ma P,
2° ”6,),

Journal of Nonlinear and Convex Analysis % Mdm P"H'Shas
Volume 15, Number 6, 2014, 1349-1355 \.l w') ISSN 1880-5221 ONLINE JOURNAL
Yinee |

© Copyright 2014

Yok%

THE SPLIT FEASIBILITY PROBLEM IN BANACH SPACES

WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split feasibility problem in Banach
spaces. Then using the hybrid method in mathematical programming, we prove
a strong convergence theorem for finding a solution of the split feasibility problem
in Banach spaces.

1. INTRODUCTION

Let Hy and Ho be two real Hilbert spaces. Let D and @@ be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : H;y — Hy be a bounded
linear operator. Then the split feasibility problem [4] is to find z € H; such that
z € DN A7'Q. Recently, Byrne, Censor, Gibali and Reich [3] also considered the
following problem: Given set-valued mappings 4; : H; — 21, 1 < i < m, and
Bj: Hy — 2H2 1 < j < n, respectively, and bounded linear operators T; : H —
Hy, 1 < j < n, the split common null point problem [3] is to find a point z € H;

such that
z e (QA;lo) N (]Dl ijl(B].—lo)),

where Ai_l() and Bj_IO are null point sets of A; and Bj, respectively. Defining
U = A*(I — Pg)A in the split feasibility problem, we have that U : Hy — Hj is an
inverse strongly monotone operator [1], where A* is the adjoint operator of A and
Py is the metric projection of Hy onto ). Furthermore, if DN A~1Q is nonempty,
then z € DN A™'Q is equivalent to

(1.1) 2= Pp(I — MA*(I — Po)A)z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem and the split common null point problem; see, for instance,
[1, 3, 5, 6, 13, 14].

On the other hand, Solodov and Svaiter [9] introduced the following hybrid
method in mathematical programming; see also Nakajo and Takahashi [7].

Let H be a Hilbert space H and let T be a maximal monotone operator of H
into 27 such that T7'0 = {z € H: 0 € Tz} # ). Suppose that 21 € H and {x,} is
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given by
Yn = Jr, Tn,
Cpn={z€H: {yp, — 2,2y — yn) > 0},
Qn={z€H:(xy—zx1—xp) >0},
Tn+1 = Pe,ng,r1, Yn €N,

where J,,, = (I +r,T)~! for all r, > 0 and Pg, g, is the metric projection from
H onto C,, N Q.

They showed that the sequence {z,,} converges strongly to Pr-19z1; see Ohsawa
and Takahashi [8] for the results in Banach spaces.

In this paper, motivated by these problems and results, we consider the split fea-
sibility problem in Banach spaces. Then using the hybrid method in mathematical
programming, we prove a strong convergence theorem for finding a solution of the
split feasibility problem in Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {x,} is a sequence
in E, we denote the strong convergence of {z,} to x € F by z,, — = and the weak
convergence by x,, — x. The modulus ¢ of convexity of F is defined by

. T4y
o0 = int {1~ 2 o <1 < 1o - >

for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every e > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {z,,} and {y,} in E such that

lim ||z,|| = lim |ly,|]| =1 and lim |z, + y.| = 2,
n—oo n—oo n—oo
lim,, 00 ||Zn, — Yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., x, — u and ||z,| — ||u|| imply z, — u.
The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,a") = ||z|* = [|2"|*}

for every x € E. Let U = {x € E : ||z|]| = 1}. The norm of F is said to be Gateaux
differentiable if for each =,y € U, the limit

o) et tyl e
t—0 t

exists. In the case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J, on E*. For more details, see [10] and [11]. We know the
following result.
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Lemma 2.1 ([10]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x —y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (v —y,Jx — Jy) =0, then = = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any « € E, there exists a unique element
z € C such that ||z — z|| < ||z — y| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.2 ([10]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let xt1 € E and z € C.
Then, the following conditions are equivalent

(1) z = Poxy;

(2) (z—y,J(z1—2)) 20, VyeC.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty, closed and convex subset of E. If P is the metric projection of F onto
C, then we have from [2] and [12] that

(Pex — Py, J(x — Pex) — J(y — Pey)) 20, Vz,y € C.

