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optimization problem. It is worth mentioning here that the concept of local min-
imizer of higher order plays a crucial role in the convergence of iterative schemes
and stability analysis for optimization problems, see ([4], [11]) for more details.

The intent of the paper is to characterize the set of global strict minimizers of
order m for a scalar optimization problem. The paper is organized as follows. Sec-
tion 2 commences by introducing a special type of strict minimizer of order m. For
the purpose of studying this new solution concept, we found it most appropriate
to employ the notion of strong pre-invexity of order m which is a generalization of
strong convexity [8]. The section proceeds further by establishing a characterization
for strong pre-invexity of order m which in turn leads to an important generaliza-
tion viz. strong pseudoinvexity of order m. The notion of invariant monotonicity
of order m is also introduced. A result relating the strong invexity of order m of
a differentiable function to the invariant monotonicity of order m of its gradient is
established. Section 3 presents certain characterizations for the set of strict min-
imizers of order m for higher order strong invex/pseudoinvex scalar optimization
problems in terms of set equivalence.

2. Higher order global strict minimizer

In this paper, we study the following scalar minimization problem

(P) min f(x)

subject to x ∈ S ,

where f : X ⊆ Rn → R and S ⊆ X. The notion of strict minimizer of order m
for (P) turned out to be very fruitful in the optimization theory. Let us recall the
same from literature. A point x̄ ∈ S is said to be strict local minimizer of order m
(m ≥ 1, an integer) for (P) if there exist c > 0 and an ε > 0 such that

f(x) ≥ f(x̄) + c∥x− x̄∥m, ∀ x ∈ S ∩B(x̄, ε)

where B(x̄, ε) denotes the ball with centre x̄ and radius ε. If we replace the ball
B(x̄, ε) by Rn then x̄ is called a strict (global) minimizer of order m for (P).

The following example depicts that in some cases x̄may fail to be strict minimizer
in the above sense.

Example 2.1. Let X = R, S = [0, 1] and f(x) = x3, then x̄ = 0 is not a strict

minimizer of order 1 since for any c > 0 there exists an x, 0 < x < c1/2 such that

f(x) < f(x̄) + c∥x− x̄∥.

The above example motivates us to introduce a new notion of strict minimizer of
order m for (P) with respect to a nonlinear function ψ defined as follows.

Definition 2.2. Let m ≥ 1 be an integer. A point x̄ ∈ S is said to be strict
minimizer of order m for (P) with respect to a nonlinear function ψ : S × S → Rn,
if there exists a constant c > 0 such that

f(x) ≥ f(x̄) + c∥ψ(x, x̄)∥m, ∀ x ∈ S.

Remark 2.3. For the problem considered in Example 2.1, x̄ = 0 failed to be strict
minimizer of order m in the usual sense, however it is important to observe here
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that x̄ = 0 is a strict minimizer of order 1 with respect to ψ(x, x̄) = sin3 x− sin3 x̄,
for c = 1.

Remark 2.4. The integer m plays a vital role in the above definition. For the
problem considered in Example 2.1, if ψ(x, x̄) = sinx− sin x̄ and c = 1, then x̄ = 0
is a strict minimizer of order m ≥ 3. However, x̄ = 0 is not a strict minimizer of
order 1 as for any c > 0 there exists an x, 0 < x3/ sinx < c such that

f(x) < f(x̄) + c∥ψ(x, x̄)∥.

We recall that [13] a set S ⊆ Rn is invex with respect to η if there exists η :
S×S → Rn such that for all x, y ∈ S and all λ ∈ [0, 1], y+λη(x, y) ∈ S. Throughout
the paper, we assume the set S to be invex.

The following assumption introduced by Mohan and Neogy [10] and was shown
to hold for almost all invex sets, thereby making it a fairly reasonable assumption.

A function η : S × S → Rn is said to satisfy Assumption C, if for all x, y ∈ S

η(y, y + λη(x, y)) = −λη(x, y),
η(x, y + λη(x, y)) = (1− λ)η(x, y), ∀ λ ∈ [0, 1] .

If η(x, y) = x−y, Assumption C is obviously true. Also, if Assumption C holds, then
it follows [15] that for all x, y ∈ S and all λ ∈ [0, 1], η(y + λη(x, y), y) = λη(x, y).

We now present a class of higher order strongly pre-invex functions as follows.

Definition 2.5. Let S ⊆ X be invex with respect to η. A function f : X → R
is said to be strongly pre-invex of order m ≥ 1 with respect to η, ψ on S if there
exists a constant c > 0 such that for all x, y ∈ S and all λ ∈ [0, 1]

f(y + λη(x, y)) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)∥ψ(x, y)∥m.

