
Copyright 2014



1320 W. BOULOS AND S. REICH

A more precise formulation of the aforementioned De Blasi-Myjak-Papini result
involves the notion of porosity [25], which we now recall. Let (Y, d) be a metric
space. We denote by B(y, r) the closed ball of center y ∈ Y and radius r > 0. A
subset E ⊂ Y is called porous (with respect to the metric d) if there exist numbers
α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y , there exists a
point z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous (with respect to the metric d) if it is a
countable union of porous subsets of Y .

Since porous sets are nowhere dense, all σ-porous sets are of the first Baire
category. If Y is a finite dimensional Euclidean space, then σ-porous sets are of
Lebesgue measure zero. In fact, the class of σ-porous sets in such a space is much
smaller than the class of sets which have measure zero and are of the first category.
Also, every Banach space contains a set of the first category which is not σ-porous.

To point out the difference between porous and nowhere dense sets, note that if
E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there are a point z ∈ Y and a
number s > 0 such that B(z, s) ⊂ B(y, r) \ E. If, however, E is also porous, then
for small enough r, we can choose s = αr, where α ∈ (0, 1) is a constant which only
depends on E.

Using this terminology and denoting by F the set of all points such that the
maximization problem (P) is well posed, we note that De Blasi, Myjak and Papini
prove in [4] that the complement X \ F is, in fact, σ-porous in X.

However, a fundamental restriction in this result is that it only holds in special
Banach spaces. On the other hand, many generic results in nonlinear functional
analysis hold in any Banach space. Therefore the following natural question arises:
can generic well-posedness results for farthest point problems in closed and bounded
subsets be established in general Banach spaces? In the present paper we answer
this question in the affirmative.

To this end, we change our point of view and consider another framework. The
main feature of this framework is that the set A in problem (P) may also vary.
Such a framework has already been used in several best approximation problems
(see, for example, [3], [18], [19], [20], [21] and [22]). In our first result (Theorem 3.1
below) we fix x and consider the space B(X) of all nonempty, closed and bounded

subsets of X equipped with an appropriate complete metric, say H̃. We then show
that the collection of all sets A ∈ B(X) for which problem (P) is well posed has
a σ-porous complement. In the second result (Theorem 3.2) we consider the space

of pairs B(X)×X with the metric H̃(A,B) + ∥ x− y ∥, where A,B ∈ B(X) and
x, y ∈ X. Once again, we show that the family of all pairs (A, x) ∈ B(X) ×X for
which problem (P) is well posed has a σ-porous complement.

The precise statements of these two theorems can be found in Section 3. Section
2 contains more information on porous sets and the class of geodesic spaces. Two
auxiliary results are presented in Section 4. The proofs of Theorems 3.1 and 3.2
are given in Section 5. We conclude the paper with a short discussion concerning
completeness (see Section 6).
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2. Porous sets and geodesic spaces

In this section we provide more information on porous sets and the class of
geodesic spaces.

Let (Y, ρ) be a metric space. We denote by Bρ(y, r) the closed ball of center
y ∈ Y and radius r > 0. The following simple observation was made in [27].

Proposition 2.1. Let E be a subset of the metric space (Y, ρ). Assume that there
exist numbers r0 > 0 and β ∈ (0, 1) such that the following property holds:
(P1) For each x ∈ Y and each r ∈ (0, r0], there exists a point z ∈ Y \ E such that
ρ(x, z) ≤ r and Bρ(z, βr) ∩ E = ∅.

Then E is porous with respect to ρ.

As a matter of fact, property (P1) can be replaced by a weaker one [18].

Proposition 2.2. Let E be a subset of the metric space (Y, ρ). Assume that there
exist numbers r0 > 0 and β ∈ (0, 1) such that the following property holds:
(P2) For each x ∈ E and each r ∈ (0, r0], there exists z ∈ Y \E such that ρ(x, z) ≤ r
and Bρ(z, βr) ∩ E = ∅.