We also have that if {z,} is a sequence in E such that x,, — p and z,, — Pox,, — 0,
then p = Ppp, i.e., p € C. In fact, assume that x, — p and z,, — Pocx, — 0. It is
clear that Pox, — p and ||J(x, — Poxy)|| = ||zn — Poxy| — 0. Since Pg is the
metric projection of E onto C, then we have that

(Poxn — Pop, J(xn — Poxy) — J(p — Pep)) > 0.

Therefore, —||p — Pcp||> = (p — Pep, —J(p — Pop)) > 0 and hence p = Pep.

3. MAIN RESULT

In this section, using the hybrid method in mathematical programming, we prove
a strong convergence theorem for finding a solution of the split feasibility problem
in Banach spaces.

Lemma 3.1. Let E and F be strictly conver, reflexive and smooth Banach spaces
and let Jg and Jg be the duality mappings on E and F', respectively. Let C' and D
be nonempty, closed and convex subsets of E and F' and let Pc and Pp be the metric
projections of E onto C' and F onto D, respectively. Let A : E — F be a bounded
linear operator such that A # 0 and let A* be the adjoint operator of A. Suppose
that CNA™'D # (. Letr >0 and z € E. Then the following are equivalent:

(i) 2 =Po(z — rdgt A*Jp(Az — PpAz));

(ii) ze CNA™ID.
Proof. Since C N A™'D # (), there exists zp € C such that Azy € D.

i) = (ii). Assuming z = Po z—rJ  A* Jp(Az—PpAz)), we have from properties
E
of Po that

<JE(Z — rngA*JF(IF — Pp)Az — z),z —y) >0, VyeC.
This implies that
(Jp(—rJg A*Jp(Az — PpAz)),z —y) > 0.
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Thus we have that
(=rA*Jp(Az — PpAz),z —y) >0
and hence
(A*Jp(Az — PpAz),z —y) < 0.
Since A* is the adjoint operator of A, we have that
(Jp(Az — PpAz), Az — Ay) < 0.
From zy € C' we have that
(3.1) (Jp(Az — PpAz), Az — Az) < 0.
On the other hand, since Pp is the metric projection of F' onto D, we have that
(Jp(Az — PpAz), PpAz —v) >0, YveD.
From Azy € D we have that
(3.2) (Jp(Az — PpAz), PpAz — Az > 0.
Using (3.1) and (3.2), we have that
(Jp(Az — PpAz), Az — PpAz) <0
and hence
|Az — PpAz|? <O0.

This implies that Az = PpAz. Using this and z = Po (z —TJElA*JF(AZ — PDAZ)),
we have that z = Poz. Therefore z € CNA™'D.

(ii) = (i). Since z € C N A~!D, we have that Az € D and z € C. It follows that
Az = PpAz and z = Poz. Thus we have that

Po(z —rJg A" Jp(Az — PpAz)) = Poz = .
The proof is complete. O

Theorem 3.2. Let E and F be uniformly conver and smooth Banach spaces and
let Jg and Jp be the duality mappings on E and F', respectively. Let C and D
be nonempty, closed and convex subsets of E and F', respectively. Let Pp be the
metric projection of F' onto D. Let A: E — F be a bounded linear operator such
that A # 0 and let A* be the adjoint operator of A. Suppose that C N A~1D #£ ().
Let x1 € E and let {x,} be a sequence generated by

Zn = Ty — TJElA*JF(Axn — PpAx,),
Cpn={2€C:(zy—2z,Jp(xy — 2z)) > 0},
Qn=1{2€C:{(xy—2zJp(x1 —x,)) >0},
Tnt1 = Pe,ng,r1, Vn €N,

where 0 < r||A||? < 1. Then {x,} converges strongly to a point zo € C N A71D,
where 29 = Pona-1px1.
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Proof. It is obvious that C,, N Q,, is closed and convex for all n € N. To show that
CNA™'D c C, for all n € N, let us show that (z, — 2, Jg(zn — 2,)) > 0 for all
2z € A7'D and n € N. In fact, we have that for all z € A™'D and n € N,

