
trary, we obtain

(wf)+((x, y), (u, v)) ≤ sup
M∈∂xf(x,y)

〈w,M(u)〉+ sup
N∈∂yf(x,y)

〈w,N(v)〉

≤ sup
(MN)∈(∂xf(x,y),∂yf(x,y))

〈w, (MN)(u, v)〉

which shows that (∂xf(x, y), ∂yf(x, y)) is an approximate Jacobian of f at (x, y). �
Finally let us state a special case of the standard min-max theorem which is

needed in the sequel.

Lemma 2.2. Let v0 ∈ Rm, let D ⊆ Rn be a nonempty compact set and let Q ⊆
L(Rn, Rm) be a nonempty set. Then we have

sup
M∈Q

inf
u∈D

〈v0,M(u)〉 = inf
u∈D

sup
M∈Q

〈v0,M(u)〉.

Proof. The function (u, M) 7→ 〈v0,Mu〉 from Rn×L(Rn, Rm) to R∪{∞} being
linear in each of variables u and M and D being compact, the lemma is obtained
from the standard minimax theorem. �

3. A Generalized Convex Interior Mapping Theorem

In this section we shall present a convex interior mapping theorem for (not nec-
essarily locally Lipschitz) continuous functions by using approximate Jacobians.

Let C ⊆ Rn be a nonempty subset and let M be an m× n matrix. We say that
M is surjective on C at a ∈ C if

M(a) ∈ intM(C),

where intM(C) denotes the interior of the image M(C) of C under M. The following
local surjectivity result is crucial in establishing the main result of this section.

Lemma 3.1. Let C ⊆ Rn be a nonempty convex set with 0 ∈ C. Let F : Rn ⇒
L(Rn, Rm) be a set-valued map with closed values, which is upper semicontinuous
at 0. If every element of the set coF (0) ∪ co((F (0))∞\{0}) is surjective on C at 0,
then there exist some k > 0 and δ > 0 such that

Bm(0, 1) ⊆ kM [Bn(0, 1) ∩ (C − x)],

for every x ∈ Bn(0, δ) ∩ C and for every

M ∈
⋃

y∈Bn(0,δ)

co
[
F (y) + (F (y))δ

∞

]
.
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Proof. Suppose to the contrary that the conclusion is not true. Thus, for
each k ≥ 1 and δ = 1/k there exist xk ∈ Bn(0, 1/k) ∩ C, vk ∈ Bm(0, 1) and
Mk ∈

⋃
y∈Bn(0,1/k)

co
[
F (y) + (F (y))1/k

∞

]
such that

(3.1) vk 6∈ kMk[Bn(0, 1) ∩ (C − xk)].

Without loss of generality we may assume that

(3.2) lim
k→∞

vk = v0 ∈ Bm(0, 1).

We claim that by taking a subsequence if necessary, it can be assumed that either

(3.3) lim
k→∞

Mk = M0 ∈ coF (0),

or

(3.4) lim
k→∞

tkMk = M∗ ∈ co [(F (0))∞\{0}]

where {tk} is some sequence of positive numbers converging to 0.
Let us first see that (3.3) or (3.4) leads to a contradiction. If (3.3) holds, then by

the surjectivity of M0 there is some ε > 0 and k0 ≥ 1 such that

(3.5) v0 + Bm(0, ε) ⊆ k0M0[Bn(0, 1) ∩ C].

Moreover, there is k1 ≥ k0 such that

(3.6) ‖Mk −M0‖ < ε/4 for k ≥ k1.

We want to show that there is k2 ≥ k1 such that

(3.7) v0 + Bm(0, ε/2) ⊆ k0M0[Bn(0, 1) ∩ (C − xk)] for k ≥ k2.

Indeed if this is not the case, then one may assume that for each xk there is some
bk ∈ Bm(0, ε/2) satisfying

v0 + bk 6∈ k0M0[Bn(0, 1) ∩ (C − xk)].

Since that set Bn(0, 1)∩(C−xk) is convex, there exists some ξk ∈ Rm with ‖ξk‖ = 1
such that

〈ξk, v0 + bk〉 ≤ 〈ξk, k0M0(x)〉 ∀ x ∈ Bn(0, 1) ∩ (C − xk).

Using subsequences if needed, one may again assume that

lim
k→∞

bk = b0 ∈ Bm(0, ε/2),

lim
k→∞

ξk = ξ0 with ‖ξ0‖ = 1.