Then E is porous with respect to ρ.

The following definition was introduced in [27].
Assume that a set Y is equipped with two metrics ρ1 and ρ2 such that ρ1(x, y) ≤

ρ2(x, y) for all x, y ∈ Y . We say that a set E ⊂ Y is porous with respect to the
pair (ρ1, ρ2) if there exist numbers r0 > 0 and α ∈ (0, 1) such that for each x ∈ E
and each r ∈ (0, r0], there exists a point z ∈ Y \ E such that ρ2(z, x) ≤ r and
Bρ1(z, αr) ∩ E = ∅.

Proposition 2.2 implies that if E is porous with respect to the pair (ρ1, ρ2), then
it is porous with respect to both ρ1 and ρ2.

A set E ⊂ Y is called σ-porous with respect to the pair of metrics (ρ1, ρ2) if it is
a countable union of sets which are porous with respect to (ρ1, ρ2).

It turns out that our results are true not only for Banach spaces, but also for all
complete geodesic spaces. We now recall the definition of this important class of
spaces.

Let (X, ρ) be a metric space and let R1 denote the real line. We say that a
mapping c : R1 −→ X is a metric embedding of R1 into X if ρ(c(s), c(t)) = |s − t|
for all real s and t. The image of R1 under a metric embedding is called a metric
line. The image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping
is called a metric segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).
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This point is denoted by (1− t)x⊕ ty. In this case we say that X, or more precisely
(X, ρ,M), is a geodesic space.

It is clear that all normed linear spaces, as well as the hyperbolic spaces in the
sense of Reich and Shafrir (see [15]) are geodesic spaces.

3. Main results

Let (X, ρ,M) be a complete geodesic space. For each x ∈ X and each A ⊂ X,
we set

ρ(x,A) := inf{ρ(x, y) : y ∈ A},
e(x,A) := sup{ρ(x, y) : y ∈ A}.

We also define

(3.1) diam(A) := sup{ρ(x, y) : x, y ∈ A}.

We denote by B(X) the family of all nonempty, closed and bounded subsets of
X. For each A, B ∈ B(X), we define

H(A,B) := max{sup{ρ(x,B) : x ∈ A}, sup{ρ(y,A) : y ∈ B}}

and

H̃(A,B) := H(A,B)(1 +H(A,B))−1.

It is not difficult to see that H̃ is a metric on B(X) and that the metric space

(B(X), H̃) is complete (cf. [24, page 253]).

Fix a point θ ∈ X. For each natural number n and each A, B ∈ B(X), we set

(3.2) hn(A,B) := sup{|ρ(x,A)− ρ(x,B)| : x ∈ X and ρ(x, θ) ≤ n}

and

h(A,B) :=

∞∑
n=1

[2−nhn(A,B)(1 + hn(A,B))−1].

Once again, it is not difficult to see that h is a metric on B(X). Clearly,

H̃(A,B) ≥ h(A,B)

for all

A,B ∈ B(X).

We equip the set B(X) with the pair of metrics H̃ and h.

We now state our two main results. Their proofs will be given in Section 5.

Theorem 3.1. Let (X, ρ,M) be a complete geodesic space and let x̃ ∈ X. Then
there exists a set Ω ⊂ B(X) such that its complement B(X) \ Ω is σ-porous with

respect to the pair of metrics (h, H̃), and such that for each A ∈ Ω, the following
property holds:

(C1) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = supy∈A ρ(x̃, y) = e(x̃, A).
Moreover, for each ε > 0, there exists a number δ > 0 such that if a point x ∈ A
satisfies ρ(x̃, x) ≥ e(x̃, A)− δ, then ρ(x, ỹ) ≤ ε.
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To state our second result we endow the Cartesian product B(X)×X with the
pair of metrics d1 and d2 defined by

d1((A, x), (B, y)) := h(A,B) + ρ(x, y),

d2((A, x), (B, y)) := H̃(A,B) + ρ(x, y),

where x, y ∈ X and A,B ∈ B(X).

