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ON CONDITIONS FOR EQUALITY OF RELAXATIONS IN THE
CALCULUS OF VARIATIONS

KEWEI ZHANG

Abstract. We use the quadratic rank-one convex envelope qr(f) for f : MN×n

→ R to study conditions for equality of semiconvex envelopes and use the corre-
sponding quadratic rank-one convex hull qr(K) for compact sets K ⊂ MN×n to
give a condition for equality of semiconvex hulls. We show that Lc(K) = C(K)
if and only if qr(K) = C(K). We also establish that for a function f bounded
below by certain quadratic functions, R(f) = C(f) if and only if qr(f) = C(f).
In particular, when min{N, n} = 2, R(f) = C(f) if and only if P (f) = C(f).

In this paper we give a simple new condition for equality of semiconvex hulls
which improves upon and unifies the known conditions [Z2] (also see [DKK] for
sharpening and simplification of the proofs). We also establish a new condition for
equality of semiconvex envelopes in the calculus of variations. We denote by MN×n

the linear space of real N × n matrices with the standard Euclidean norm of RNn,
and assume that N, n ≥ 2. Let f : MN×n → R be continuous and bounded below.
Let R(f), Q(f), P (f), and C(f) be the rank-one convex, quasiconvex, polyconvex
and the convex envelope [Sv2] respectively. It is well-known that C(f) ≤ P (f) ≤
Q(f) ≤ R(f) ≤ f. In this paper we introduce another semiconvex envelope qr(f)
called the quadratic rank-one convex envelope of f (see Definition 2 below) which
satisfies

C(f) ≤ qr(f) ≤ Q(f) ≤ R(f) ≤ f. (1)

We state our main results first, followed by relevant notation and definitions.

Theorem 1. Suppose f : MN×n → R is continuous and satisfies

f(A) ≥ c|A|2 − C1, A ∈ MN×n (2)

for some constants c > 0, C1 ≥ 0. Then
(i) C(f) = qr(f) if and only if C(f) = R(f).
(ii) When min{N, n} = 2, C(f) = P (f) if and only if C(f) = R(f).

It is well known that rank-one convexity does not imply quasiconvexity for func-
tions [Sv1]. Theorem 1 implies that under (2), if qr(f) is convex, R(f) = Q(f) =
C(f). Another condition for equality of envelopes was obtained recently in [Z4]
which asserts that if f : MN×n → R is continuous and satisfies lim|A|→∞ f(A)/|A| =
+∞, then C(f) = Q(f) if and only if C(f) = R(f). Theorem 1 provides a simpler
test for equality of envelopes under a stronger assumption (2). However, the second
statement of Theorem 1 is new for the polyconvex envelope.
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By using semiconvex functions, we may define corresponding semiconvex hulls
for compact sets K ⊂ MN×n by using cosets. Let R(K), Q(K), P (K), qr(K) and
C(K) be the rank-one convex, the quasiconvex, the polyconvex, the quadratic rank-
one convex and the convex hull of K respectively. By using rank-one connections of
K we may also define the so called closed lamination convex hull Lc(K) of K (see
below for definitions). We have K ⊂ Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ P (K) ⊂ C(K) and

K ⊂ Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ qr(K) ⊂ C(K). (3)

Theorem 2. Let K ⊂ MN×n be compact, then
(i) Lc(K) = C(K) if and only if qr(K) = C(K).
(ii) When min{N, n} = 2, Lc(K) = C(K) if and only if P (K) = C(K).

In [Z2], some conditions for equality of hulls were established. We have Lc(K) =
C(K) if and only if Q(K) = C(K). When N = n = 2, Lc(K) = C(K) if and only
if P (K) = C(K). This latter result was improved in [DKK] by shown that the
above statement for P (K) is true precisely when min{N, n} = 2. Theorem 2 shows
that the quadratic rank-one convex hull qr(K) is a simpler indicator than Q(K) for
equality of semiconvex hulls and is more precise than P (K).

Our approach by using rank-one convex quadratic functions [Se,BFJK] is purely
geometrical (see Lemma 1 below) so that we can avoid the use of quasiconvex
envelope of distance functions and that of the Young measure [Z2,DKK].