It follows then

〈ξ0, v0 + b0〉 ≤ 〈ξ0, k0M0(x)〉 for all x ∈ Bn(0, 1) ∩ C.

The point v0 + b0 being an interior point of the set v0 + Bm(0, ε), the obtained
inequality contradicts (3.5). Thus (3.7) holds for some k2 ≥ k1. Now using (3.6)
and (3.7) we derive the following inclusions for k ≥ k2 :

v0 + Bm(0,
ε

2
) ⊆ k0M0[Bn(0, 1) ∩ (C − xk)]

⊆ k0 {Mk[Bn(0, 1) ∩ (C − xk)] + (M0 −Mk)[Bn(0, 1) ∩ (C − xk)]}
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⊆ k0Mk[Bn(0, 1) ∩ (C − xk)] + Bm(0, ε/4).(3.8)

This gives us

(3.9) v0 + Bm(0,
ε

4
) ⊆ k0Mk[Bn(0, 1) ∩ (C − xk)], for k ≥ k2.

We choose now k ≥ k2 so large that vk ∈ v0 + Bm(0, ε/4). Then (3.9) yields

(3.10) vk ∈ kMk[Bn(0, 1) ∩ (C − xk)],

which contradicts (3.1).
Now we assume (3.4). Again, since M∗ is surjective, relations (3.5), (3.6), (3.7)

and (3.8) remain true when we replace M0 by M∗ and Mk by tkMk. Then relation
(3.9) becomes

v0 + Bm(0,
ε

4
) ⊆ k0tkMk[Bn(0, 1) ∩ (C − xk)] for k ≥ k2.

By choosing k ≥ k2 sufficiently large so that vk ∈ v0 + Bm(0, ε/4) and 0 < tk ≤ 1,
we arrive at the same contradiction as (3.10).

The proof will be then completed if we show that either (3.3) or (3.4) holds.
Let

Mk ∈ co
[
F (yk) + (F (yk))1/k

∞

]
for some yk ∈ Bn(0, 1/k).

Since F is upper semicontinuous at 0, there is k0 ≥ 1 such that

(F (yk))∞ ⊆ (F (0))∞, k ≥ k0.

We may assume without loss of generality that this inclusion is true for all k =
1, 2, . . . . Thus, for each k ≥ 1, there exist Mkj ∈ F (yk), Nkj ∈ (F (0))∞, Pkj and Pk

with
‖Pkj‖ ≤ 1, ‖Pk‖ ≤ 1, and λkj ∈ [0, 1], j = 1, . . . , nm + 1

such that
∑mn+1

j=1 λkj = 1 and

Mk =
mn+1∑
j=1

λkj(Mkj + Nkj +
1
k
‖Nkj‖Pkj) +

1
k
Pk.

If all the sequences {λkjMkj}k≥1, {λkjNk}k≥1, j = 1, . . . ,mn+1 are bounded, then
so is the sequence {Mk}. By passing to subsequences if necessary we may assume

lim
k→∞

Mk = M0, lim
k→∞

λkj = λ0j

lim
j→∞

λkjNkj = N0j , lim
k→∞

λkjMkj = M0j

for j = 1, . . . ,mn + 1. Since (F (0))∞ is a closed cone, we have

N0j ∈ (F (0))∞,

nm+1∑
j=1

N0j ∈ co(F (0))∞.

Moreover, we also have
∑nm+1

j=1 λ0j = 1.

Decompose the sum
nm+1∑
j=1

λkjMkj into two sums: The first sum
∑

1 consists of

those terms with {Mkj}k≥1 bounded, and the second sum
∑

2 consists of those
terms with {Mkj}k≥1 unbounded. Then the limits λ0j with j in the second sum are
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all zero and the corresponding limits M0j are recession directions of F (0). Hence,∑
1 λ0j = 1 and

lim
k→∞

∑
1

λkjMkj =
∑

1

M0j ∈ coF (0)

by the upper semicontinuity of F at 0, and

lim
k→∞

∑
2

λkjMkj =
∑

2

M0j ∈ co(F (0))∞.