If we take ψ(x, y) = x − y and η(x, y) = x − y, in the above definition, it reduces
to the notion of strong convexity of order m defined by Lin and Fukushima [8]. If
ψ(x, y) = 0, then the above definition reduces to the usual notion of pre-invexity.

The following result provides a characterization for higher order differentiable
strong pre-invex functions which will play a central role in deriving the main results
in the subsequent section.

Theorem 2.6. Let X ⊆ Rn be an open set, S ⊆ X be invex with respect to η and
η, ψ satisfy Assumption C. Then a differentiable function f : X → R is strongly
pre-invex of order m with respect to η, ψ on S if and only if there exists a constant
c > 0 such that for all x, y ∈ S

f(x)− f(y) ≥ ∇f(y)tη(x, y) + c∥ψ(x, y)∥m.(2.1)

Proof. Suppose that f is strongly pre-invex of order m on S. Then there exists a
constant c > 0 such that for x, y ∈ S and λ ∈ (0, 1)

f(y + λη(x, y)) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)∥ψ(x, y)∥m.

Dividing by λ and taking limit as λ ↓ 0, we have

∇f(y)tη(x, y) ≤ f(x)− f(y)− c∥ψ(x, y)∥m.
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Conversely, suppose that (2.1) holds for some c > 0. Since S is an invex set then
for all x, y ∈ S, z = y+λη(x, y) ∈ S, for all λ ∈ (0, 1) and the following inequalities
hold

f(x)− f(z) ≥ ∇f(z)tη(x, z) + c∥ψ(x, z)∥m,
f(y)− f(z) ≥ ∇f(z)tη(y, z) + c∥ψ(y, z)∥m.

Using Assumption C, these inequalities can be rewritten as

f(x)− f(z) ≥ (1− λ)∇f(z)tη(x, y) + c(1− λ)m∥ψ(x, y)∥m,
f(y)− f(z) ≥ −λ∇f(z)tη(x, y) + cλm∥ψ(x, y)∥m.

Multiplying the above two inequalities by λ and (1 − λ) respectively and adding,
we have

f(y + λη(x, y)) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)[(1− λ)m−1 + λm−1]∥ψ(x, y)∥m.
(2.2)

If 0 < m ≤ 2, then (1 − λ)m−1 + λm−1 ≥ (1 − λ) + λ = 1. On the other hand if
m > 2, the real function φ(λ) = λm−1 is convex on (0, 1), therefore

(1− λ)m−1 + λm−1 ≥ (1/2)m−1.

It follows from (2.2) that there exists c′ > 0 independent of x, y, λ such that

f(y + λη(x, y)) ≤ λf(x) + (1− λ)f(y)− c′λ(1− λ)∥ψ(x, y)∥m.
Hence, f is strongly pre-invex of order m on S. �

The above theorem leads us to introduce the notion of higher order strong invexity
as follows.

Definition 2.7. Let X ⊆ Rn be an open set and S ⊆ X be invex with respect to
η. A differentiable function f : X → R is said to be strongly invex of order m ≥ 1
with respect to η, ψ on S if there exists a constant c > 0 such that for all x, y ∈ S

f(x)− f(y) ≥ ∇f(y)tη(x, y) + c∥ψ(x, y)∥m.
In general, every differentiable higher order strongly pre-invex function is higher
order invex. If ψ(x, y) = 0, then the above notion reduces to the notion of invexity.

Remark 2.8. Every strongly invex function of order m is invex. However, the
converse may not be true. For example, let X = R, S = [0, π/2), f(x) = 1 + sinx

and η(x, y) =
(sinx− sin y)

cos y
then f is invex with respect to η on S. However, it is

evident that f is not strongly invex of any order m with respect to η as for every
x, y ∈ S, the inequality (2.1) fails to hold for any c > 0 and for any function ψ(x, y).

We now present the following generalization of higher order strong invexity.

Definition 2.9. Let X ⊆ Rn be an open set and S ⊆ X be invex with respect to η.
A differentiable function f : X → R is said to be strongly pseudoinvex of order m
with respect to η, ψ on S if there exists a constant c > 0 such that for all x, y ∈ S

∇f(y)tη(x, y) ≥ 0 ⇒ f(x)− f(y) ≥ c∥ψ(x, y)∥m.
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Remark 2.10. It is evident that strong invexity of order m implies strong pseu-
doinvexity of order m. However, converse is not true in general. For the example
considered in Remark 2.8, if ψ(x, y) = sinx−sin y and c = 1/2m−1 then f is strongly
pseudoinvex of order m ≥ 1 with respect to η, ψ on S but is not strongly invex of
any order m with respect to η.

