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a multi-valued mapping. Further, let F be a directed (by inclusion) family of finite-
dimensional linear subspaces of V meeting K, with V = ∪S∈FS and satisfying the
following conditions:

(i) for every S ∈ F and every compact convex set Y , with K ∩ S ⊆ Y ⊆ X ∩ S
and dim(Y )=dim(X ∩ S), one has ri(Y )\F (x) ̸= ∅ for all x ∈ Y \K and
x ̸∈ conv(ri(Y )\F (x)) for all x ∈ Y ;

(ii) for every S ∈ F and every y ∈ (X−X)∩S, the set {x ∈ X∩S : y ∈ x−F (x)}
is closed in X ∩ S;

(iii) for each x ∈ X ∩ V such that (ri(X)∩V )\F (x) ̸= ∅, there exist y0 ∈ ri(X),
with x− y0 ∈ V and a neighborhood U of x such that z − x+ y0 ̸∈ F (z) for
all z ∈ U ∩K ∩ V .

Then, there exists x̄ ∈ K such that ri(X) ∩ V ⊆ F (x̄).

Di Bella [6] also pointed out that the inclusion problem includes the variational
inequality problem as a special case. In fact, the equilibrium problem also can be
regarded as a special case of the above inclusion problem by defining F : X → 2X

by
F (x) = {y ∈ X : f(x, y) ≥ 0}, ∀x ∈ X.

Very recently, Fang and Huang [8] generalized the above inclusion problem to the
following extended inclusion problem (for short, EIP), which is formulated to find
x̄ ∈ X such that

(EIP) X ⊆ F (x̄, x̄),

where X is a nonempty closed convex subset of a real Banach space E, and F :
X × X → 2E is a multi-valued mapping. By using the auxiliary technique and
the well-known Kakutani-Fan-Glicksberg fixed point theorem, Fang and Huang [8]
established an existence result for (EIP):

Theorem 1.2 ([8, Theorem 2.3]). Let X be a nonempty, bounded, closed and convex
subset of a real reflexive Banach space E and F : X × X → 2E be a multi-valued
mapping. Assume that the following conditions hold:

(i) x ∈ F (y, x) for all x, y ∈ X;
(ii) for each z ∈ X and each finite dimensional subspace D of E with XD =

X ∩D ̸= ∅, the multi-valued mapping F c(z, ·) : XD → 2E is lower semicon-
tinuous with convex values;

(iii) for each z ∈ X and each finite dimensional subspace D of E with XD ̸= ∅,
the set {x ∈ XD : XD ⊆ F (z, x)} is convex and closed;

(iv) if (xα, zα) ∈ X × X, (xα, zα) converges to (x, z) ∈ X × X weakly, and
X ⊆ F (zα, xα) for all α, then X ⊆ F (z, x).

Then there exists x̄ ∈ X such that X ⊆ F (x̄, x̄).

In 2004, Tan [38] introduced and studied a class of quasivariational inclusion prob-
lems and showed some existence of solutions under suitable conditions. In 2007, Lin,
Ansari and Huang [28] considered three types of generalized vector quasi-equilibrium
problems (GVQEP)(I), (GVQEP)(II) and (GVQEP)(III), which includes many
known vector quasi-equilibrium problems and generalized quasi-variational inequal-
ity problems as special cases. They proved some existence results for solutions of
these problems under some suitable monotonicity conditions. Some more general
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existence results concerning inclusion problems have been established by different
methods (see, for example, [18, 26,29–32,37] and the references therein).

The main objective of this paper is to present some further findings concern-
ing some recent works mentioned above in the area of generalized quasivariational
inclusion problems.

Let X,Y be nonempty subsets of Hausdorff topological vector spaces E,Z, re-
spectively. Let S : X → 2X , T : X → 2Y and F : X × Y ×X → 2E be multi-valued
mappings. We consider the following generalized quasi-variational inclusion prob-
lems (for short, GQVIP): find x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(GQVIP) S(x̄) ⊆ F (x̄, ȳ, x̄).

It is worth mentioning that the problem (GQVIP) considered in this paper
is different from the generalized vector quasi-equilibrium problems (GVQEP)(I),
(GVQEP)(II) and (GVQEP)(III) consider in Lin, Ansari and Huang [28]. We would
like to point out that the method used in this paper is quite different from the one
used in [28]. In fact, we use the FKKM theorem and fixed point theorem, while
Lin, Ansari and Huang [28] employed maximal element theorem. In addition, no
any monotonicity condition is assumed in this paper.