Thus, M0 ∈ co F (0) + co (F (0))∞ ⊆ coF (0) (see [13]) and (3.3) is fulfilled.
If among the above said sequences there are unbounded ones, then again by taking

subsequences instead, we may assume to have one of them, say {λkj0Mkj0}k≥1 for
some j0 ∈ {1, . . . ,mn + 1}, with the largest norm. (The same argument works for
{λkj0Nkj0}). Consider the sequence {Mk/‖λkj0Mkj0‖}k≥1 . It is evident that this
sequence is bounded, and we may assume it converges to some matrix M∗. We
have then M∗ ∈ co (F (0))∞. Note that the cone co (F (0))∞ is pointed, otherwise
co [(F (0))∞\{0}] should contain the zero matrix which is certainly not surjective
and this should contradict the hypothesis. As before, we may assume that each
term in the sum of {Mk/‖λkj0Mkj0‖} is convergent. Then M∗ is a finite sum of
elements from co(F (0))∞. Since at least one of the terms of this sum is non-zero
(the term corresponding to the index j0 has a unit norm), and the cone co(F (0))∞
is pointed, we deduce that M∗ is non-zero, and so (3.4) holds. Hence the proof is
complete. �

Lemma 3.2. Assume that the hypotheses of Lemma 3.1 hold. Then there is a closed
convex set D containing 0 with D\{0} ⊆ C such that

Bm(0, 1) ⊆ kM [Bn(0, 1) ∩ (D − x)]

for every x ∈ Bn(0, δ) ∩D and M ∈
⋃

y∈Bn(0,δ)

co[F (y) + (F (y))δ
∞].

Proof. As noticed in [14, 15], it is easy to construct an increasing (by inclusions)
sequence of closed and convex sets {Dk} such that 0 ∈ Dk ⊆ C ∪ {0} and C ⊆[
∪∞k=1Dk

]
. We show that for k sufficiently large, every matrix of the set co F (0) ∪

co [(F (0))∞\{0}] is surjective on Dk at 0. Indeed, if this is not the case, then for
each k = 1, 2, . . . there is Mk ∈ co F (0) ∪ co [(F (0))∞\{0}] such that

0 6∈ intMk(Dk ∩Bn(0, 1)).

Since Dk ∩ Bn(0, 1) is convex, using the separation theorem we find ξk ∈ Rm with
‖ξk‖ = 1 such that

(3.11) 0 ≤ 〈ξk,Mk(x)〉 for x ∈ Dk ∩Bn(0, 1).

Without loss of generality we may assume that

lim
k→∞

ξk = ξ0 with ‖ξ0‖ = 1

and either
lim

k→∞
Mk = M0 ∈ co F (0) ∪ co [(F (0))∞\{0}]
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or there are tk > 0 such that

lim
k→∞

tkMk = M0 ∈ co[(F (0))∞\{0}].

In all cases (3.11) yields

0 ≤ 〈ξ0,M0(x)〉 for x ∈ C ∩Bn(0, 1).

This contradicts the surjectivity of M0 on C at 0.
Thus, for k sufficiently large, Lemma 3.1 is applicable to the set D = Dk and

produces the desired result. �

Now we formulate and prove the main result of the paper.

Theorem 3.3. Let C be a nonempty convex set in Rn and let f : Rn → Rm be
continuous. Assume that

i) ∂f : Rn ⇒ L(Rn, Rm) is an approximate Jacobian map of f which is upper
semicontinuous at a ∈ C;

ii) Every matrix of the set co∂f(a)∪ co[(∂f(a))∞\{0}] is surjective on C at a.

Then f(a) ∈ intf(C).

Proof. Without loss of generality we may assume that a = 0 andf(a) = 0.
Moreover, by Lemma 3.2, we may also assume that C is closed. We obtain the
conclusion by establishing the inclusion

(3.12) Bm

(
0,

δ

4k

)
⊆ f(Bn(0, δ) ∩ C).

Suppose that (3.12) is false. Then we can find y with ‖y‖ ≤ δ

4k
such that

y 6∈ f(Bn(0, δ) ∩ C).

We define a real function ϕ : Rn → R by

ϕ(x) := ‖y − f(x)‖+
2
δ
‖y‖ · ‖x‖.

It is clear that ϕ is continuous. Hence it attains its minimum on the compact set
Bn(0, δ) ∩ C at some point x ∈ Bn(0, δ) ∩ C. We claim that

(3.13) x ∈ (intBn(0, δ)) ∩ C.

In fact, if ‖x‖ = δ, then

ϕ(x) = ‖y − f(x)‖+ 2‖y‖ > ϕ(0) = ‖y‖
because x ∈ C ∩ Bn(0, δ) and y 6∈ f(Bn(0, δ) ∩ C), which is impossible for x being
a minimum point.

