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The regularity of the distance function dS has been presented and explored in
[6, 7]. Under some natural assumptions, it was proved in [6, 7] that the normal
regularity (Fréchet and proximal) of a closed set S at a point x̄ in S is equivalent
to the subdifferential (Fréchet and proximal) regularity of its distance function dS
at x̄. Recently, several various subdifferentials, such as the Fréchet, the proximal
and limiting (or Mordukhovich) subdifferentials of the perturbed distance function
are characterized in [27, 39] and then some known results on subdifferentials of the
classical distance function in [6, 7] are extended. Our main aim in this paper is
to extend those results to the perturbed distance function dJS(x) at points on the

target set S0 := {x ∈ S : dJS(x) = J(x)}.
The paper is organized as follows. In Section 2 we recall and summarize the

needed concepts and existing results. In Sections 3 and 4, we treat the Fréchet and
proximal regularity (respectively) of dJS(x). The paper is ended with illustrative
examples of our abstract results.

2. Preliminaries

Let X be a real Banach space with a norm ∥ · ∥ and X∗ the dual space of X. We
use ⟨·, ·⟩ to denote the pairing between X∗ and X. The closed ball in X (resp. X∗)
with radius r and center x is denoted by B(x, r)(resp. B∗(x, r)). In particular, we
write B = B(0, 1) (resp. B∗ = B∗(0, 1)). Let S be a nonempty closed subset of X.
We use δS to denote the indicator function of S, i.e.,

δS(x) :=

{
0 x ∈ S
+∞ otherwise.

Consider a function h defined on S. It would be convenient to define the sum
h+ δS : X → R := R ∪ {+∞} by

(h+ δS)(x) :=

{
h(x) x ∈ S
+∞ otherwise.

Let f : X → R be a proper lower semicontinuous (l.s.c.) function. As usual, the
effective domain of f is denoted by

D(f) := {x ∈ X | f(x) < +∞}.

Moreover, we adapt the standard symbols “x →f x̄” and “x →S x̄” to represent for
(x, f(x)) → (x̄, f(x̄)) and x → x̄ with x ∈ S, respectively. The sequential Painlevé-
Kuratowski upper/outer limit lim supx→x̄ F (x) at x̄ for a set-valued mapping F :
X ⇒ X∗ is defined by

lim sup
x→x̄

F (x) :=

{
x∗ ∈ X∗

∣∣∣ there are {xk} ⊂ X and {x∗k} ⊂ X∗ with
x∗k ∈ F (xk)∀k, such that xk → x̄ and x∗k →w∗

x∗

}
.

The various notions of subdifferentials and normal cones in the following defini-
tions, and the relative facts provided in the following remarks are well-known (see
for example [6, 7, 23, 24]).

Definition 2.1. Let x̄ ∈ D(f), and ε ≥ 0.
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(a) The Fréchet ε-subdifferential ∂F
ε f(x̄) of f at x̄ is defined by

∂F
ε f(x̄) :=

{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

f(x)− f(x̄)− ⟨x∗, x− x̄⟩
∥x− x̄∥

≥ −ε

}
.

(b) The Fréchet subdifferential ∂F f(x̄) of f at x̄ is defined as the 0-subdifferential
of f at the corresponding point, that is

∂F f(x̄) :=

{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

f(x)− f(x̄)− ⟨x∗, x− x̄⟩
∥x− x̄∥

≥ 0

}
.

(c) The limiting Fréchet (also called Mordukhovich) subdifferential ∂Mf(x̄) of
f at x̄ is defined by

∂Mf(x̄) := lim sup
x→x̄,ε↓o

∂F
ε f(x̄).

(d) The proximal subdifferential ∂P f(x̄) of f at x̄ is defined by

∂P f(x̄) :=

{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

f(x)− f(x̄)− ⟨x∗, x− x̄⟩
∥x− x̄∥2

> −∞
}
.

(e) The Clarke subdifferential of f at x̄ is defined by

(2.1) ∂Cf(x̄) := {x∗ ∈ X∗ :
⟨
x∗, v

⟩
≤ f↑(x̄; v), for all v ∈ X},

where f↑(x̄; ·) is the Rockafellar directional derivative defined by

f↑(x̄; v) := lim sup
x→f x̄
t↓0

inf
v′→v

t−1
[
f(x+ tv′)− f(x)

]
for each v ∈ X.

Remark 2.2. Let x̄ ∈ D(f). Then one has the following assertions:

(a) The following inclusions are clear by definitions:

(2.2) ∂P f(x̄) ⊆ ∂F f(x̄) ⊆ ∂Mf(x̄) ⊆ co(∂Mf(x̄)) ⊆ ∂Cf(x̄).

(b) If X is Fréchet smooth Banach spaces, then we have

∂Mf(x̄) = lim sup
x→x̄

∂F f(x̄),

and if f is additionally assumed to be locally Lipschitz at x̄, then we also
have

(2.3) ∂Cf(x̄) = clw
∗
co(∂Mf(x̄));

see, for instance, [29, 37].

Remark 2.3. Let f, g : X → R be two proper l.s.c. functions and let x̄ ∈ D(f) ∩
D(g). Then we have that

(2.4) ∂∆f(x̄) + ∂∆g(x̄) ⊆ ∂∆(f + g)(x̄) for any ∆ ∈ {F, P}.