Some special cases of (GQVIP):
(I) If E and Z are real Banach spaces and E = Z,X = Y , T = I (identity

mapping) and S(x) = X, F (x, y, u) = F (x, u) for all x, u ∈ X and y ∈ Y , then
(GQVIP) reduces to (EIP) of Fang and Huang [8].

(II) If E = Z,X = Y , T = I and S(x) = X, F (x, y, u) = F (u) for any x, u ∈ X
and y ∈ Y , then (GQVIP) reduces to (IP) of Di Bella [6].

By using the famous FKKM theorem and the Kakutani-Fan-Glicksberg fixed
point theorem, we show the existence of solutions and the compactness of the solu-
tion sets for (GQVIP) under suitable assumptions. As applications, we give some
existence results for the generalized upper quasivariational inclusion problem and
the quasioptimization problem in Hausdorff topological vector spaces.

2. Preliminaries

In this section, we shall recall some definitions and lemmas used in the sequel.

Definition 2.1 ( [2]). Let X and Y be two topological spaces. A multi-valued
mapping T : X → 2Y is said to be

(i) upper semi-continuous (for short, u.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ⊆ V , there exists an open neighborhood U(x) of x such that
T (x′) ⊆ V for all x′ ∈ U(x);

(ii) lower semi-continuous (for short, l.s.c.) at x ∈ X if, for each open set V in
Y with T (x) ∩ V ̸= ∅, there exists an open neighborhood U(x) of x such
that T (x′) ∩ V ̸= ∅ for all x′ ∈ U(x);

(iii) u.s.c. (resp. l.s.c.) on X if it is u.s.c. (resp. l.s.c.) at every point x ∈ X;
(iv) continuous on X if it is both u.s.c. and l.s.c. on X;
(v) closed if the graph of T is closed, i.e., the set Gr(T ) = {(x, y) ∈ X×Y : y ∈

T (x)} is closed in X × Y .
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Lemma 2.2 ([2]). Let X and Y be two topological spaces, F : X → 2Y a multi-
valued mapping.

(i) If F is u.s.c. and closed-valued, then F is closed;
(ii) If F is closed and Y is compact, then F is u.s.c.;
(iii) If F is compact-valued, then F is u.s.c. at x ∈ X if and only if for any net

{xα} ⊆ X with xα → x and for any net {yα} ⊆ Y with yα ∈ F (xα) for all
α, there exist y ∈ F (x) and a subnet {yβ} of {yα} such that yβ → y;

(iv) F is l.s.c. at x ∈ X if and only if for any y ∈ F (x) and for any net {xα}
with xα → x, there is a net {yα} such that yα ∈ F (xα) for all α and yα → y.

Definition 2.3 ( [35, 38]). Let E and Z be Hausdorff topological vector spaces,
X ⊆ E a nonempty convex subset and C ⊆ Z a cone. A multi-valued mapping
F : X → 2Z is said be

(i) upper [ lower ] C-continuous at x ∈ X if, for any neighborhood V of the
origin in Z, there exists a neighborhood U of x such that, for every y ∈ U∩X,
F (y) ⊆ F (x) + V + C [F (x) ⊆ F (y) + V − C];

(ii) upper [ lower ] C-continuous on X if F is upper [ lower ] C-continuous at
every point of X;

(iii) upper properly C-quasiconvex on X if, for any x, y ∈ X, λ ∈ [0, 1],
either F (x) ⊆ F (λx+ (1− λ)y) + C;
or F (y) ⊆ F (λx+ (1− λ)y) + C.

(iv) lower properly C-quasiconvex on X if, for any x, y ∈ X, λ ∈ [0, 1],
either F (λx+ (1− λ)y) ⊆ F (x)− C;
or F (λx+ (1− λ)y) ⊆ F (y)− C.

Remark 2.4. (i) By induction, it is easy to prove that F is upper [ lower ] properly
C-quasiconvex on X if and only if for any finite subset {x1, x2, . . . , xn} ⊆ X and
for any x ∈ co{x1, x2, . . . , xn} (where co(A) denotes the convex hull of A), there
exists some i ∈ {1, 2, . . . , n} such that F (xi) ⊆ F (x) + C [ F (x) ⊆ F (xi) − C ];
(ii) The above upper [ lower ] proper C-quasiconvexity for multi-valued mapping
is a generalization of proper C-quasiconvexity for single-valued mappings in [10].
The concept of C-quasiconvexity plays an important role in the study of minimax
theorems, equilibrium problems and some related problems (see, for example, [10,
11,15,16] and the references therein).