It follows from (3.13) that

cone(C − x) = cone[(Bn(0, 1) ∩ C)− x].

Consequently, if ∂ϕ(x) is a generalized subdifferential of ϕ at x, then Proposition
2.1 yields

(3.14) sup
ξ∈∂ϕ(x)

〈ξ, u〉 ≥ 0 for all u ∈ C − x.
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Let us now find a generalized subdifferential of ϕ at x. To this purpose, note that
y 6= f(x), therefore the function y → ‖y − y‖ is Gâteaux differentiable at y = f(x)

and its derivative at this point equals
y − f(x)
‖y − f(x)‖

. Furthermore, for the function

x → ‖x‖, the closed unit ball Bn(0, 1) is a generalized subdifferential at any point.
We now apply the sum rule (see [11]) and the chain rule to obtain the following
generalized subdifferential of ϕ at x :

∂ϕ(x) :=
{

y − f(x)
‖y − f(x)‖

M +
2
δ
‖y‖ξ : M ∈ Q

}
where Q := ∂f(x) + (∂f(x))δ

∞.
With this subdifferential, inequality (3.14) becomes

sup
M∈Q,ξ∈Bn(0,1)

〈 y − f(x)
‖y − f(x)‖

M +
2
δ
‖y‖ξ, u〉 ≥ 0, for u ∈ C − x.

This implies

1
2k

≥ − sup
M∈Q

〈 y − f(x)
‖y − f(x)‖

,M(u)〉 for u ∈ Bn(0, 1) ∩ (C − x).

or equivalently,

1
2k

≥ sup
u∈Bn(0,1)∩(C−x)

(
− sup

M∈Q
〈 y − f(x)
‖y − f(x)‖

, M(u)〉

)

≥ − inf
u∈Bn(0,1)∩(C−x)

sup
M∈Q

〈 y − f(x)
‖y − f(x)‖

, M(u)〉.

In virtue of Lemma 2.1, the last inequality gives

(3.15)
1
2k

≥ − sup
M∈Q

inf
u∈Bn(0,1)∩(C−x)

〈 y − f(x)
‖y − f(x)‖

, M(u)〉.

According to Lemma 3.1, for each M ∈ Q, we have the inclusion

Bm(0, 1) ⊆ kM [Bn(0, 1) ∩ (C − x)].

In particular, there is u ∈ Bn(0, 1) ∩ (C − x) such that M(u) =
1
k

f(x)−y
‖y−f(x)‖ . Hence

(3.15) implies
1
2k

≥ 1
k

which is impossible. This completes the proof. �

Example 3.4. Let f(x, y) = g(x) + y2 be a continuous map from R2 to R, where
g is a real function which is differentiable at x 6= 0 with limx→0 g′(x) = −∞. It can
be seen that

∂f(x, y) =

{
{(g′(x), 2y)} if x 6= 0
{(α, 2y) : α ≤ −1} if x = 0
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is an approximate Jacobian of f which is upper semicontinuous at (0, 0). At (0, 0)
we have

∂f(0, 0) = {(α, 0) : α ≤ −1}
and

(∂f(0, 0))∞ = {(α, 0) : α ≤ 0}.
Define the convex set C ⊂ R2 by

C := {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Then all the conditions of Theorem 3.3 are satisfied and its conclusion holds.

When f is a locally Lipschitz function, Theorem 3.3 yields Pourciau’s convex
interior mapping theorem.

Corollary 3.5. Suppose that f : Rn → Rm is locally Lipschitz and C is a convex
set in Rn. If every matrix of the Clarke generalized Jacobian ∂Cf(a) of f at a ∈ C
is surjective on C at a, then f(a) ∈ intf(C).

Proof. When f is locally Lipschitz, the Clarke generalized Jacobian map x →
∂Cf(x) is an upper semicontinuous approximate Jacobian map with bounded and
convex values. The conclusion now easily follows from Theorem 3.3. �

4. Interior Mapping Theorems & Partial Approximate Jacobians

In classical calculus a practical way of obtaining the derivative of a vector func-
tion is to compute partial derivatives of component functions. As we have seen in
Section 2 and Proposition 2.2 this method applies to approximate Jacobians. For
applications purposes we shall derive a convex interior mapping theorem involving
partial approximate Jacobians.