This inclusion is not true in general for Mordukhovich and Clarke subdifferentials,
see for example [14, 29].

Definition 2.4. Let x̄ ∈ S and ε ≥ 0.
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(a) The set of Fréchet ε-normals to S at x̄ is defined by

NF
ε (x̄;S) :=

{
x∗ ∈ X∗ : lim sup

x→S x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε

}
.

(b) The set of Fréchet normals to S at x̄ is defined as the Fréchet 0-normals to
S at the same point, that is,

NF (x̄;S) :=

{
x∗ ∈ X∗ : lim sup

x→S x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ 0

}
.

(c) The limiting Fréchet (also called Mordukhovich) normal cone to S at x̄ is
defined by

NM (x̄;S) := lim sup
x→S x̄,ε↓0

NF
ε (x̄;S).

(d) The proximal normal cone to S at x̄ is defined by

NP (x̄;S) :=

{
x∗ ∈ X∗ : lim sup

x→S x̄

⟨x∗, x− x̄⟩
∥x− x̄∥2

< +∞
}
.

(e) The Clarke normal cone to S at x̄ is denoted by NC(S; x̄) and defined as
the negative polar of the Clarke tangent cone TC(S; x̄), that is,

NC(S; x̄) := {x∗ ∈ X∗ : ⟨x∗, v⟩ ≤ 0,∀v ∈ TC(S; x̄)},
where TC(S; x̄) is the Clarke tangent cone defined by

TC(S; x̄) := {v ∈ X : ∀tn ↓ 0, ∀xn →S x̄,∃vn → v such that {xn + tnvn} ⊆ S}.
(f) For any ∆ ∈ {F,M,P,C}, we define N∆(x̄;S) = ∅ if x̄ /∈ S.

Remark 2.5. Let x̄ ∈ S.

(a) By definition (see also [6, 13, 14, 29]), we have that

N∆(x̄;S) = ∂∆δS(x̄) for any ∆ ∈ {F,M,P,C}.
Then by Remark 2.2 we have that

(2.5) NP (x̄;S) ⊆ NF (x̄;S) ⊆ NM (x̄;S) ⊆ coNM (x̄;S) ⊆ NC(x̄;S),

and in the case when X is a Fréchet smooth Banach space (see, for instance,
[29, 37]), we have

NM (x̄;S) = lim sup
x→x̄

NF (x;S).

(b) In the case when X is a Fréchet smooth Banach space (see, for instance,
[29, 37]), the following equality holds

(2.6) NC(x̄;S) = clw∗co(NM (x̄;S)).

We end this section with the following concepts of regularity for sets and functions
introduced and studied in [6, 7].

Definition 2.6. Let x̄ ∈ D(f). We say that f is

(a) Fréchet subdifferentially regular at x̄ if ∂F f(x̄) = ∂Cf(x̄);
(b) proximal subdifferentially regular at x̄ if ∂P f(x̄) = ∂Cf(x̄);
(c) Mordukhovich subdifferentially regular at x̄ if ∂F f(x̄) = ∂Mf(x̄).
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Definition 2.7. Let x̄ ∈ S. We say that S is

(a) Fréchet normally regular at x̄ if NF (S; x̄) = NC(S; x̄);
(b) proximal normally regular at x̄ if NP (S; x̄) = NC(S; x̄));
(c) Mordukhovich normally regular at x̄ if NF (S; x̄) = NM (S; x̄).

Remark 2.8. By definition, together with (2.2) and (2.5), one has the following
implications for a l.s.c function f at each x ∈ D(f):

proximal subdifferential regularity ⇒ Fréchet subdifferential regularity
⇒ Mordukhovich subdifferential regularity,

and for a subset S at each x ∈ S:

proximal normal regularity ⇒ Fréchet normal regularity
⇒ Mordukhovich normal regularity.

Moreover, using (2.3) and (2.6), one shows (see [6, 7]), that if X is reflexive and f
is locally Lipschitz at x, then the following equivalences hold at x:

Fréchet subdifferential regularity ⇔ Mordukhovich subdifferential regularity

and

Fréchet normal regularity ⇔ Mordukhovich normal regularity.

3. Fréchet regularity concepts of dJS on S0

As assumed in the previous sections, let S be a nonempty closed subset of X and
J be a lsc real valued function on S. Recall that the perturbed distance function is
defined by:

dJS(x) = inf
s∈S

{∥x− s∥+ J(s)} for each x ∈ X.

By [35], we know that dJS is nonexpansive:

(3.1) |dJS(y)− dJS(x)| ≤ ∥y − x∥ for each x, y ∈ X.

The set of all solutions for problem minJ(x, S) is denoted by P J
S (x), i.e.,

P J
S (x) := {w ∈ S| ∥x− w∥+ J(w) = dJS(x)}.

As in [27], we use S0 to denote the subset of S defined by

S0 := {x ∈ S|dJS(x) = J(x)}.