Let f : MN×n → R be a continuous function. The following are some conditions
related to weak lower semicontinuity of the integral (c.f. [B1,Mo,D,AFu])

I(u) =
∫

Ω
f(Du(x))dx

(i) f is rank-one convex if for each matrix A ∈ MN×n and each rank-one
matrix B = a⊗ b ∈ MN×n, the function t → f(A + tB) is convex.

(ii) f is quasiconvex at A ∈ MN×n on Ω, if for any smooth function φ : Ω → RN

compactly supported in Ω,∫

Ω
f(A + Dφ(x))dx ≥

∫

Ω
f(A)dx

holds. f is quasiconvex if it is quasiconvex at every A ∈ MN×n. The class
of quasiconvex functions is independent of the choice of Ω.

(iii) f is polyconvex if f(A) = convex function of minors of the matrix A.

It is well-known that (iii)⇒(ii)⇒(i), while (i)6⇒(ii)6⇒(iii) (cf. [B1,Mo,D,Sv1]).
However, if f is a quadratic function, (i) is equivalent to (ii).

There are several well-known versions of semiconvex envelopes for functions aris-
ing from these notions of semiconvex functions. For a given function f : MN×n → R,
the rank-one convex envelope R(f), the quasiconvex envelope Q(f) and the poly-
convex envelope P (f) are defined by S(f) = sup{g ≤ f, g is S-convex}, where if
we take the S-convex functions as quasiconvex, the rank-one convex and the poly-
convex functions, we obtain Q(f), R(f) and P (f) [D]. Note that there is a trivial
relation [D]: C(f) ≤ P (f) ≤ Q(f) ≤ R(f) ≤ f .
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In [F, Sec.3], N. Firoozye defined the following quasiconvex lower bound for f :
MN×n → R motivated by the ‘translation method’ for bounding effective moduli of
composite materials (see, for example [Ta,LC,Mi]).

Definition 1. Let RCQ be the set of all rank-one convex quadratic forms defined
on MN×n. The optimal rank-one quadratic translation bound of f is defined by

T2(f) = sup
q∈RCQ

[C[f(A)− q(A)] + q(A)].

In [F] the representation of this bound by using probability measures was con-
sidered. A more general bound T (f) of optimal rank-one convex quadratic and
polyconvex translation bound is also defined by replacing q by a sum of rank-one
quadratic form and a linear combination of minors. The notation T2(f) was not
used in [F]. However, for convenience we call this bound T2(f).

Now, we define another semiconvex envelope called the quadratic rank-one convex
envelope qr(f) for f : MN×n → R as follows which is along the same line of
other known semiconvex envelopes. We show that qr(f) is precisely the optimal
translation bound T2(f) defined in Definition 1.

Definition 2. Let RCQF be the set of all rank-one convex quadratic functions de-
fined on MN×n. Then the quadratic rank-one convex envelope qr(f) of f : MN×n →
R is defined by

qr(f)(A) = sup{q(A), q ≤ f, q ∈ RCQF}, (4)

Recall that a quadratic rank-one convex function q can be written as q = q0 + l,
where q0 is a rank-one convex quadratic form and l an affine function.

Proposition 1. For a continuous function f : MN×n → R satisfying (2), we have

qr(f)(A) = T2(f)(A), A ∈ MN×n.

Proof. For a fixed q0 ∈ RCQ, we have [ET,R] that

C[f(A)− q0(A)] + q0(A) = sup{l(A) + q0(A), l + q0 ≤ f, l is affine}.
Since l + q0 ∈ RCQF , one has that

T2f(A) ≤ sup{q(A), q ≤ f, q ∈ RCQF} = qr(f)(A).

For any q ∈ RCQF , we may write q = l + q0, where q0 ∈ RCQ and l affine.
Therefore

q(A) = q0(A) + l(A) ≤ sup
p∈RCQ

[
sup

r≤f−p r affine
[p(A) + r(A)]

]
= T2f(A).