Theorem 3.2. Let (X, ρ,M) be a complete geodesic space. Then there exists a set
Ω ⊂ B(X)×X such that its complement [B(X)×X] \Ω is σ-porous with respect to
the pair of metrics (d1, d2), and such that for each (A, x̃) ∈ Ω, the following property
holds:

(C2) There exists a unique ỹ ∈ A such that ρ(x̃, ỹ) = supy∈A ρ(x̃, y) = e(x̃, A).
Moreover, for each ε > 0, there exists a number δ > 0 such that if a point z ∈ X
satisfies ρ(x̃, z) ≤ δ, a set B ∈ B(X) satisfies h(A,B) ≤ δ, and a point y ∈ B
satisfies ρ(z, y) ≥ e(z,B)− δ, then ρ(y, ỹ) ≤ ε.

In classical generic results the set A was fixed and x varied in a dense Gδ subset
of X. In our two theorems the set A is also variable.

4. Auxiliary results

Let (X, ρ,M) be a complete geodesic space and let B(X) be the family of all
nonempty, closed and bounded subsets of X.

Lemma 4.1. Let A ∈ B(X), x̃ ∈ X and let r, ε ∈ (0, 1). Then there exists a

point x̄ ∈ X such that ρ(x̄, A) ≤ r and the set Ã = A ∪ {x̄} has the following two
properties :

(i) ρ(x̃, x̄) = e(x̃, Ã);

(ii) if x ∈ Ã and ρ(x̃, x) ≥ e(x̃, Ã)− εr
4 , then ρ(x̄, x) ≤ ε.

Proof. We first take x1 ∈ A such that ρ(x̃, x1) > e(x̃, A)− εr
2 .

Next, we define x̄ by requiring that x1 ∈ {γx̄⊕(1−γ)x̃ : 0 < γ < 1}, ρ(x̄, x1) = r,

and ρ(x1, x̃) = ρ(x̃, x̄)− r. We now set Ã = A ∪ {x̄}. Then ρ(x̃, x̄) = ρ(x1, x̃) + r >

e(x̃, A)− εr
2 + r > e(x̃, A). Therefore ρ(x̃, x̄) = e(x̃, Ã).

If x ∈ Ã and ρ(x̃, x) ≥ e(x̃, Ã)− εr
4 , then:

If x = x̄ we get ρ(x, x̄) = ρ(x̄, x̄) = 0 < ε. In the other case, where x ̸= x̄, then
x ∈ A and using our previous condition, we obtain

ρ(x̃, x) ≥ e(x̃, Ã)− εr

4

= ρ(x̃, x̄)− εr

4

= ρ(x̃, x1) + r − εr

4

> e(x̃, A)− εr

2
+ r − εr

4

= e(x̃, A) + r − 3

4
εr > e(x̃, A).

Thus we get a contradiction. So this case cannot, in fact, happen. This completes
the proof of Lemma 4.1. �
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Before stating our next lemma we choose, for each number ε ∈ (0, 1) and each
pair of natural numbers n and m, a number

(4.1) α(ε, n,m) ∈ (0, 2−4n−m−10ε).

Lemma 4.2. Let A ∈ B(X), x̃ ∈ X and let r, ε ∈ (0, 1). Suppose that n and m are
natural numbers, let

(4.2) α := α(ε, n,m),

and assume that

(4.3) ρ(x̃, θ) ≤ n, {z ∈ X : ρ(z, θ) ≤ n} ∩A ̸= ∅ and diam(A) < m.

Then there exists a point x̄ ∈ X such that ρ(x̄, A) ≤ r and the set Ã = A ∪ {x̄} has
the following two properties:

(4.4) ρ(x̃, x̄) = e(x̃, Ã);

if

(4.5) ỹ ∈ X, ρ(ỹ, x̃) ≤ αr,

(4.6) B ∈ B(X), h(Ã, B) ≤ αr with diam(B) < m,

and

(4.7) z ∈ B, ρ(ỹ, z) ≥ e(ỹ, B)− εr

16
,

then

(4.8) ρ(z, x̄) ≤ ε.