Throughout the whole paper, we always assume that S0 ̸= ∅. Note that if J is
noexpansive on S then we have by definition that S0 = S. Recall from [28] that a
sequence {zn} ⊆ S is a minimizing sequence of the problem minJ(x, S) if

(3.2) lim
n→+∞

(∥x− zn∥+ J(zn)) = inf
z∈S

(∥x− z∥+ J(z)),

and that the problem minJ(x, S) is well-posed (in the sense of Tykhonov) if minJ(x, S)
has a unique solution and every minimizing sequence of the problem minJ(x, S) con-
verges to this solution. The following proposition, which is known in [39, Lemmas
3.4 and 3.1], provides a sufficient condition ensuring the well-posedness of the prob-
lem minJ(x, S).
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Proposition 3.1. Let x̄ ∈ S. Suppose that the center Lipschitz constant on S w.r.t.
x̄

(3.3) C := sup
x∈S

|J(x)− J(x̄)|
x− x̄

< 1.

Then x̄ ∈ S0 and the problem minJ(x̄, S) is well-posed.

We give the notions of Lipschitz conditions in the following definition.

Definition 3.2. Let x̄ ∈ S. The function J is said to satisfy

(a) the center Lipschitz condition at x̄ if the center Lipschitz constant at x̄

Cx̄ := inf
ρ>0

sup
y∈B(x̄,ρ)∩S

|J(y)− J(x̄)|
∥y − x̄∥

< ∞;

(b) the Lipschitz condition at x̄ if the Lipschitz constant at x̄

Lx̄ := inf
ρ>0

sup
x,y∈B(x̄,ρ)∩S

|J(y)− J(x)|
∥y − x∥

< ∞.

We now recall from [27] the following two results needed for our study.

Proposition 3.3. Let x̄ ∈ S0. Then the following assertions hold.

(i) We have

(3.4) ∂FdJS(x̄) ⊂ ∂F (J + δS)(x̄) ∩ B∗.

(ii) If minJ(x̄, S) is well-posed and the center Lipschitz constant Cx̄ < 1, then
we have

(3.5) ∂F (J + δS)(x̄) ∩ B∗ = ∂FdJS(x̄).

Proposition 3.4. Let x̄ ∈ S0 be such that minJ(x̄, S) is well-posed. Then the
following assertions hold.

(i) We have

(3.6) ∂MdJS(x̄) ⊂ ∂M (J + δS)(x̄) ∩ B∗.

(ii) If the Lipschitz constant Lx̄ = 0, then we have

(3.7)
∪
λ≥0

λ[∂M (J + δS)(x̄) ∩ B∗] =
∪
λ≥0

λ∂MdJS(x̄).

Our first theorem provides some sufficient conditions ensuring the implication
that the regularity of the target set S implies the regularity of the perturbed distance
function dJS .

Theorem 3.5. Let x̄ ∈ S0 be such that minJ(x̄, S) is well-posed and the center
Lipschitz constant Cx̄ < 1. Suppose that J is Mordukhovich subdifferentially regular
at x̄. Then we have the following assertions:

(i) If S is Mordukhovich normally regular at x̄, then dJS is Mordukhovich subd-
ifferentially regular at x̄.

(ii) If the space X is reflexive and S is Fréchet normally regular at x̄, then dJS
is Fréchet subdifferentially regular at x̄.
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Proof. By Remark 2.8, one sees that assertion (ii) is a direct consequence of assertion
(i). Hence we only need to prove assertion (i). Since J is locally Lipschitz at x̄ and
δS is l.s.c. at x̄, it follows from the sum rule for the Mordukhovich subdifferential
(see for example [14]) that

(3.8) ∂M (J + δS)(x̄) ⊂ ∂MJ(x̄) + ∂MδS(x̄).

Now assume that S is Mordukhovich normally regular at x̄, that is, NM (S; x̄) =
NF (S; x̄). Moreover, we have ∂MJ(x̄) = ∂FJ(x̄) by the assumption that J is
Mordukhovich subdifferentially regular at x̄. The above two equalities together
with (3.8) and (2.4) imply that

∂M (J + δS)(x̄) ⊂ ∂MJ(x̄) + ∂MδS(x̄) = ∂FJ(x̄) + ∂F δS(x̄) ⊂ ∂F (J + δS)(x̄).

By assumption, equality (3.5) and inclusion (3.6) hold. Hence we conclude that

∂MdJS(x̄) ⊂ ∂M (J + δS)(x̄) ∩ B∗ ⊆ ∂F (J + δS)(x̄) ∩ B∗ = ∂FdJS(x̄).

This shows that dJS is Mordukhovich subdifferentially regular at x̄ and the proof is
complete. �

To provide the converse implication, we need the following lemmas.

Lemma 3.6. Let x̄ ∈ S be such that Cx̄ = 0. Then we have that

∂F (J + δS)(x̄) = NF (S, x̄).

Proof. Let x∗ ∈ ∂F (J + δS)(x̄) and let ϵ > 0. By definition, there exists δ > 0 such
that

⟨x∗, x− x̄⟩ ≤ (J + δS)(x)− (J + δS)(x̄) +
ϵ

2
∥x− x̄∥, ∀x ∈ x̄+ δB,

that is

⟨x∗, x− x̄⟩ ≤ J(x)− J(x̄) +
ϵ

2
∥x− x̄∥, ∀x ∈ (x̄+ δB) ∩ S.