¤

Remark 1. Clearly, if the function f is of sub-quadratic growth, both T2(f) and
qr(f) result in C(f). Notice that every rank-one convex quadratic function q(A) =
q0(A) + l(A) is polyconvex if and only if min{N, n} = 2 [Te,Se,B2]. Therefore
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in general, P (f) and qr(f) are not directly related while qr(f) = P (f) whenever
min{N, n} = 2. However, it is easy to see in this case that (1) holds and

C(f) ≤ qr(f) = P (f) ≤ Q(f) ≤ R(f) ≤ f. (5)

Remark 2. A direct consequence of Theorem 1 is that when (2) holds, R(f) = C(f)
if and only if Q(f) = C(f). Theorem 1 gives a theoretically simple condition for
equality of semiconvex envelopes by saying in (1) that if the smallest semiconvex
relaxation qr(f) is convex, all other semiconvex envelopes are convex.

We do not require any upper bound for f such as f(A) ≤ C1|A|2+C2, however, the
lower bound (2) is necessary for Theorem 1 to hold because if f is of sub-quadratic
growth in the sense that f(A) ≤ C1|A|p + C2 with 1 ≤ p < 2, any rank-one convex
quadratic function less than f must be an affine function hence qr(f) = C(f).

In the study of material microstructure, the following concepts of semiconvex
hulls for a compact set K ⊂ MN×n are naturally introduced.

K ⊂ MN×n is called stable under lamination (or lamination convex) [MS] if
A, B ∈ K is rank-one connected, that is, rank(A − B) = 1, then for all λ ∈ (0, 1),
one has (1− λ)A + λB ∈ K. For a given K ⊂ MN×n, The lamination convex hull
L(K) is defined as the smallest lamination convex set that contains K [MS]. We
also define the closed lamination convex hull Lc(K) as the smallest closed lamination
convex set that contains K [Z2].

We also have the rank-one convex hull R(K) [Sv2]

R(K) = {X ∈ MN×n,

f(X) ≤ sup
Y ∈K

f(Y ), for every rank-one convex f : MN×n → R};

the quasiconvex hull Q(K) [Sv2]

Q(K) = {X ∈ MN×n, f(X) ≤ sup
Y ∈K

f(Y ), for every quasiconvex f : MN×n → R};

and the polyconvex hull P (K) [Sv2]

P (K) = {X ∈ MN×n, f(X) ≤ sup
Y ∈K

f(Y ), for every polyconvex f : MN×n → R}.

Clearly, if K is closed,

K ⊂ Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ P (K) ⊂ C(K).

If Lc(K) is convex, obviously, all other ‘semiconvex’ hulls are identical to C(K).
When K is compact, the quasiconvex hull Q(K) can be defined by a single

quasiconvex function [Z1] as Q(K) = {A ∈ MN×n, Qdistp(A,K) = 0} for any
1 ≤ p < ∞. Now we have

Definition 3. For a compact set K ⊂ MN×n, the quadratic rank-one convex hull
qr(K) is defined by

qr(K) = {A ∈ MN×n, q(A) ≤ sup
B∈K

q(B), q ∈ RCQF}. (6)

If qr(K) = K, we call K a quadratic rank-one convex set. Clearly, qr(K) satisfies
(3).
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Remark 3. Before we proceed to prove our main results, we make a remark about
the quadratic rank-one convex envelope qr(f) or equivalently, the optimal rank-
one convex quadratic translation bound T2(f). It is known that many explicit
quasiconvex envelopes can be obtained by calculating T2(f) and by showing that
T2(f) = R(f) hence Q(f) can be found [K,F,Z3,Z5]. Let us consider the generalized
Kohn-Strang function [KS,AL,AF]

f(A) = H(|A|) =

{
λ + |A|2, A ∈ MN×n A 6= 0,

0, A = 0,

where λ > 0 is a constant. When n = 2, N ≥ 2, f is the original Kohn-Strang
function arising from the study of an optimal design problem. The explicit qua-
siconvex envelope of the original Kohn-Strang function Q(f) was obtained in [KS]
by calculating P (f) and by showing that R(f) = P (f) and the explicit formula
for Q(f) follows. If we notice that qr(f) = P (f) in this case, we see that Q(f) is
obtained by calculating qr(f), or equivalently T2(f).

For the general Kohn-Strang function when N ≥ 2, n ≥ 2, Q(f) was calculated
first in [AL,AFr] by using homogenization theory and the G-closure. Later it was
established in [Z5] that T2(f) = Q(f) = R(f) and T2(f) can be explicitly calculated.