Definition 2.5. Let E1, E2 and Z be Hausdorff topological vector spaces, X ⊆ E1

and Y ⊆ E2 be nonempty subsets. Let C : X ×Y → 2Z be a multi-valued mapping
such that, for any (x, y) ∈ X×Y , C(x, y) is a cone with apex at the origin of Z. Let
F : X×Y ×X → 2Z be a multi-valued mapping. For any fixed (x, y) ∈ X×Y , F is
called upper [ lower ] C(x, y)-continuous if, for any z ∈ X and any neighborhood V
of the origin in Z, there exist neighborhoods Ux, Uy and Uz of x, y and z, respectively,
such that

F (x̃, ỹ, z̃) ⊆ F (x, y, z) + V + C(x, y), ∀ (x̃, ỹ, z̃) ∈ (Ux ∩X)×(Uy ∩ Y )×(Uz ∩X).

[F (x, y, z) ⊆ F (x̃, ỹ, z̃) + V − C(x, y), ∀ (x̃, ỹ, z̃) ∈ (Ux ∩X)×(Uy ∩ Y )×(Uz ∩X).]

Definition 2.6 ([7]). Let X be a nonempty subset of a vector space E. A multi-
valued mapping G : X → 2E is said be a KKM mapping if, for any finite subset
{x1, x2, . . . , xn} ⊆ X, one has co{x1, x2, . . . , xn} ⊆ ∪n

i=1G(xi).
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The following lemmas are very important to establish our main results.

Lemma 2.7 ([7, FKKM Theorem]). Let X be a nonempty subset of a Hausdorff
topological vector space E, and G : X → 2E a KKM mapping. If for any x ∈ X,
G(x) is closed and for at least one point x ∈ X, G(x) is compact, then ∩x∈XG(x) ̸=
∅.

Lemma 2.8 ( [19, Kakutani-Fan-Glicksberg Fixed Point Theorem]). Let X be a
nonempty compact convex subset of a locally convex Hausdorff topological vector
space E. If S : X → 2X is u.s.c. with nonempty closed convex values, then there
exists an x̄ ∈ X such that x̄ ∈ S(x̄).

3. Main results

In this section, we shall present some existence theorems of solution for (GQVIP)
under suitable assumptions by using the famous FKKM theorem and the Kakutani-
Fan-Glicksberg fixed point theorem.

Theorem 3.1. Let E and Z be locally convex Hausdorff topological vector spaces,
X ⊆ E and Y ⊆ Z be nonempty compact convex subsets. Let S : X → 2X and
T : X → 2Y be u.s.c. with nonempty closed convex values. Let F : X×Y ×X → 2E

be a multi-valued mapping satisfying the following conditions:

(i) for any x ∈ X, y ∈ Y , and for any finite subset {u1, u2, . . . , un} ⊆ X and
any u ∈ co{u1, u2, . . . , un}, there exists some i, such that ui ∈ F (x, y, u);

(ii) for any x ∈ X, y ∈ Y , and for any v ∈ S(x), the set {u ∈ X : v ∈ F (x, y, u)}
is closed in X;

(iii) for any x ∈ X, y ∈ Y , the set {u ∈ X : S(x) ⊆ F (x, y, u)} is empty or
convex;

(iv) if (xα, yα, uα) ∈ X×Y ×X, (xα, yα, uα) converges to (x, y, u) ∈ X×Y ×X,
and S(xα) ⊆ F (xα, yα, uα) for all α, then S(x) ⊆ F (x, y, u).

Then (GQVIP) is solvable, i.e., there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄)
and S(x̄) ⊆ F (x̄, ȳ, x̄). Moreover, the solution set of (GQVIP) is a compact subset
of X.

Proof. Define a multi-valued mapping A : X × Y → 2X by

A(x, y) = {u ∈ S(x) : S(x) ⊆ F (x, y, u)}, ∀ (x, y) ∈ X × Y.

The proof is divided into the following steps.
(I) For any (x, y) ∈ X × Y , A(x, y) is nonempty and closed.
Indeed, for every v ∈ S(x), let

G(v) = {u ∈ S(x) : v ∈ F (x, y, u)}.
By assumption (i), we have v ∈ G(v) and so G(v) ̸= ∅. Note that G(v) = S(x)∩{u ∈
X : v ∈ F (x, y, u)}. Then, by assumption (ii), it is easy to see that G(v) is closed.
Further, by noting that X is compact, we get that G(v) is compact. Now we
shall show that G is a KKM mapping. Suppose that it is not the case, then there
exist u1, u2, . . . , un ∈ S(x) and λi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 λi = 1 such that

u =
∑n

i=1 λiui ̸∈ ∪n
i=1G(ui). Since S(x) is convex, we know that u ∈ S(x) and so

ui ̸∈ F (x, y, u), i = 1, 2, . . . , n,
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which contradicts assumption (i). Thus, G is a KKM mapping and it follows from
Lemma 2.7 that ∩v∈S(x)G(v) ̸= ∅. Note that A(x, y) = ∩v∈S(x)G(v). We have
A(x, y) ̸= ∅. Moreover, it is easy to see that A(x, y) is closed.