(zn — 2, Jp(Xn—2n)) = (zn — Tn + Tp — 2, Jp(Tn — 21))
= (—rJ5 A" Jp(Az, — PpAxy,)
+xy — 2, JE(TngA*JF(Axn — PpAzx,)))
= <—er?1A*JF(Axn — PpAxy,) + xy — 2,7 A" Jp(Ax,, — PpAxy,))
= 12| A*Jp(Ax, — PpAxy)|]?® + (xn — 2,7A* Jp(Az, — PpAz,))
(3.3) = —1r?||A*Jp(Az, — PpAxy,)||* + r{Az, — Az, Jp(Az, — PpAz,))
= —r?||A*Jp(Ax, — PpAz,)|?
+ r(Ax,, — PpAx, + PpAx, — Az, Jp(Ax, — PpAxy,))
= —r?||A*Jp(Ax, — PpAz,)|?
+ 7| Az, — PpAxy||* + r(PpAx, — Az, Jp(Az, — PpAz,))
> —12||A|?|| Az, — PpAzy|* + r|| Az, — PpAz,|?
= (1 — 7| A|*)|| Az, — Pp Az, |
> 0.

Then we have that CNA~'D C C,, for all n € N. We show that CNA™'D C Q,
for all n € N. Since @1 = {z € C : (21 — z,Jg(x; — x1)) > 0, it is obvious
that C N A~'D C Q. Suppose that C N A~'D C Q) for some k € N. Then
CNA™'DcC C,NQy. From zj1 = Pc,ng,x1, we have that

(Tr41 — 2, Jp(x1 — 2p41)) >0, Vz € CpNQx
and hence
(Tpp1 — 2, Jp(21 — Tp41)) 20, Vz€ CNAT'D.

Then, CNA~'D C Qi41. We have by mathematical induction that CNA~'D c @,
for all n € N. Thus, we have that CN A~'D c C, N Q,, for all n € N. This implies
that {x,} is well defined.

Since CN A~ D is nonempty, closed and convex, there exists z; € CNA~'D such
that z1 = Pong-1px1. From x, 11 = Pc,ng,*1, we have that

21 = Zngall <l =yl

for all y € C, N Q. Since z1 € CNA~'D c C,, N Q,, we have that

(3.4) 21 = Zpga || < flzy — 2.
This means that {z,} is bounded.
Next we show that lim, e ||€ — Zn+1]] = 0. From the definition of @,,, we have

that x,, = Pg,x1. From 2,11 = Pc,ng,*1 we have that x,11 € Q,. Thus
|2 — 21| < |01 — 24|

for all n € N. This implies that {||z1 — z,||} is bounded and nondecreasing. Then
there exists the limit of {||z1 — x,||}. Put lim, e ||z, — 1] = ¢. If ¢ = 0, then
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limy, 00 ||Zn — Zn41]| = 0. Assume that ¢ > 0. Since z,, = Pg, %1, Tnt1 € Qn and
W# € @Q,, we have that
Ty + Tpal 1
a1 = 2l < |lzr = 22| < S(lar = 2l + 2 = 2 )
and hence
. H Tp + Tnt1 H
lim (|21 — ——|| =c¢.
n—00 2
Since E is uniformly convex, we get that lim,, . |2, — Znt1]] = 0.

From the definition of C),, we also have that z, = Pg,x,. From x,+; € C, we
have that

|Zn — znll < |20 — Tnta |-
From lim, 0 ||y, — Tp+1|| = 0 we have that lim,, o |2, — 25| = 0. On the other
hand, we know that

[2n = 2l = [[JE(2n — 20)|| = [P A" Jp(Azn — PpAzy)|.

Using 0 < r||A||> < 1 and ||z, — 2,|| — 0, we have that A*Jp(Ax, — PpAx,) — 0.
Then we get from (3.3) that
lim ||Az, — PpAz,| = 0.
n—oo
Since {z,} is bounded, there exists a subsequence {z,,} of {x,} converging
weakly to w. Note that w € C. Since A is bounded and linear, we also have
that {Az,,} converges weakly to Aw. Using this and lim,, o ||Azy, — PpAz,| =0,
we have from the property of the metric projection Pp that Aw = PpAw and hence
Aw € D.
From 2 = Pons-1pz1, w € CNA™ID and (3.4), we have that

[z1 = z1]] < [lz1 = w] <liminf [lzy — 2, || <limsup |21 — 2, || < [lz1 = 2]
=00 i—00

Then we get that
lim |21 — @p, || = [l21 — w]| = [Jo1 — 2.
1—00
From the Kadec-Klee property of E, we have that 1 — x,,, = 1 — w and hence
Tp, = W = 2.

Therefore, we have x,, — w = z1. This completes the proof. O
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