Since Cx̄ = 0 by assumption, we may assume without loss of generality that δ > 0
is small enough such that

(3.9) |J(x)− J(x̄)| ≤ ϵ

2
∥x− x̄∥, ∀x ∈ (x̄+ δB) ∩ S.

Combining the two above inequalities we obtain

⟨x∗, x− x̄⟩ ≤ ϵ∥x− x̄∥, ∀x ∈ (x̄+ δB) ∩ S.

This shows that x∗ ∈ NF (S, x̄) as ϵ > 0 is arbitrary. Conversely, let x∗ ∈ NF (S, x̄)
and let ϵ > 0. Then by definition, there exists δ > 0 such that inequality (3.9) holds
and that ⟨x∗, x− x̄⟩ ≤ ϵ

2∥x− x̄∥ for any x ∈ (x̄+ δB) ∩ S. It follows then that

⟨x∗, x− x̄⟩ ≤ J(x)− J(x̄) + |J(x)− J(x̄)|+ ϵ
2∥x− x̄∥

≤ J(x)− J(x̄) + ϵ∥x− x̄∥.

This shows that x∗ ∈ ∂F (J + δS)(x̄) as ϵ > 0 is arbitrary, and the proof is complete.
�

An analog result for the Mordukhovich subdifferential is needed to prove our next
result on the Fréchet regularity concepts.
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Lemma 3.7. Let x̄ ∈ S be such that Lx̄ = 0. Then we have that

∂M (J + δS)(x̄) = NM (S, x̄).

Proof. Let x∗ ∈ ∂M (J + δS)(x̄). By definition, there exist sequences εk ↓ 0, xk → x̄,
and x∗k →w∗

x∗ as k → ∞ such that

x∗k ∈ ∂F
εk
(J + δS)(xk)

for all k ∈ N. Obviously (xk) ⊂ S. Hence, there exists δk such that

⟨x∗k, x− xk⟩ ≤ (J + δS)(x)− (J + δS)(xk) +
ϵk
2
∥x− xk∥, ∀x ∈ xk + δkB,

that is,

⟨x∗k, x− xk⟩ ≤ J(x)− J(xk) +
ϵk
2
∥x− xk∥, ∀x ∈ (xk + δkB) ∩ S.

Since xk → x̄ with (xk) ⊂ S and Lx̄ = 0 by assumption, we may assume without

loss of generality that there exists δ̃k ∈ (0, δk2 ) (small enough) such that for k large
enough

xk ∈ (x̄+ δ̃kB) ∩ S

and

|J(z)− J(y)| ≤ ϵk
2
∥z − y∥, ∀z, y ∈ (x̄+ δ̃kB) ∩ S.

Fix now any x ∈ (xk + δ̃kB) ∩ S. Then ∥x− x̄∥ ≤ ∥x− xk∥+ ∥xk − x̄∥ ≤ δ̃k + δ̃k =

2δ̃k < δk. Therefore, we can write by using the above inequalities

⟨x∗k, x− xk⟩ ≤ J(x)− J(xk) +
ϵk
2
∥x− xk∥

≤ ϵk
2
∥x− xk∥+

ϵk
2
∥x− xk∥

= ϵk∥x− xk∥,

for all x ∈ (xk+δ̃kB)∩S. This shows that x∗k ∈ NF
ϵk
(S, xk) and hence x∗ ∈ NM (S, x̄).

Conversely, let x∗ ∈ NM (S, x̄). By definition, there exist sequences εk ↓ 0, xk →S x̄,
and x∗k →w∗

x∗ as k → ∞ such that

x∗k ∈ NF
εk
(S;xk),

for all k ∈ N. Hence, there exists δk such that

⟨x∗k, x− xk⟩ ≤
ϵk
2
∥x− xk∥, ∀x ∈ (xk + δkB) ∩ S.

Since xk →S x̄ and Lx̄ = 0 by assumption, we may assume without loss of generality
that there exists δ̃k ∈ (0, δk) (small enough) such that for k large enough

xk ∈ (x̄+ δ̃kB) ∩ S

and

|J(z)− J(y)| ≤ ϵk
2
∥z − y∥, ∀z, y ∈ (x̄+ δ̃kB) ∩ S.

Fix now any x ∈ (xk + δ̃kB) ∩ S. Then x ∈ (x̄+ δkB) ∩ S. Therefore,

⟨x∗k, x− xk⟩ ≤ ϵk
2
∥x− xk∥
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≤ J(x)− J(xk) + |J(x)− J(xk)|+
ϵk
2
∥x− xk∥

≤ J(x)− J(xk) +
ϵk
2
∥x− xk∥+

ϵk
2
∥x− xk∥

= J(x)− J(xk) + ϵk∥x− xk∥,

for all x ∈ (xk + δ̃kB) ∩ S. This shows that x∗k ∈ ∂F
ϵk
(J + δS)(xk) and hence

x∗ ∈ ∂M (J + δS)(x̄). Thus completing the proof. �

The following proposition extends the corresponding result in [11] for the special
case when J = 0 due to Burke et al. [11].