(II) For any (x, y) ∈ X × Y , A(x, y) is convex.
In fact, let u1, u2 ∈ A(x, y), λ ∈ [0, 1], uλ = λu1 + (1− λ)u2. Since u1, u2 ∈ S(x)

and S(x) is convex, we have uλ ∈ S(x). In addition,

S(x) ⊆ F (x, y, ui), i = 1, 2

and so ui ∈ {u ∈ X : S(x) ⊆ F (x, y, u)} for i = 1, 2. It follows from assumption
(iii) that uλ ∈ {u ∈ X : S(x) ⊆ F (x, y, u)}, i.e.,

S(x) ⊆ F (x, y, uλ).

Hence uλ ∈ A(x, y) and so A(x, y) is convex.
(III) A is u.s.c..
Since A : X × Y → 2X and X is compact, by Lemma 2.2(ii), we need only to

show that A is closed. Let {(xα, yα, uα)} ⊆ Gr(A) be an arbitrary net such that
(xα, yα, uα) → (x, y, u). We shall show that (x, y, u) ∈ Gr(A), i.e., u ∈ A(x, y).
Since S is u.s.c. and closed-valued, it follows from Lemma 2.2(i) that S is closed.
Moreover, for each α, uα ∈ S(xα). Thus, we have u ∈ S(x). In addition,

S(xα) ⊆ F (xα, yα, uα), for all α.

It follows from assumption (iv) that S(x) ⊆ F (x, y, u). Thus u ∈ A(x, y), and so A
is closed.

(IV) Define a multi-valued mapping M : X × Y → 2X×Y as follows:

M(x, y) = (A(x, y), T (x)), ∀ (x, y) ∈ X × Y.

Then, for every (x, y) ∈ X×Y , M(x, y) is a nonempty closed convex subset ofX×Y ,
and M is u.s.c. on X × Y . By Lemma 2.8, there exists a point (x̄, ȳ) ∈ X × Y such
that (x̄, ȳ) ∈ M(x̄, ȳ). Thus, x̄ ∈ S(x̄), ȳ ∈ T (x̄) and S(x̄) ⊆ F (x̄, ȳ, x̄). As a result
x̄ is a solution of (GQVIP).

(V) The solution set V of (GQVIP) is a compact subset of X.
Indeed, by noting that X is compact and V ⊆ X, we need only to show that V

is closed in X. Let {xα} ⊆ V be an arbitrary net such that xα → x ∈ X. Then, for
every α, xα ∈ S(xα) and there exists yα ∈ T (xα) such that

S(xα) ⊆ F (xα, yα, xα).

Since S is u.s.c. and closed-valued, it follows from Lemma 2.2(i) that S is closed.
Thus, we have x ∈ S(x). Since Y is compact and T is u.s.c. with closed values, it
follows from Lemma 2.2(iii) that there exist y ∈ T (x) and a subnet {yβ} of {yα}
such that yβ → y. So (xβ, yβ, xβ) → (x, y, x). Note that S(xβ) ⊆ F (xβ, yβ, xβ) for
all β. It follows from assumption (iv) that

S(x) ⊆ F (x, y, x).

Thus x ∈ V , and so V is closed. This completes the proof. �

Now we give the following example to illustrate Theorem 3.1.
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Example 3.2. Let E = Z = R and X = Y = [0, 1]. Let S : X → 2X , T : X → 2Y

and F : X × Y ×X → 2E be defined, respectively, by S(x) = [x, 1], T (x) = [0, x]
and F (x, y, u) = [u− y− 1, u+ x] for all x, u ∈ X, y ∈ Y . Then, S and T are u.s.c.
with nonempty closed convex values. Moreover,

(i) for any x ∈ X, y ∈ Y , and for any finite subset {u1, u2, . . . , un} ⊆ X and any
u ∈ co{u1, u2, . . . , un}, there exists some i such that ui ≤ u, and thus ui ≤ u+x. In
addition, since ui ∈ X, we have ui ≥ 0. Note that y ≥ 0 and u ≤ 1. It follows that
u− y− 1 ≤ u− 1 ≤ 0. So ui ≥ u− y− 1. Hence, ui ∈ [u− y− 1, u+x] = F (x, y, u).