In some simple cases, such as the squared distance function to a two point set
{A, B} ⊂ MN×n,

f(X) = min{|X −A|2, |X −B|2},
it can be shown that T2(f) = Q(f) = R(f) [K,Z3] and T2(f) can be calculated by
using a single translation q ∈ RCQ. The formula for Q(f) in this case was originally
calculated in [K] by using Fourier series method and the translation method is also
mentioned.

Although the translation method has been used successfully in certain cases, it is
known that quadratic rank-one convex relaxation cannot recover quasiconvex hull
or quasiconvex envelope in general. If we denote by diag(x1, x2) a 2 × 2 diagonal
matrix, and let

K = {0, diag(a, 1/a), diag(1/a, a)} ⊂ M2×2

with 0 < a < 1, then Q(K) = K [Sv3] while P (K) contains an extra curve which
is part of a hyperbola joining diag(a, 1/a) and diag(1/a, a) in the diagonal plane
[Sv4].

We prove Theorem 2 first and use it as a tool to establish Theorem 1.

Let E ⊂ MN×n be a linear subspace without rank-one matrices, and E⊥ being
its orthogonal complement. Let

q(A) = |PE⊥(A)|2 − λE |PE(A)|2, (7)

where PE⊥ and PE are orthogonal projections to E⊥ and E respectively, and λE >
0 is a positive number such that the quadratic form q is rank-one convex (so is
quasiconvex [B]). The existence of such λE > 0 was established in [ BFJK]. If E1 is
a plane parallel to E and X ∈ E1, then

qX(A) = |PE⊥(A−X)|2 − λE |PE(A−X)|2 (8)
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is a quadratic rank-one convex function reaching its strict maximum at X in E1

with qX(X) = 0 and qX(A) < 0 for A ∈ E1 \ {X}. We have

Lemma 1. Suppose E ⊂ MN×n is a linear subspace without rank-one matrices and
E1 is a plane parallel to E. Then any closed subset K ⊂ E1 is a quadratic rank-one
convex set, that is, qr(K) = K.

Proof. If K 6= E1, then for any X ∈ E1 \K, we consider qX defined by (8), then
qX ∈ RCQF and qX(X) = 0 > supA∈K qX(A). Therefore X /∈ qr(K). The proof is
then finished. ¤

If one examines both proofs in [Z2] and [DKK] closely, the following two key
requirements might be found for any semiconvex hull S(K) containing Lc(K) to
have the equality of hulls property: S(K) = C(K) implies Lc(K) = C(K).

(i) For every supporting plane E1 of C(K), one must have the dimension reduc-
tion property for S(K), that is S(K∩E1) = S(K)∩E1. This requirement is
satisfied if in the coset definition of the semiconvex hull S(K), the S-convex
functions used are continuous and the class contains all affine functions.

(ii) If E ⊂ MN×n is a plane which does not have rank-one connections and
K ⊂ E, then the semiconvex hull separates points, that is, S(K) = K.
Function qX(·) defined by (8) is among the simplest quasiconvex functions
which can serve us for this purpose.

When min{N, n} > 2, polyconvex functions no longer separate points on sub-
spaces without rank-one matrices. Therefore (ii) fails. In case min{N, n} = 2, all
quadratic rank-one convex functions are polyconvex [Te,Se] and separate points,
hence in our definition of qr(K), we take into account these minimal requirements.

Proof of Theorem 2 (i). We first show that if E1 is a supporting plane [R] of C(K)
then

qr(K) ∩ E1 = qr(K ∩ E1). (9)

Let E be the plane in MN×n containing C(K) with the same dimension as C(K)
[R]. Obviously, qr(K ∩ E1) ⊂ qr(K) ∩ E1. Let X ∈ qr(K) ∩ E1. There is an affine
function l defined on MN×n such that l < 0 on the open half space in E containing
C(K) \ E1, l = 0 on E1 and l > 0 on the opposite half space to C(K) in E. We
also define E1(ε) = {A ∈ E, dist(A,E1) ≤ ε, l(A) ≤ 0} which is a set on the same
side as C(K) in E, where dist(A,E1) is the Euclidean distance from A to E1. For
any fixed q ∈ RCQF we consider, for every integer n > 0 the quadratic function
q(·)+nl(·) ∈ RCQF . Since for any A ∈ E1, l(A) = 0, we have, for every fixed point
X ∈ qr(K) ∩ E1,

q(X) = q(X) + nl(X) ≤ sup
A∈K

[q(A) + nl(A)].