Proposition 3.8. Let x̄ ∈ S0. Assume that minJ(x̄, S) is well-posed and the Lips-
chitz constant Lx̄ = 0. Then we have the following assertions:

(3.10)
(
dJS

)↑
(x̄; v) ≤ dTC(S;x̄)(v) for all v ∈ X;

and

(3.11) ∂CdJS(x̄) ⊂ NC(S; x̄) ∩ B∗.

Proof. By definition, one checks that inclusion (3.11) is a direct consequence of
inequality (3.10). Thus it suffices to verify inequality (3.10). To do this, fix any
v ∈ X and let ϵ > 0. Then there exists some v̄ ∈ TC(S; x̄) such that

(3.12) ∥v − v̄∥ ≤ dTC(S;x̄)(v) + ϵ.

Since the distance function dJS is Lipschitz, we have that(
dJS

)↑
(x̄; v) = lim sup

t↓0,x→x̄

dJS(x+ tv)− dJS(x)

t
.

Thus there exists a sequence (tn, xn) in (0,+∞)×X converging to (0, x̄) such that

(3.13)
(
dJS

)↑
(x̄; v) = lim

n

dJS(xn + tnv)− dJS(xn)

tn
.

By the definition of dJS , we may choose a sequence {yn} ⊂ S such that

(3.14) ∥yn − xn∥+ J(yn) ≤ dJS(xn) + t2n for each n.

Then

∥yn − x̄∥+ J(yn) ≤ dJS(xn) + ∥xn − x̄∥+ t2n for each n.

This, together with the fact that ∥xn − x̄∥ → 0 and t2n → 0, implies that {yn}
is a minimizing sequence for problem minJ(x̄, S). Then, by the assumed well-
posedness, we get that yn →S x̄. Using now the sequential characterization of the
Clarke tangent cone TC(S; x̄), we obtain a sequence {vn} with vn → v̄ such that
{yn + tnvn} ⊆ S. Let n ∈ N. Then, by relation (3.14), we have

[dJS(xn + tnv)− dJS(xn)] ≤ [dJS(yn + tnv) + ∥yn − xn∥ − dJS(xn)]

≤ [dJS(yn + tnv)− J(yn) + t2n]

≤ [J(yn + tnvn)− J(yn) + tn∥vn − v∥+ t2n],
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where the last inequality holds because yn + tnvn ∈ S. Thus

(3.15)
dJS(xn + tnv)− dJS(xn)

tn
≤ J(yn + tnvn)− J(yn)

tn
+ ∥vn − v∥+ tn.

Using now the assumption Lx̄ = 0 and the fact that yn → x̄, we obtain that

lim
n

J(yn + tnvn)− J(yn)

∥tnvn∥
= 0.

This together with (3.12) and (3.15) implies that

(dJS)
↑(x̄; v) ≤ ∥v − v̄∥ ≤ dTC(S;x̄)(v) + ϵ.

Hence (3.10) is established as ϵ > 0 is arbitrary and the proof is complete. �

Now, we can state our second theorem on the relationship between the subdiffer-
ential regularity of dJS and the normal regularity of S.

Theorem 3.9. Let x̄ ∈ S0 be such that minJ(x̄, S) is well-posed and the Lipschitz
constant Lx̄ = 0. Then the following assertions hold:

(i) S is Mordukhovich normally regular at x̄ if and only if dJS is Mordukhovich
subdifferentially regular at x̄.

(ii) If S is Fréchet normally regular at x̄, then dJS is Fréchet subdifferentially
regular at x̄.

(iii) If the space X is reflexive then S is Fréchet normally regular at x̄ if and
only if dJS is Fréchet subdifferentially regular at x̄.

Proof. By assumptions, Lemmas 3.6-3.7 and Propositions 3.3-3.4 are applicable.
Hence we have that

(3.16) ∂M (J + δS)(x̄) = NM (S; x̄) =
∪
λ>0

λ∂MdJS(x̄)

(3.17) ∂FdJS(x̄) = NF (S; x̄) ∩ B∗ and ∂F (J + δS)(x̄) = NF (S; x̄).

(i). This follows from the following chain of equivalences/implications:

NM (S; x̄) = NF (S; x̄) ⇔ NM (S; x̄) ∩ B∗ = NF (S; x̄) ∩ B∗

⇔ ∂M (J + δS)(x̄) ∩ B∗ = ∂F (J + δS)(x̄) ∩ B∗

⇒ ∂MdJS(x̄) = ∂FdJS(x̄)
⇒

∪
λ>0 λ∂

MdJS(x̄) =
∪

λ>0 λ∂
FdJS(x̄)

⇒ NM (S; x̄) = NF (S; x̄),

where the first equivalence holds by definition, the second equivalence and the last
implication hold by (3.16) and (3.17), while the first implication holds because by
Propositions 3.3-3.4 we have

∂FdJS(x̄) ⊂ ∂MdJS(x̄) ⊂ ∂M (J + δS)(x̄) ∩ B∗ = ∂F (J + δS)(x̄) ∩ B∗ = ∂FdJS(x̄).