Proof. By Lemma 4.1, there exists a point x̄ ∈ X such that

(4.9) ρ(x̄, A) ≤ r

and such that for the set Ã = A ∪ {x̄}, we have ρ(x̃, x̄) = e(x̃, Ã). We also have

ρ(x̃, x̄) ≤ ρ(x̃, θ) + ρ(θ, a) + ρ(a, x̄)

≤ ρ(x̃, θ) + ρ(θ, a) + ρ(a, ā) + ρ(ā, x̄)

≤ n+ n+ diam(A) + r + ε̃ ≤ 2n+ 1 +m,

where a ∈ {z ∈ X : ρ(z, θ) ≤ n} ∩ A, while ā ∈ A has the following property:
ρ(x̄, ā) ≤ ρ(x̄, A) + ε̃ ≤ r + ε̃ < 1 for an appropriate ε̃ ∈ (0, 1). Next, ρ(x̄, θ) ≤
ρ(x̄, x̃) + ρ(x̃, θ) ≤ 2n+ 1 +m+ n = 3n+ 1 +m ≤ 4n+m.

Using the definitions we presented at the beginning of Section 3, we see that

h4n+m(Ã, B)

1 + h4n+m(Ã, B)
≤ 24n+mh(Ã, B) ≤ 24n+mαr.

Therefore we get

h4n+m(Ã, B) ≤ 24n+mαr

1− 24n+mαr
≤ 24n+m+1αr.

Since x̄ ∈ Ã, it follows that ρ(x̄, B) ≤ 24n+m+1αr, so that there exists ȳ ∈ B such
that ρ(x̄, ȳ) < 24n+m+2αr.
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Hence we have

e(ỹ, B) ≥ ρ(ỹ, ȳ) ≥ |ρ(ỹ, x̄)− ρ(ȳ, x̄)| ≥ ρ(ỹ, x̄)− ρ(ȳ, x̄)

≥ |ρ(x̄, x̃)− ρ(x̃, ỹ)| − ρ(ȳ, x̄) ≥ ρ(x̄, x̃)− ρ(x̃, ỹ)− ρ(ȳ, x̄)

≥ e(x̃, Ã)− αr − 24n+m+2αr.

We now assume that a point z ∈ B satisfies the condition formulated in the
statement of the lemma. Then
ρ(ỹ, z) ≥ e(ỹ, B)− εr

16 ≥ e(x̃, Ã)− αr − 24n+m+2αr − εr
16 .

On the other hand,

ρ(ỹ, z) ≤ ρ(ỹ, B) + diam(B) ≤ ρ(ỹ, x̃) + ρ(x̃, Ã) + h(Ã, B) + diam(B)

≤ αr + ρ(x̃, Ã) + αr +m

≤ 2αr +m+ ρ(x̃, Ã)

≤ 2αr +m+ ρ(x̃, A)

≤ 2αr +m+ ρ(x̃, θ) + ρ(θ, a)

≤ 2αr +m+ n+ n ≤ 2n+m+ 2αr.

Continuing our computations, we obtain

ρ(z, θ) ≤ ρ(ỹ, z) + ρ(ỹ, θ) ≤ ρ(ỹ, z) + ρ(ỹ, x̃) + ρ(x̃, θ)

≤ 2n+m+ 2αr + αr + n = 3n+m+ 3αr ≤ 4n+m.

Therefore it follows from the definitions we presented at the beginning of Section 3
that

ρ(z, Ã) = |ρ(z, Ã)− ρ(z,B)| ≤ h4n+m(Ã, B) ≤ 24n+m+1αr.