(ii) for any x ∈ X, y ∈ Y , and for any v ∈ S(x) = [x, 1], the set M = {u ∈ X :
v ∈ F (x, y, u)} is closed in X. Indeed, for any u ∈ X, u− y− 1 ≤ u− 1 ≤ 0. Then,
by noting that v ≥ x ≥ 0, we have

M = {u ∈ X : v ∈ F (x, y, u)}
= {u ∈ [0, 1] : v ∈ [u− y − 1, u+ x]}
= {u ∈ [0, 1] : v ≤ u+ x}
= {u ∈ [0, 1] : u ≥ v − x}
= [v − x, 1].

Thus, M is closed in X.
(iii) for any x ∈ X, y ∈ Y , the set N = {u ∈ X : S(x) ⊆ F (x, y, u)} is convex. In

fact, for any u ∈ X = [0, 1], u− y − 1 ≤ u− 1 ≤ 0. Then, we have

N = {u ∈ X : S(x) ⊆ F (x, y, u)}
= {u ∈ [0, 1] : [x, 1] ⊆ [u− y − 1, u+ x]}
= {u ∈ [0, 1] : u+ x ≥ 1}
= {u ∈ [0, 1] : u ≥ 1− x}
= [1− x, 1].

Thus, N is convex.
(iv) if (xα, yα, uα) ∈ X×Y ×X, (xα, yα, uα) → (x, y, u) ∈ X×Y ×X, and S(xα) ⊆

F (xα, yα, uα), then S(x) ⊆ F (x, y, u). Indeed, for each α, S(xα) ⊆ F (xα, yα, uα),
i.e., [xα, 1] ⊆ [uα − yα − 1, uα + xα]. It follows that uα + xα ≥ 1. Since (xα, uα) →
(x, u), we have

u+ x = lim
α
(uα + xα) ≥ 1.

By noting that y ≥ 0 and u ≤ 1, we have u − y − 1 ≤ u − 1 ≤ 0. Thus, [x, 1] ⊆
[0, 1] ⊆ [u− y − 1, u+ x], i.e., S(x) ⊆ F (x, y, u).

Thus, all the conditions of Theorem 3.1 are satisfied and so Theorem 3.1 implies
that there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and S(x̄) ⊆ F (x̄, ȳ, x̄).
Indeed, we can see that x̄ = ȳ = 1, the solution set V = [12 , 1], which is a compact
subset of X.

Corollary 3.3. Let E,Z,X, Y, S, T and F be as in Theorem 3.1. Assume that the
conditions (i) and (iii) of Theorem 3.1, and the following condition hold:

(ii)′ S is l.s.c. and F is u.s.c. with nonempty closed values.

Then (GQVIP) is solvable. Moreover, the solution set of (GQVIP) is a compact
subset of X.

Proof. We need only to show that the conditions (ii) and (iv) of Theorem 3.1 hold.
For any x ∈ X, y ∈ Y , and for any v ∈ S(x), let M = {u ∈ X : v ∈ F (x, y, u)}.
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We shall show that M is closed in X. Let {uα} ⊆ M be an arbitrary net such that
uα → u ∈ X. Then, we have

v ∈ F (x, y, uα), for all α.

Since F is u.s.c. with nonempty closed values, it follows from Lemma 2.2(i) that
F is closed. Thus, we have v ∈ F (x, y, u), i.e., u ∈ M , and so M is closed in X.
Therefore, the condition (ii) of Theorem 3.1 holds.

Now we shall show that the condition (iv) of Theorem 3.1 also holds. Let
(xα, yα, uα) ∈ X × Y × X, (xα, yα, uα) → (x, y, u) ∈ X × Y × X, and S(xα) ⊆
F (xα, yα, uα) for all α. We need to show that S(x) ⊆ F (x, y, u). Indeed, for any
v ∈ S(x), since S is l.s.c., it follows from Lemma 2.2(iv) that there exists a net {vα}
such that vα ∈ S(xα) for all α and vα → v. Noting that S(xα) ⊆ F (xα, yα, uα) for
all α, we have

vα ∈ F (xα, yα, uα), for all α.

Since F is closed, we get v ∈ F (x, y, u). Since v is arbitrary, we have S(x) ⊆
F (x, y, u). Thus the condition (iv) of Theorem 3.1 holds. This completes the
proof. �

From Theorem 3.1, we can obtain the following result.