Since q+nl is continuous and K compact, the maximum is attained at some An ∈ K,
that is, supA∈K [q(A) + nl(A)] = q(An) + nl(An), so that q(X) ≤ q(An) + nl(An).
Since K is compact there is a subsequence Ank

→ A0 ∈ K as k →∞. Notice that
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l(An) ≤ 0 for all n. If we let k →∞ we see that δk := dist(Ank
, E1) → 0. Otherwise

q(X) cannot be finite. Now we have

q(X) ≤ q(Ank
) + nkl(Ank

) ≤ sup{q(A), A ∈ K ∩ E1(δk)}. (10)

Again the ‘sup’ in (10) can be reached by, say Bk ∈ K ∩ E1(δk), and up to a
subsequence Bk → B0 ∈ K ∩ E1 as k →∞.

Passing to the limit k → ∞ on both side of the inequality q(X) ≤ q(Bk) and
noticing that B0 ∈ K ∩ E1, we have q(X) ≤ q(B0) ≤ supA∈K∩E1

q(A), hence
X ∈ qr(K ∩ E1), (9) is proved. Notice also that C(K) ∩ E1 = C(K ∩ E1).

Now we follow the logic argument of [DKK]. Suppose K ⊂ MN×n is compact
while Lc(K) 6= C(K), but qr(K) = C(K). We may assume that K is a closed
laminated convex set. Then among all these K’s there is one for which the affine
dimension dim C(K) ≥ 1 of C(K) is the smallest. For such K we claim that the
plane E spanned by C(K) does not have rank-one connections. Otherwise it is easy
to see [Z2] that there is a supporting plane E1 of C(K) such that E1∩K is not convex
and is still a closed laminated convex set while qr(K∩E1) = qr(K)∩E1 = C(K)∩E1

is convex. This contradicts to the fact that the dimension dimC(K) is the smallest.
Now since C(K) ⊂ E and E does not have rank-one connection, there is some
X ∈ C(K) 6= K. If we define qX as in Lemma 1, then there is δ > 0, such that
qX(X) = 0 > −δ = supA∈K⊂E1

qX(A). Hence X /∈ qr(K) and qr(K) 6= C(K), a
contradiction. ¤

Proof of Theorem 2 (ii). When min{N, n} = 2, every q ∈ RCQF is a sum of a null
Lagrangian and an affine function, so P (K) ⊂ qr(K). However, in this case every
polyconvex function f can be defined as f(A) = sup{l(M(A)), l(M(·)) ≤ f(·)},
where M(A) are the 2 × 2 minors of A and l is an affine function of M . Thus
l(M(A)) ∈ RCQF . Hence P (K) = qr(K). The conclusion then follows from Part
(i). ¤

For a given function g : MN×n → R, let epi(g) be the epi-graph of g ([R]) defined
by

epi(g) = {(A, t) ∈ MN×n × R, t ≥ g(A)},
we see that if g satisfies (2), then g is convex if and only if for every supporting
plane E of the convex hull C(epi(g)), epi(g) ∩ E is convex (see [R]).

Proof of Theorem 1 (i). Since f satisfies (2), and the function c|A|2−C1 is convex,
we have R(f)(A) ≥ c|A|2−C1 and R(f) is continuous. We assume that R(f) is not
convex and prove that qr(f) is not convex.

We claim that there is a supporting plane E of epi(C(f)) such that K = epi(R(f))
∩ E is not convex while C(K) = epi(Cf) ∩ E. If this is not true, we can easily see
that R(f) = C(f) on PMN×n(K) = PMN×n(C(K)), where PMN×n : R ×MN×n →
MN×n is the orthogonal projection, so that R(f) = C(f) (see [R]) and we reach a
contradiction.