(ii). Assume that S is Fréchet normally regular at x̄. Then NC(S; x̄) = NF (S; x̄).
Using (3.11) and (3.17) we have

∂CdJS(x̄) ⊂ NC(S; x̄) ∩ B∗ = NF (S; x̄) ∩ B∗ = ∂FdJS(x̄).
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This shows the Fréchet subdifferential regularity of dJS at x̄ as the inverse inclusion
always holds.

(iii). This follows directly from assertion (i) and the equivalence between the
Mordukhovich regularity and the Fréchet regularity in reflexive Banach spaces. �

The following corollary of the above theorem adds, some further characterization
of the Fréchet normal regularity of sets, to the list stated in in Theorems 2.5-2.6 in
[6].

Corollary 3.10. Let x̄ ∈ S0. Assume that Lx̄ = 0, that minJ(x̄, S) is well-posed,
and that the space X is reflexive. Then the following assertions are equivalent:

i) S is Fréchet normally regular at x̄;
ii) S is Mordukhovich normally regular at x̄;
iii) dS is Fréchet subdifferentially regular at x̄;
iv) dS is Mordukhovich subdifferentially regular at x̄;
v) dJS is Fréchet normally regular at x̄.

vi) dJS is Mordukhovich normally regular at x̄.

Proof. The equivalence between (i)-(iv) are proved in Theorems 2.5-2.6 in [6, 7].
The equivalence between (i) and (v) follows from the previous theorem. Finally
the equivalence between (v) and (vi) follows from the reflexivity of the space, the
1-Lipschitz continuity of dJS , and the the equality ∂CdJS(x̄) = clw∗co

[
∂MdJS(x̄)

]
. �

4. Proximal regularity concepts of dJS on S0

It is well known (see for example [6]) that Fréchet subdifferential regularity of
functions is not equivalent to proximal subdifferential regularity, even in finite di-
mensional spaces. So, the present section is devoted to study some properties of
proximal subdifferential regularity of dJS , essentially we will give conditions under
which this subdifferential regularity can be characterized in terms of the proximal
subdifferential regularity of J and the proximal normal regularity of S.

We recall first the following result on the relationship between the proximal sub-
differential of dJS and the proximal subdifferential of J + δS , which is needed in the
proof of the main result in this section. It is due to [39].

Proposition 4.1. Let x̄ ∈ S0. Then the following assertions hold.

(i) We have

(4.1) ∂PdJS(x̄) ⊂ ∂P (J + δS)(x̄) ∩ B∗.

(ii) If minJ(x̄, S) is well-posed and the center Lipschitz constant Cx̄ < 1, then
we have

(4.2) ∂P (J + δS)(x̄) ∩ B∗ = ∂PdJS(x̄).

To study the proximal subdifferential regularity of dJS , we introduce the following
notions of the second Lipschhitz conditions.

Definition 4.2. Let x̄ ∈ S. The function J : S → R is said to satisfy
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(a) the center second Lipschitz condition at x̄ if the center second Lipschitz
constant at x̄

CSec
x̄ := inf

ρ>0
sup

y∈B(x̄,ρ)∩S

|J(y)− J(x̄)|
∥y − x̄∥2

< ∞;

(b) the second Lipschitz condition at x̄ if the second Lipschitz constant at x̄

LSec
x̄ := inf

ρ>0
sup

x,y∈B(x̄,ρ)∩S

|J(y)− J(x)|
∥y − x∥2

< ∞.

Clearly, one has by definition that CSec
x̄ ≤ LSec

x̄ . Furthermore, we have the fol-
lowing implications:

CSec
x̄ < ∞ =⇒ Cx̄ = 0 and LSec

x̄ < ∞ =⇒ Lx̄ = 0.

However, the converse implications are not true in general; see Example 4.6 below.

Lemma 4.3. Let x̄ ∈ S be such that Csec
x̄ < ∞. Then we have

∂P (J + δS)(x̄) = NP (S, x̄).

Proof. Let x∗ ∈ ∂P (J + δS)(x̄). By definition, there exists σ, δ > 0 such that

⟨x∗, x− x̄⟩ ≤ (J + δS)(x)− (J + δS)(x̄) + σ∥x− x̄∥2, ∀x ∈ x̄+ δB,

that is,

⟨x∗, x− x̄⟩ ≤ J(x)− J(x̄) + σ∥x− x̄∥2, ∀x ∈ (x̄+ δB) ∩ S.

Since Csec
x̄ < ∞ by assumption, there exist constants α, δ1 > 0 such that

(4.3) |J(x)− J(x̄)| ≤ α∥x− x̄∥2, ∀x ∈ (x̄+ δ1B) ∩ S.

Without loss of generality we assume that δ1 ≤ δ. Combining the above two in-
equalities we get

⟨x∗, x− x̄⟩ ≤ [α+ σ]∥x− x̄∥2, ∀x ∈ (x̄+ δ1B) ∩ S.

This shows that x∗ ∈ NP (S, x̄). Conversely, let x∗ ∈ NP (S, x̄). Then by definition,
there exist σ, δ1 > 0 such that inequality (4.3) holds and that ⟨x∗, x−x̄⟩ ≤ σ∥x−x̄∥2
for any x ∈ (x̄+ δ1B) ∩ S. It then follows that

⟨x∗, x− x̄⟩ ≤ J(x)− J(x̄) + |J(x)− J(x̄)|+ σ∥x− x̄∥2
≤ J(x)− J(x̄) + [σ + α]∥x− x̄∥2, ∀x ∈ (x̄+ δ1B) ∩ S.