Hence there exists a point z̃ ∈ Ã such that ρ(z, z̃) ≤ 24n+m+2αr.
We also have

ρ(x̃, z̃) ≥ |ρ(x̃, z)− ρ(z̃, z)|
≥ ρ(x̃, z)− ρ(z̃, z)

≥ |ρ(z, ỹ)− ρ(ỹ, x̃)| − ρ(z̃, z)

≥ ρ(z, ỹ)− ρ(ỹ, x̃)− ρ(z̃, z)

≥ e(x̃, Ã)− αr − 24n+m+2αr − εr

16
− αr − 24n+m+2αr

≥ e(x̃, Ã)− 2αr − 2 · 24n+m+2αr − εr

16

= e(x̃, Ã)− 2αr − 24n+m+3αr − εr

16

≥ e(x̃, Ã)− εr

8
.

Applying Lemma 4.1, we get ρ(x̄, z̃) ≤ ε
2 .

So ρ(z, x̄) ≤ ρ(z, z̃) + ρ(z̃, x̄) ≤ 24n+m+2αr + ε
2 < ε

2 + ε
2 = ε. Thus Lemma 4.2

holds. �
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5. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. For each integer k ≥ 1, denote by Ωk the set of all A ∈ B(X)
which have the following property:
(P3) There exist xA ∈ X and δA > 0 such that if x ∈ A satisfies ρ(x̃, x) ≥ e(x̃, A)−
δA, then ρ(x, xA) ≤ 1

k .
Clearly, Ωk+1 ⊂ Ωk, k = 1, 2, .... Set

Ω :=

∞∩
k=1

Ωk.

We claim that B(X) \ Ω is σ-porous with respect to the pair of metrics (h, H̃).

To prove this, we show that B(X) \ Ωk is σ-porous with respect to (h, H̃) for all
sufficiently large integers k.

Indeed, for each integer n ≥ k0, where ρ(x̃, θ) ≤ k0, and each natural number m,
we let

Enkm := {A ∈ B(X) \ Ωk : {z ∈ X : ρ(z, θ) ≤ n} ∩A ̸= ∅, diam(A) < m}.

By Lemma 4.2, the set Enkm is porous with respect to the pair (h, H̃) for each integer
n ≥ k0 and each natural number m. Therefore B(X) \ Ωk is indeed σ-porous with

respect to (h, H̃) and so is B(X) \ Ω.
Let A ∈ Ω. We claim that A has property (C1). By the definition of Ωk and

property (P3), for each integer k ≥ 1, there exist xk ∈ X and δk > 0 such that the
following property holds:

(P4) If a point x ∈ A satisfies ρ(x̃, x) ≥ e(x̃, A)− δk, then ρ(x, xk) ≤
1

k
.

Let a sequence {zi}∞i=1 ⊂ A be such that

(5.1) lim
i−→∞

ρ(x̃, zi) = e(x̃, A).

Fix an integer k ≥ 1. It follows from property (P4) that for all large enough natural
numbers i,

ρ(x̃, zi) ≥ e(x̃, A)− δk and ρ(zi, xk) ≤
1

k
.

Since k is an arbitrary natural number, we can conclude that {zi} ia a Cauchy
sequence which converges to some ỹ ∈ A. Clearly, ρ(x̃, ỹ) = e(x̃, A). If the maximizer
ỹ were not unique, we would be able to construct a nonconvergent maximizing
sequence {zi}∞i=1.

Thus this point ỹ is the unique solution to the maximization problem (P) with
x = x̃ and any sequence {zi}∞i=1 ⊂ A satisfying limi−→∞ ρ(x̃, zi) = e(x̃, A) converges
to ỹ. This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2. For each integer k ≥ 1, denote by Ωk the set of all (A, x) ∈
B(X)×X which have the following property:
(P5) There exist x̄ ∈ X and δ̄ > 0 such that if x ∈ X satisfies ρ(x, x̃) ≤ δ̄, B ∈ B(X)
satisfies h(A,B) ≤ δ̄, and y ∈ B satisfies ρ(x, y) ≥ e(x,B)− δ̄, then ρ(y, x̄) ≤ 1

k .