Now we use the supporting plane E to construct a non-negative rank-one convex
function F vanishing exactly on K and is bounded below by a similar bound to (2).
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Since plane E is the graph of a real-valued affine function L(·) defined on MN×n,
we see that R(f)(·) − L(·) ≥ 0 and R(f)(A) − L(A) = 0 if and only if A ∈ K.
We also see that K is compact because R(f) still satisfies (2). Let us consider
F (A) = R(f)(A) − L(A), for A ∈ MN×n. Then F is rank-one convex, F ≥ 0, and
F (A) = 0 if and only if A ∈ K. Furthermore

F (A) ≥ c

2
|A|2 − C2 (11)

for some C2 > 0.

We show that qr(f)(X) > Cf(X) for a certain matrix X, if qr(F )(X) > 0 holds.

From (11) and the fact that L is affine, we see that

qr(F )(·) = qr[R(f)(·)− L(·)] = qr(f)(·)− L(·),
because L is affine. Therefore, we only need to prove that qr(F ) is not convex. Since
F ≥ 0, it suffices to show that there is some X ∈ C(K) \K and some q ∈ RCQF ,
such that q(A) ≤ 0 in K, q ≤ F and q(X) > 0.

Since the non-convex set K is the zero set of the non-negative rank-one convex
function F , so it is a closed lamination convex set. Theorem 2 implies that qr(K)
is not convex. We fix X ∈ C(K) \ qr(K).

From the definition of qr(K), we see that there is some q1 ∈ RCQF such that
q1(X) > supA∈K q1(A). Let dist(B,K) be the Euclidean distance from a point
B ∈ MN×n to K, we see that when ε > 0 is small enough, X /∈ Kε, where K̄ε =
{B ∈ MN×n, dist(B,K) ≤ ε} is the closed ε-neighborhood of K. Let Kε be the
open ε-neighborhood of K given by Kε = {B ∈ MN×n, dist(B,K) < ε}. We may
also claim that for sufficiently small ε > 0, q1(X) > supA∈K̄ε

q1(A) := α.

Let B(0, R) and B̄(0, R) be the open and closed balls in MN×n centered at 0
with radius R > 0 respectively. Since F ≥ 0 is continuous and satisfies (11), we
have

min
Y ∈MN×n\Kε

F (Y ) = β > 0,

and also for R > 0 sufficiently large, F (Y ) ≥ 1
4c|Y |2 when Y ∈ MN×n \ B(0, R).

Since q1−α is at most of quadratic growth, we may assume that q1(Y )−α ≤ M |Y |2
when Y ∈ MN×n \B(0, R), where M > 0 is a positive constant.

Now we define q(·) = η(q1(·)−α) for some η > 0 to be determined. We may choose
η < c/(4M) so that q(Y ) < F (Y ) whenever |Y | ≥ R. Let N = supY ∈B̄(0,R)(q1(Y )−
α), we may further require η < β/N so that on B̄(0, R) \ Kε, q(Y ) < β ≤ F (Y ).
We also have q(Y ) ≤ 0 ≤ F (Y ) on K̄ε because q1(Y ) ≤ α on that set. Thus we
have q(Y ) ≤ F (Y ) for all Y ∈ MN×n when η > 0 is small enough. However, we
also observe that q(X) > 0, hence qr(F )(X) > 0. Consequently, qr(F ) and further,
qr(f) are not convex. The proof is complete. ¤

Theorem 1 (ii) follows from (i) and the fact that P (f) = qr(f) whenever
min{N, n} = 2. However, we remark that in this case the convexity of P (K) and
P (f) can be test purely by using quadratic polyconvex functions even if f satisfies
f(A) ≥ c|A|p − C1 with p > 2.



ON CONDITIONS FOR EQUALITY OF RELAXATIONS 153

Remark 4. We conclude that the class of quadratic rank-one convex functions is
enough to detect whether the semiconvex hulls and quasiconvex envelopes are con-
vex. This class can be obtained from the Taylor’s expansion of smooth quasiconvex
(rank-one convex) functions up to the second order. Comparing this with convex
analysis, where one needs only affine functions to obtain the convex hull and convex
envelope, we see that we just need to expand the function by one extra term to
obtain information about the convexity of most of the semiconvex hulls (envelopes).
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[Sv1] V. Šverák, Rank one convexity does not imply quasiconvexity, Proc. Royal Soc. Edin. 120A

(1992), 185-189.
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[Sv4] V. Šverák, Personal communication (1990).



154 KEWEI ZHANG

[Ta] L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio de Giorgi’s Collo-
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