We now introduce higher order strongly invariant monotonicity as a generalization
of invariant monotonicity (Yang, Yang and Teo [15]).

Definition 2.11. A vector valued function F : S → Rn is strongly invariant mono-
tone of order m with respect to η, ψ on S, if there exists c > 0 such that for all
x, y ∈ S

η(x, y)tF (y) + η(y, x)tF (x) + c(∥ψ(x, y)∥m + ∥ψ(y, x)∥m) ≤ 0.

The following theorem associates the higher order strong invexity of a function
to the higher order strong invariant monotonicity of its gradient.

Theorem 2.12. Let X ⊆ Rn be an open set and S ⊆ X be invex with respect to η.
If the differentiable function f : X → R is strongly invex of order m with respect to
η and ψ on S, then ∇f is strongly invariant monotone of order m on S with respect
to same η and ψ.

Proof. As f is strongly invex of order m with respect to η and ψ on S, therefore

f(y)− f(x) ≥ ∇f(x)tη(y, x) + c∥ψ(y, x)∥m

and
f(x)− f(y) ≥ ∇f(y)tη(x, y) + c∥ψ(x, y)∥m.

Hence, it follows that

0 ≥ η(x, y)t∇f(y) + η(y, x)t∇f(x) + c(∥ψ(x, y)∥m + ∥ψ(y, x)∥m).

Therefore, ∇f is strongly invariant monotone of order m with respect to same η
and ψ on S. �

3. Characterizations for solutions set

Let S̄ = {x̄ ∈ S : f(x) ≥ f(x̄) + c∥ψ(x, x̄)∥m, ∀x ∈ S} denote the set of all strict
minimizers of order m with respect to a nonlinear function ψ for (P). Throughout
this section, we shall assume f to be real valued differentiable function defined on an
open subset X of Rn, containing an invex set S, the solution set S̄ to be nonempty
and ψ satisfies Assumption C.

Lemma 3.1. If f is strongly invex of order m and x̄, ȳ ∈ S̄ then

∇f(x̄)tη(ȳ, x̄) = ∇f(ȳ)tη(x̄, ȳ) = 0.

Proof. For x̄ ∈ S̄, we have for all z ∈ S

f(z) ≥ f(x̄) + c∥ψ(z, x̄)∥m.(3.1)

Since S is an invex set, z = x̄+ λη(ȳ, x̄) ∈ S, for x̄, ȳ ∈ S and λ ∈ (0, 1). Therefore
(3.1) can be rewritten as

f(x̄+ λη(ȳ, x̄)) ≥ f(x̄) + c∥ψ(x̄+ λη(ȳ, x̄), x̄)∥m.
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Since the map ψ satisfies Assumption C, we obtain

f(x̄+ λη(ȳ, x̄))− f(x̄) ≥ cλm∥ψ(ȳ, x̄)∥n .
Dividing by λ and taking limit as λ ↓ 0, we have

∇f(x̄)tη(ȳ, x̄) ≥ 0 .(3.2)

Similarly, we obtain

∇f(ȳ)tη(x̄, ȳ) ≥ 0 .(3.3)

As f is strongly invex of order m, it follows that ∇f is strongly invariant monotone
of order m

∇f(ȳ)tη(x̄, ȳ) +∇f(x̄)tη(ȳ, x̄) + c(∥ψ(x̄, ȳ)∥m + ∥ψ(ȳ, x̄)∥m) ≤ 0

which implies
∇f(ȳ)tη(x̄, ȳ) +∇f(x̄)tη(ȳ, x̄) ≤ 0 ,

which may further be written as

∇f(ȳ)tη(x̄, ȳ) ≤ −∇f(x̄)tη(ȳ, x̄) .
Using (3.3) we have

−∇f(x̄)tη(ȳ, x̄) ≥ 0 .(3.4)

Combining (3.2) and (3.4), we have

∇f(x̄)tη(ȳ, x̄) = 0.

Proceeding on the similar lines, we have

∇f(ȳ)tη(x̄, ȳ) = 0. �
The following results establish simple characterizations for the set of higher order

strict minimizers, in terms of any one of its solution points.

Theorem 3.2. If f be strongly invex of order m and x̄ ∈ S̄, then S̄ = S′ = S′′,
where

S′ = {x ∈ S : ∇f(x)tη(x̄, x) = 0},
S′′ = {x ∈ S : ∇f(x)tη(x̄, x) ≥ 0}.