This ensures

⟨x∗, x− x̄⟩ ≤ (J + δS)(x)− (J + δS)(x̄) + [σ + α]∥x− x̄∥2, ∀x ∈ x̄+ δ1B.

This shows that x∗ ∈ ∂P (J + δS)(x̄) and the proof is complete. �

Now, we are ready to prove the following theorem.

Theorem 4.4. Let x̄ ∈ S0 be such that minJ(x̄, S) is well-posed. Suppose that the
Lipschitz constant Lx̄ = 0 and the center second Lipschitz constant Csec

x̄ < ∞. If S
is proximal normally regular at x̄, then dJS is proximal subdifferentially regular at x̄.
The converse is true provided that X is reflexive.
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Proof. By the assumption that Csec
x̄ < ∞, we can apply Lemma 4.3 and Proposition

4.1 to get that

(4.4) ∂PdJS(x̄) = NP (S; x̄) ∩ B∗.

Now assume that S is proximal normally regular at x̄, i.e., NC(S; x̄) = NP (S; x̄).
Since Lx̄ = 0, it follows from (4.4) and Proposition 3.8 that

∂CdJS(x̄) ⊂ NC(S; x̄) ∩ B∗ = NP (S; x̄) ∩ B∗ = ∂PdJS(x̄).

Hence ∂CdJS(x̄) = ∂PdJS(x̄) as the inverse inclusion always holds, and so dJS is
proximal subdifferentially regular at x̄.

Conversely, assume that dJS is proximal subdifferentially regular at x̄. Then

(4.5) ∂CdJS(x̄) = ∂MdJS(x̄) = ∂FdJS(x̄) = ∂PdJS(x̄).

Since Lx̄ = 0, it follows from Proposition 3.3 and Lemma 3.6 that

(4.6) NF (S; x̄) =
∪
λ≥0

λ∂FdJS(x̄)

This together with (4.4) and (4.5) imply

(4.7) NF (S; x̄) =
∪
λ≥0

λ∂FdJS(x̄) =
∪
λ≥0

λ∂PdJS(x̄) = NP (S; x̄).

Furthermore, (4.5) ensures that dJS is Fréchet subdifferentially regular at x̄. Now
assume that X is reflexive. Then S is Fréchet normally regular at x̄ by assertion
(iii) of Theorem 3.9, that is NF (S; x̄) = NC(S; x̄). This together with (4.7) yield
that NP (S; x̄) = NC(S; x̄), which ensures the proximal normal regularity of S at
x̄. The proof of the theorem is then complete. �

The following corollary on the proximal regularity concepts is direct from the
previous theorem because the condition Lsec

x̄ < ∞ implies both Lx̄ = 0 and Csec
x̄ <

∞.

Theorem 4.5. Let X be reflexive and let x̄ ∈ S0. Assume that minJ(x̄, S) is
well-posed and that Lsec

x̄ < ∞. Then the following assertions are equivalent:

i) S is proximal normally regular at x̄.
ii) dS is proximal subdifferentially regular at x̄.
iii) dJS is proximal subdifferentially regular at x̄.

We end this paper with an example to illustrate the results obtained in the present
paper.

Example 4.6. Let X := R2, the 2-dimensional Euclidean space, and let S1, S2

and S3 be the closed sets defined respectively by

S1 := {(t, s) ∈ R2 : s ≥ 0, | sin 2t|3 − s ≥ 0, t ∈ [−π, π]},

S2 := {(t, s) ∈ R2 : s ≥ 0, | sin 2t|
3
2 − s ≥ 0, t ∈ [−π, π]}

and

S3 := {(t, s) ∈ R2 : s > 0, sign(sin 2t)(sin 2t− s) ≥ 0, t ∈ (−π, π]} ∪ {(−π, 0)}.
The figures of the three sets are shown in the Figures 1,2, and 3.
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Figure 1. The set S1 in Example 4.1

Figure 2. The set S2 in Example 4.1

Figure 3. The set S3 in Example 4.1

We first discuss the regularity of the above sets. To do this, we write

D0 :=
{
(t, 0) : t = −π

2
, 0,

π

2

}
.

Note that, for each i ∈ {1, 2, 3} and each x̄ ∈ Si \D0, S
i is locally convex at x̄, that

is, there exists an open set U containing x̄ such that Si ∩ U is convex; hence Si is
proximal (so both Fréchet and Mordukhovich by Remark 2.8) normally regular at
each x̄ ∈ Si. Considering the point x̄ ∈ D0, we have the following regularity results:
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(a) S1 is proximal normally regular at x̄.
(b) S2 is Fréchet normally regular but not proximal normally regular at x̄.
(c) S3 is not (proximal, Fréchet, Mordukhovich) normally regular at x̄.
To see this, we calculate by definition that

NP (S1, x̄) = R+{(0, 1), (0,−1)} = NC(S1, x̄)

and
NP (S2, x̄) = R+{(0,−1)}.