Theorem 3.4. Let E,X and S be as in Theorem 3.1. Let F : X ×X → 2E be a
multi-valued mapping satisfying the following conditions:

(i) for any x ∈ X, and for any finite subset {u1, u2, . . . , un} ⊆ X and any
u ∈ co{u1, u2, . . . , un}, there exists some i, such that ui ∈ F (x, u);

(ii) for any x ∈ X, and for any v ∈ S(x), the set {u ∈ X : v ∈ F (x, u)} is closed
in X;

(iii) for any x ∈ X, the set {u ∈ X : S(x) ⊆ F (x, u)} is empty or convex;
(iv) if (xα, uα) ∈ X × X, (xα, uα) converges to (x, u) ∈ X × X, and S(xα) ⊆

F (xα, uα) for all α, then S(x) ⊆ F (x, u).

Then, there exists x̄ ∈ X such that x̄ ∈ S(x̄) and S(x̄) ⊆ F (x̄, x̄). Moreover, the
solution set is a compact subset of X.

Proof. In Theorem 3.1, let Z = E, Y = X, T = I(identity mapping) and

F (x, y, u) = F (x, u), for all (x, y, u) ∈ X × Y ×X.

Then, it is easy to see that all the conditions of Theorem 3.1 are satisfied and so
Theorem 3.1 yields the conclusion. This completes the proof. �
Remark 3.5. If S is l.s.c. and F is u.s.c. with nonempty closed values, then the
conditions (ii) and (iv) of Theorem 3.4 hold.

In Theorem 3.4, let S(x) ≡ X for all x ∈ X, then we have the following existence
result for (EIP).

Corollary 3.6. Let E and X be as in Theorem 3.1. Let F : X × X → 2E be a
multi-valued mapping satisfying the following conditions:

(i) for any x ∈ X, and for any finite subset {u1, u2, . . . , un} ⊆ X and any
u ∈ co{u1, u2, . . . , un}, there exists some i, such that ui ∈ F (x, u);

(ii) for any x, v ∈ X, the set {u ∈ X : v ∈ F (x, u)} is closed in X;
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(iii) for any x ∈ X, the set {u ∈ X : X ⊆ F (x, u)} is empty or convex;
(iv) if (xα, uα) ∈ X × X, (xα, uα) converges to (x, u) ∈ X × X, and X ⊆

F (xα, uα) for all α, then X ⊆ F (x, u).

Then (EIP) is solvable, i.e., there exists x̄ ∈ X such that X ⊆ F (x̄, x̄). Moreover,
the solution set of (EIP) is a compact subset of X.

Remark 3.7. The extended inclusion problem (EIP) was studied by Fang and
Huang [8]. We would like to point out that Corollary 3.6 is quite different from
Theorem 2.3 of Fang and Huang [8]. In fact, in Corollary 3.6, the existence of so-
lution for (EIP) is obtained in a locally convex Hausdorff topological vector space,
while in Theorem 2.3 of [8], it was obtained in a real reflexive Banach space. Fur-
thermore, Corollary 3.6 shows both the existence of solution and the compactness
of the solution set, while Theorem 2.3 of [8] only showed the existence of solution.

Example 3.8. Let E = R,X = [0, 1] and F : X ×X → 2E be defined as follows:

F (x, u) = [u− 1, u+ x], ∀ (x, u) ∈ X ×X.

We choose x∗ = u∗ = 1 ∈ X. Then

FC(x∗, u∗) = FC(1, 1) = R\F (1, 1) = R\[0, 2] = (−∞, 0) ∪ (2,+∞).

Obviously, FC(1, 1) is not convex and so the condition (ii) of Theorem 2.3 of Fang
and Huang [8] does not hold. Thus, we can not use Theorem 2.3 of Fang and
Huang [8] to show the solvability of (EIP). However, it is easy to check that all the
conditions of Corollary 3.6 are satisfied and it follows from Corollary 3.6 that (EIP)
is solvable. Indeed, we can see that x̄ = 1 is a solution of (EIP). Furthermore, the
solution set V = [12 , 1] is a compact subset of X.

From Theorem 3.4, we can obtain the following result.

Theorem 3.9. Let E,X and S be as in Theorem 3.1. Let F : X → 2E be a
multi-valued mapping satisfying the following conditions:

(i) for any finite subset {u1, u2, . . . , un} ⊆ X, and for any u ∈ co{u1, u2, . . . , un},
there exists some i, such that ui ∈ F (u);

(ii) for any x ∈ X, and for any v ∈ S(x), the set {u ∈ X : v ∈ F (u)} is closed
in X;

(iii) for any x ∈ X, the set {u ∈ X : S(x) ⊆ F (u)} is empty or convex;
(iv) if (xα, uα) ∈ X × X, (xα, uα) converges to (x, u) ∈ X × X, and S(xα) ⊆

F (uα) for all α, then S(x) ⊆ F (u).