Proof. If x ∈ S̄, as x̄ ∈ S̄ then by Lemma 3.1, we have

∇f(x)tη(x̄, x) = 0 .

Hence, x ∈ S′. Thus, S̄ ⊆ S′. Conversely if x ∈ S′,then

∇f(x)tη(x̄, x) = 0.

As c > 0, it yields that

∇f(x)tη(x̄, x) + c∥ψ(x̄, x)∥m ≥ 0.

Using strong invexity of order m for f , we have

f(x̄) ≥ f(x).

By virtue of x̄ ∈ S̄, we have

f(x) ≥ f(x̄) + c∥ψ(x, x̄)∥m,
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f(x) ≥ f(x̄).

Therefore, f(x̄) = f(x). Hence, x ∈ S̄. Consequently, S′ = S̄. It is obvious that
S̄ ⊆ S′′. Further, assume that x ∈ S′′. Therefore,

∇f(x)tη(x̄, x) ≥ 0.

Again as c > 0, it follows that

∇f(x)tη(x̄, x) + c∥ψ(x̄, x)∥m ≥ 0.

Using the strong invexity of order m for f , we have

f(x̄) ≥ f(x).

From x̄ ∈ S̄ and above inequality, we have

f(x̄) = f(x).

Therefore, S′′ = S̄. �
Remark 3.3. It is worth noting that in the above theorem the set equivalence
S̄ = S′ implies that any feasible point x wherein the gradient of the objective is
orthogonal to η(x̄, x) is also a solution, here and otherwise we refer by solution as
the strict minimizer of order m for (P), whereas the second equality S̄ = S′′ allows
any feasible point x wherein the gradient of the objective makes an acute angle with
η(x̄, x) to be an entrant into the solution set.

Theorem 3.4. If f is strongly invex of order m and x̄ ∈ S̄, then S̄ = S′
1 = S′′

1 ,
where

S′
1 = {x ∈ S : ∇f(x̄)tη(x, x̄) = ∇f(x)tη(x̄, x)},
S′′
1 = {x ∈ S : ∇f(x̄)tη(x, x̄) ≤ ∇f(x)tη(x̄, x)}.

Proof. If x ∈ S̄, then from x̄ ∈ S̄ and Lemma 3.1, we have

∇f(x̄)tη(x, x̄) = ∇f(x)tη(x̄, x) = 0.

Hence, x ∈ S′
1. Therefore,

S̄ ⊆ S′
1 .(3.5)

It is obvious that

S′
1 ⊆ S′′

1 .(3.6)

Further, assume that x ∈ S′′
1 , then

∇f(x̄)tη(x, x̄) ≤ ∇f(x)tη(x̄, x) .
Since x̄ ∈ S̄, ∇f(x̄)tη(x, x̄) ≥ 0. Therefore, ∇f(x)tη(x̄, x) ≥ 0. As c > 0, we have

∇f(x)tη(x̄, x) + c∥ψ(x̄, x)∥m ≥ 0.

Using the strong invexity of order m for f , we have

f(x̄) ≥ f(x).

Thus, from x̄ ∈ S̄ and above inequality, it follows that f(x̄) = f(x). Hence, x ∈ S̄.
Consequently, S′′

1 ⊆ S̄. Further on combining this with (3.5) and (3.6) we conclude
that S̄ = S′

1 = S′′
1 . �
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Remark 3.5. Let d = ∇f(x)−∇f(x̄) and if η is skew, that is, η(x, x̄) = −η(x̄, x),
then the set equivalence S̄ = S′

1 in the above theorem enables any feasible point x
to be a solution if d is orthogonal to η(x̄, x), while the equality S̄ = S′′

1 ensures that
any feasible point x wherein d makes an acute angle with η(x̄, x) is a candidate for
solution.

Remark 3.6. It is important to observe that Lemma 3.1, Theorem 3.2 and Theorem
3.4 also hold if the function f is strongly pseudoinvex of order m.

Conclusions

In this paper, we characterize the set of strict minimizers of order m defined
with respect to a nonlinear function for a scalar optimization problem, when one
such solution is known. These characterizations endeavor to provide the decision
maker with an easy way to generate the entire solution set, in the sense of a strict
minimizer of order m for strong invex optimization problem. Subsequently, enable
the decision maker to choose the solution that suits him the most. However, in
view of the precondition for the existence of at least one solution, it would be
interesting to develop sufficient conditions for the well-posedness of the problem
under consideration, which will ensure that any suitable algorithm terminates with
a solution point.
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