Moreover, by [6, P. 37, Remark 2.1],

NF (S2, x̄) = R+{(0, 1), (0,−1)} = NC(S2, x̄).

Thus, we get the assertions (a) and (b). Finally assertion (c) holds because for
x̄ = (±π

2 , 0) we have

NF (S3, x̄) = R+{(0,−1)} and NM (S3, x̄) = R+{(0,−1); (−1, 0); (2, 1)}.
Also, for x̄ = (0, 0), we have

NF (S3, x̄) = R+{(0,−1)} and NM (S3, x̄) = R+{(0,−1); (−1, 0); (−2, 1)}.
Thus, all the assertions (a), (b), and (c) are fulfilled.

Now fix i = 1, 2, 3 and fix S := Si. Let p ∈ (1, 2] and consider the function J on
S defined by

J(t, s) :=

{
1
6 | sin s|

p t ∈ [−π, 0],
1
6(| sin s|

p + | sin t|p) t ∈ [0, π],

for each (t, s) ∈ S. Then one checks that J satisfies the following Lipschitz condition:

|J(t, s)− J(t̄, s̄)| ≤ 2

3
∥(t, s)− (t̄, s̄)∥ for any (t, s), (t̄, s̄) ∈ S.

This implies that S0 = S and that, for each x̄ ∈ S, Cx̄ < 1 and the problem
minJ(x̄, S) is well posed. Moreover, it is easy to see that J is Mordukhovich sub-
differentially regular at each point x̄ ∈ S. Thus Theorem 3.5 is applicable for any
point x̄ ∈ S. Consequently, thanks to assertions (a) and (b) above, the perturbed
distance function dJS is Fréchet subdifferentially regular at any points x̄ ∈ S in the
case when S = S1 or S = S2.

To illustrate the applicability of Theorems 3.9 and 4.4, we consider the point
x̄ ∈ D := {(t, 0) ∈ S : −π ≤ t ≤ 0}. Then

Lx̄ = 0 if p > 1,
Lsec
x̄ = Csec

x̄ = ∞ if 1 < p < 2,
Lsec
x̄ = Csec

x̄ < ∞ if p = 2.

Thus Theorem 3.9 is applicable and then we have from assertions (a)-(b) above
that the perturbed distance function dJS is Fréchet normally regular at each point

x̄ ∈ D if S = S1 or S = S2, while, if S = S3, dJS is Fréchet normally regular at each
x̄ ∈ D \D0 but not at point x̄ ∈ D0.

Similarly, in the special case when p = 2, Theorem 4.4 is applicable to concluding
that, if S = S2, dJS is proximal subdifferentially regular at each point x̄ ∈ D; while, if

S = S1 or S = S3, dJS is proximal subdifferentially regular at each point x̄ ∈ D \D0

but not at point x̄ ∈ D0.



1346 M. BOUNKHEL AND C. LI

References

[1] J. Baranger, Existence de solution pour des problemes d’optimisation nonconvexe, C. R. Acad.
Sci. Paris. 274 (1972), 307–309.

[2] J. Baranger, Existence de solutions pour des problems d’optimisation nonconvexe, J. Math.
Pures Appl. 52 (1973), 377–405.

[3] J. Baranger and R. Temam, Problemes d’optimisation nonconvexe dependants d’un parametre,
in Analyse non-convexe et ses applications, J. P. Aubin (ed), Springer-Verlag, Berlin/New
York, 1974, pp. 41–48.

[4] J. Baranger and R. Temam, Nonconvex optimization problems depending on a parameter,
SIAM J. Control 13 (1975), 146–152.

[5] M. F. Bidaut, Existence theorems for usual and approximate solutions of optimal control prob-
lem, J. Optim. Theory Appl. 15 (1975), 393–411.

[6] M. Bounkhel, Regularity Concepts in Nonsmooth Analysis, Theory and Applications, Springer
Optimization and Its Applications, Vol. 59, Springer, New York, 2012.

[7] M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis,
Nonlinear Anal. 48 (2002), 223–246.

[8] D. Braess, Nonlinear approximation theory, Springer-Verlag, Berlin Heidelberg, New York,
London, Paris, Tokyo, 1986, pp. 1–22.

[9] J. V. Burke, A sequential quadratic programming method for potentially infeasible mathematical
programs, J. Math. Anal. Appl. 139 (1989), 319–351.

[10] J. V. Burke, An Exact Penalization Viewpoint of Constrained Optimization, Technical Report
ANL/MCS-TM-95, Mathematics and Computer Science Division, Argonne National Labora-
tories, Argonne, IL 60439, 1987.

[11] J. V. Burke, M. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function
of a closed set, J. Math. Anal. Appl. 166 (1992), 199–213.

[12] J. V. Burke and S. P. Han, A Gauss-Newton approach to solving generalized inequalities, Math.
Oper. Res. 11 (1986), 632–643.

[13] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[14] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control

Theory, Springer, New York, 1998.
[15] F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-C2 property,

J. Convex Anal. 2 (1995), 117–144.
[16] S. Cobzas, Nonconvex optimization problems on weakly compact subsets of Banach spaces,
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