Then, there exists x̄ ∈ X such that x̄ ∈ S(x̄) and S(x̄) ⊆ F (x̄). Moreover, the
solution set is a compact subset of X.

Proof. In Theorem 3.4, let F (x, u) = F (u) for all x, u ∈ X. Then it is easy to check
that all the conditions of Theorem 3.4 are satisfied and so Theorem 3.4 yields the
conclusion. This completes the proof. �
Remark 3.10. If S is l.s.c. and F is u.s.c. with nonempty closed values, then the
conditions (ii) and (iv) of Theorem 3.9 hold.

Now, we consider the problem of (IP). In order to make the conditions brief, we
can invoke the FKKM theorem rather than Theorem 3.9 to obtain the existence
result of solution for (IP).
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Theorem 3.11. Let E be a Hausdorff topological vector space, X ⊆ E a nonempty
compact convex subset. Let F : X → 2E be a multi-valued mapping satisfying the
following conditions:

(i) for any v ∈ X, the set {u ∈ X : v ∈ F (u)} is closed in X;
(ii) for any finite subset {u1, u2, . . . , un} ⊆ X, and for any u ∈ co{u1, u2, . . . , un},

there exists some i, such that ui ∈ F (u).

Then (IP) is solvable, i.e., there exists x̄ ∈ X such that X ⊆ F (x̄). Moreover, the
solution set of (IP) is a compact subset of X.

Proof. Define a multi-valued mapping G : X → 2X as follows:

G(v) = {u ∈ X : v ∈ F (u)}, ∀ v ∈ X.

Then, it follows from assumption (i) that for any v ∈ X, G(v) is closed in X. Since
X is compact, G(v) is compact for all v ∈ X.

Now we shall show that G is a KKM mapping. Suppose that it is not the case,
then there exist u1, u2, . . . , un ∈ X and λi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 λi = 1

such that u =
∑n

i=1 λiui ̸∈ ∪n
i=1G(ui). Since X is convex, we know that u ∈ X and

so

ui ̸∈ F (u), i = 1, 2, . . . , n,

which contradicts assumption (ii). Thus G is a KKM mapping. It follows from
Lemma 2.7 that ∩v∈XG(v) ̸= ∅. Let x̄ ∈ ∩v∈XG(v). Then, for any v ∈ X, we have
v ∈ F (x̄). Thus X ⊆ F (x̄) and so x̄ is a solution of (IP). Denote by V the solution
set of (IP). Then, we have

V = {u ∈ X : X ⊆ F (u)}
= {u ∈ X : v ∈ F (u), ∀ v ∈ X}
= ∩v∈X{u ∈ X : v ∈ F (u)}.

By assumption (i), for any v ∈ X, the set {u ∈ X : v ∈ F (u)} is closed in X, and
so V is closed in X. Note that X is compact. Thus V is compact. This completes
the proof. �

Remark 3.12. If F is u.s.c. with nonempty closed values, then the condition (i)
of Theorem 3.11 holds.

Remark 3.13. The inclusion problem (IP) was studied by Di Bella [6]. However,
Theorem 3.11 is quite different from Theorem 1 of Di Bella [6] in the following
aspects:

(a) The assumptions of Theorem 3.11 are much more simple than that of The-
orem 1 in Di Bella [6];

(b) Theorem 3.11 shows both the existence of solution and the compactness of
the solution set, while Theorem 1 of Di Bella [6] only showed the existence
of solution;

(c) The method of proof is different. In fact, Theorem 3.11 is proved by using
the famous FKKM Theorem, while Theorem 1 of Di Bella [6] was proved by
using the Michael continuous selection theorem and the well-known Brouwer
fixed point theorem.
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At the end of this section, we give the following example to illustrate Theorem
3.11.

Example 3.14. Let E = R, X = [0, 1] and F : X → 2E be defined by F (x) = [0, x]
for all x ∈ X. Then, by simple computation, it is easy to see that all the conditions
of Theorem 3.11 are satisfied and so Theorem 3.11 shows that there exists x̄ ∈ X
such that X ⊆ F (x̄). Indeed, we can see that x̄ = 1 is a solution. Moreover, the
solution set V = {1} is a compact subset of X.