FARTHEST POINTS AND POROSITY 1327

Clearly, Ωk+1 ⊂ Ωk, k = 1, 2, .... Set

Ω =

∞∩
k=1

Ωk.

We claim that [B(X) × X] \ Ω is σ-porous with respect to the pair of metrics
(d1, d2).

Indeed, for any natural numbers n, k and m, let

Enkm := {(A, x) ∈ [B(X)×X] \ Ωk : ρ(x, θ) ≤ n, {z ∈ X : ρ(z, θ) ≤ n} ∩A ̸= ∅,

diam(A) < m}.

By Lemma 4.2, the set Enkm is porous with respect to (d1, d2) for all natural numbers
n, k and m. Since

[B(X)×X] \ Ω =
∞∪
k=1

[B(X)×X] \ Ωk =
∞∪
k=1

∞∪
n=1

∞∪
m=1

Enkm,

the set [B(X)×X] \ Ω is σ-porous with respect to (d1, d2) by definition.
Let (A, x̃) ∈ Ω. We claim that (A, x̃) has property (C2).

By the definition of Ωk and property (P5), for each integer k ≥ 1, there exist a
point xk ∈ X and a number δk > 0 such that the following property holds:
(P6) If x ∈ X satisfies ρ(x, x̃) ≤ δk, B ∈ B(X) satisfies h(A,B) ≤ δk, and y ∈ B
satisfies ρ(x, y) ≥ e(x,B)− δk, then ρ(y, xk) ≤ 1/k.

Let a sequence {zi}∞i=1 ⊂ A be such that

(5.2) lim
i→∞

ρ(x̃, zi) = e(x̃, A).

Fix an integer k ≥ 1. It follows from property (P6) that for all large enough natural
numbers i,

ρ(x̃, zi) ≥ e(x̃, A)− δk and ρ(zi, xk) ≤ 1/k.

Since k is an arbitrary natural number, we can conclude that {zi}∞i=1 is a Cauchy
sequence which converges to some ỹ ∈ A. Clearly, ρ(x̃, ỹ) = e(x̃, A). It is not
difficult to see that ỹ is the unique solution to the maximization problem (P) with
x = x̃.

Now let ε > 0 be given. Choose a natural number k > 2/min{1, ε}. By property
(P6),

(5.3) ρ(ỹ, xk) ≤ 1/k.

Assume that a point z ∈ X satisfies ρ(z, x̃) ≤ δk, a set B ∈ B(X) satisfies h(A,B) ≤
δk and a point y ∈ B satisfies ρ(z, y) ≥ e(z,B)− δk. Then it follows from property
(P6) that ρ(y, xk) ≤ 1/k. When combined with (5.3), this inequality implies that
ρ(y, ỹ) ≤ 2/k < ε. This completes the proof of Theorem 3.2. �
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6. Discussion

Denote by CL(X) the family of nonempty and closed subsets of an unbounded
complete metric space X (in our case X is a complete geodesic space). It follows
from (the proof of) Theorem 8.4.2 in [11] (see also the discussion on page 79 in [2])
that our metric h is compatible with the Attouch-Wets topology τAW on CL(X).
Since the space (B(X), τAW ) is dense in (CL(X), τAW ) (see exercise 3 on page 84
of [2]), the space (B(X), h) is incomplete.

However, the space (B(X), H) is known to be complete (cf. [24, page 253]). Since
(B(X), h) is not necessarily complete, we cannot be sure in the setting of Theorem
3.1 that the set B(X) \ Ω is small in (B(X), h), but we can conclude that it is

small in (B(X), H̃), which is also complete. The same logic applies in the setting
of Theorem 3.2 to the set [B(X) × X] \ Ω, where we are not sure that this set is
small in the space B(X) ×X equipped with the metric h(A,B) + ρ(x, y), but we

do know that it is small in the space B(X)×X endowed with the metric H̃(A,B)
+ ρ(x, y).
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