Lemma 4.1. Let Fi : Rn ⇒ Rki , i = 1, 2 be set-valued maps with closed values
which are upper semicontinuous at a ∈ Rn. Then for every δ ≥ 0, the set-valued
map F δ : Rn ⇒ Rk1 × Rk2 defined by

F δ(x) = (F1(x) + [F1(x)]δ∞, F2(x) + [F2(x)]δ∞)

is upper semicontinuous at a.

Proof. Let ε > 0 be given. By the upper semicontinuity, there is some δ > 0
such that for i = 1, 2,

Fi(x) ⊆ Fi(a) + εBki
(0, 1),

whenever x ∈ a + Bn(0, 1). Thus for each x ∈ a + Bn(0, 1),

[Fi(x)]∞ ⊆ [Fi(a)]∞.

Consequently,

F δ(x) ⊆ (F1(a) + [F1(a)]δ∞ + εBk1(0, 1), F2(a) + [F2(a)]δ∞ + εBk2(0, 1))

⊆ F δ(a) + ε[Bk1(0, 1)×Bk2(0, 1)]

which shows that F δ is upper semicontinuous at a. �
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Lemma 4.2. Let C ⊆ Rn1+n2 be a nonempty convex set with 0 ∈ C. Let Fi :
Rn1+n2 ⇒ L(Rni , Rm) i = 1, 2 be closed set-valued maps which are upper semicon-
tinuous at 0. If for each pair of matrices M ∈ coF1(0) ∪ co[(F1(0))∞\{0}] and
N ∈ coF2(0) ∪ co[(F2(0))∞\{0}], the matrix (MN) is surjective on C at 0, then
there exist some k > 0 and δ > 0 such that

Bm(0, 1) ⊆ k(MN)[Bn(0, 1) ∩ (C − x)],

for every x ∈ Bn(0, δ) ∩ C and for every

(MN) ∈
⋃

y∈Bn(0,δ)

(co[F1(y) + (F1(y))δ
∞], co[F2(y) + (F2(y))δ

∞]),

Proof. We proceed the proof in the similar way as in Lemma 3.1. By supposing
to the contrary, we find

xk ∈ Bn

(
0,

1
k

)
∩ C, vk ∈ Bm(0, 1), yk ∈ Bn

(
0,

1
k

)
Mk ∈ co[F1(yk) + (F1(yk))1/k

∞ ], Nk ∈ co[F2(yk) + (F2(yk))1/k
∞ ],

such that

lim
k→∞

vk = v0 ∈ Bm(0, 1)(4.1)

vk 6∈ k(MkNk)[Bn(0, 1) ∩ (C − xk)].(4.2)

For {Mk} and {Nk} we have two possible cases (by using a subsequence of necessary)

lim
k→∞

Mk = M0 ∈ coF1(0)

lim
k→∞

tkMk = M∗ ∈ co[(F1(0))∞\{0}],

where {tk} is some sequence of positive numbers converging to 0, and similar rela-
tions for {Nk}.

Then we have
v0 + Bm(0, ε) ⊆ P [Bn(0, 1) ∩ C]

for some ε > 0, where P is one of the four matrices (M0N0), (M0N∗), (M∗N0), and
(M∗N∗).

Since P is surjective by hypothesis, for k sufficiently large

v0 + Bm(0, ε/2) ⊆ k0P [Bn(0, 1) ∩ (C − xk)]

and this implies

(4.3) v0 + Bm(0, ε/2) ⊆ k0Pk[Bn(0, 1) ∩ (C − xk)]

for k large, where Pk is either (MkNk), (Mk(skNk)), ((tkMk)Nk), ((tkMk)(skNk))
with lim tkMk = M∗, lim skNk = N∗. Since for k large, 0 < tk ≤ 1, relation (4.3)
yields

v0 + Bm(0, ε/2) ⊆ k0(MkNk)[Bn(0, 1) ∩ (C − xk)],
which contradicts (4.2). �

Theorem 4.3. Let C ⊆ Rn = Rn1 × Rn2 be a nonempty convex set and let f :
Rn1 × Rn2 → Rm be continuous. Assume that
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i) ∂xf and ∂yf are partial approximate Jacobian maps of f with respect to x

and y respectively and are upper semicontinuous at a ∈ C.
ii) Every matrix (MN) where M ∈ co∂xf(a) ∪ co[(∂xf(a))∞\{0}] and N ∈

co∂yf(a) ∪ co[(∂yf(a))∞\{0}] is surjective on C at a.

Then f(a) ∈ intf(C).

Proof. We proceed in a similar way as that of Theorem 3.3. In view of Propo-
sition 2.2, the set

Q := (∂xf(a) + (∂xf(a))δ
∞, ∂yf(a) + (∂yf(a))δ

∞)

is an approximate Jacobian of f at a. Now Lemma 4.2 yields

Bm(0, 1) ⊆ k(MN)[Bn(0, 1) ∩ (C − a)]

for every (MN) ∈ Q. By this the same contradiction is obtained. �

5. Generalized Lagrange Multiplier Rule

In this section we shall apply the convex interior mapping theorem to derive a
multiplier rule for a constrained optimization problem with continuous data.

We consider the following problem (P):

min f(x)

gi(x) ≤ 0, i = 1, . . . , p(5.1)

hj(x) = 0, j = 1, . . . , q(5.2)

We denote g = (g1, . . . , gp), h = (h1, . . . , hq) and F = (f, g, h).

Theorem 5.1. Assume that F is continuous and admits an approximate Jacobian
map ∂F which is upper semicontinuous at x ∈ Rn. If x is a local optimal solution of
(P ), then there exists a nonzero vector (α, β, γ) ∈ R×Rp ×Rq with α ≥ 0, β =
(β1, . . . , βp) with βi ≥ 0 and βigi(x) = 0, i = 1, ..., p, such that

0 ∈ (α, β, γ)(co∂F (x) ∪ co[(∂F (x))∞\{0}]).

Proof. Let ε > 0 be given so that f(x) ≥ f(x) for every feasible x ∈ x+Bn(0, ε).
Without loss of generality we may assume x = 0 and F (x) = 0. Let us denote

W = {(t, a, 0) ∈ R× Rp × Rq : t < 0, a = (a1, . . . , ap) with ai < 0, i = 1, . . . , p},
C = Bn(0, ε)×W ⊆ Rn × R1+p+q.

Let us also define a vector function φ : Rn × R1+p+q → R1+p+q by

φ(x,w) = F (x)− w.

By denoting by I the identity (1 + p + q)× (1 + p + q)-matrix, we see that

(x,w) → ∂xφ(x,w) = ∂F (x)

(x,w) → ∂yφ(x,w) = {I}
are partial approximate Jacobian maps of φ which are upper semicontinuous at
(0, 0). Moreover,

[∂xφ(x,w)]∞ = [∂F (x)]∞, [∂wφ(x,w)] = {0}.
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We observe further that
φ(0, 0) 6∈ φ[Bn(0, ε)×W ],

otherwise we can find some x ∈ Bn(0, ε) and w ∈ W such that

0 = φ(0, 0) = F (x)− w

which shows that x is feasible for (P ) and f(x) < f(x) and contradicts the hypoth-
esis. It follows that

φ(0, 0) 6∈ intφ[Bn(0, ε)×W ].
In view of our convex interior mapping theorem, there must exist a matrix from the
set

(co∂F (0) ∪ co[(∂F (0))∞\{0}],−I),
say of the form (M(−I)) such that

(M(−I))(0, 0) 6∈ int(M(−I))[Bn(0, ε)×W ].

Now we apply the separation theorem to find a nonzero vector (α, β, γ) ∈ R1+p+q

such that

((α, β, γ), (M(−I))(x,w) ≥ 0 for all (x,w) ∈ Bn(0, ε)×W .

This is equivalent to

〈(α, β, γ),Mx〉 ≥ 〈(α, β, γ), w〉 for all x ∈ Rn, w ∈ W.

¿¿From this inequality we see that α ≥ 0, βi ≥ 0, βigi(x) = 0 (because gi(x) = 0),
i = `, . . . , p and (α, β, γ)M = 0 where M ∈ co∂F (x). �

When f, g and h are locally Lipschitz, Theorem 5.1 gives the classical multiplier
rule for Lipschitz problems (see [1, 5, 14]).

Corollary 5.2. Assume that F is locally Lipschitz and x is a local optimal solution
of (P ). Then there exists a nonzero vector (α, β, γ) ∈ R1+p+q with α ≥ 0, βi ≥ 0
and βigi(x) = 0, i = 1, . . . , p such that

0 ∈ (α, β, γ)∂cF (x).

Proof. We use the Clarke generalized Jacobian ∂cF as an upper semicontinuous
approximate Jacobian of F and apply Theorem 5.1 to produce the desired result.
�
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