4. Applications

In this section, we shall apply Theorem 3.1 to present some existence results for
generalized upper quasivariational inclusion problem and quasioptimization prob-
lem.

Theorem 4.1. Let E1 and E2 be locally convex Hausdorff topological vector spaces,
X ⊆ E1 and Y ⊆ E2 be nonempty compact convex subsets. Let Z be a Hausdorff
topological vector space. Suppose that

(i) S : X → 2X is a continuous multi-valued mapping such that, for any x ∈ X,
S(x) is a nonempty closed convex subset of X;

(ii) T : X → 2Y is an upper semicontinuous multi-valued mapping such that,
for any x ∈ X, T (x) is a nonempty closed convex subset of Y ;

(iii) C : X × Y → 2Z is an upper semicontinuous multi-valued mapping such
that, for any (x, y) ∈ X ×Y , C(x, y) is a nonempty closed convex cone with
apex at the origin of Z;

(iv) F : X × Y × X → 2Z is upper C(x, y)-continuous and lower −C(x, y)-
continuous for each (x, y) ∈ X×Y such that, for any (x, y, u) ∈ X×Y ×X,
F (x, y, u) + C(x, y) is a closed set, and for any (x, y) ∈ X × Y , F (x, y, u)
is upper properly C(x, y)-quasiconvex in u ∈ X.

Then, the following generalized upper quasivariational inclusion problem (for short,
GUQVIP) is solvable, i.e., there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(GUQVIP) F (x̄, ȳ, x) ⊆ F (x̄, ȳ, x̄) + C(x̄, ȳ), ∀x ∈ S(x̄).

Moreover, the solution set of (GUQVIP) is a compact subset of X.

Proof. Define a multi-valued mapping G : X × Y ×X → 2X as follows:

G(x, y, u) = {v ∈ X : F (x, y, v) ⊆ F (x, y, u) + C(x, y)}, ∀ (x, y, u) ∈ X × Y ×X.

Then, it is sufficient to show that S, T and G satisfy all the conditions of Theorem
3.1.

(I) For any (x, y) ∈ X × Y , and for any finite subset {u1, u2, . . . , un} ⊆ X and
any u ∈ co{u1, u2, . . . , un}, since F (x, y, u) is upper properly C(x, y)-quasiconvex
in u ∈ X, there exists some i, such that

F (x, y, ui) ⊆ F (x, y, u) + C(x, y).

Thus ui ∈ G(x, y, u).
(II) For any (x, y) ∈ X ×Y , let M = {u ∈ X : S(x) ⊆ G(x, y, u)}. We shall show

that M is empty or convex. Let u1, u2 ∈ M , λ ∈ [0, 1], uλ = λu1 + (1− λ)u2. Since
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u1, u2 ∈ X and X is convex, we have uλ ∈ X. Noting that u1, u2 ∈ M , for any
v ∈ S(x), we have v ∈ G(x, y, ui) for i = 1, 2, i.e.,

F (x, y, v) ⊆ F (x, y, ui) + C(x, y), i = 1, 2.

Since F (x, y, u) is upper properly C(x, y)-quasiconvex in u ∈ X, there exists some
i0 ∈ {1, 2} such that

F (x, y, ui0) ⊆ F (x, y, uλ) + C(x, y).

Note that C(x, y) is a convex cone with apex at the origin of Z. Thus, we have

F (x, y, v) ⊆ F (x, y, ui0) + C(x, y)
⊆ F (x, y, uλ) + C(x, y) + C(x, y)
⊆ F (x, y, uλ) + C(x, y).

This implies that v ∈ G(x, y, uλ). Then, by the arbitrary of v, we have S(x) ⊆
G(x, y, uλ). It follows that uλ ∈ M and so M is convex.

(III) For any (x, y) ∈ X × Y , and for any v ∈ S(x), let N = {u ∈ X : v ∈
G(x, y, u)}. We shall show that N is closed in X. Let {uα} ⊆ N be an arbitrary
net such that uα → u. Since {uα} ⊆ X and X is closed, we have u ∈ X. In
addition, for each α, we have v ∈ G(x, y, uα), i.e.,

F (x, y, v) ⊆ F (x, y, uα) + C(x, y), ∀α.
For any neighborhood V of the origin in Z, since F is upper C(x, y)-continuous,
there exists a neighborhood U of u such that

F (x, y, ũ) ⊆ F (x, y, u) + V + C(x, y), ∀ ũ ∈ U ∩X.

Since uα → u, there exists α0 such that, for every α ≥ α0, uα ∈ U ∩X. Then, by
noting that C(x, y) is a convex cone with apex at the origin of Z, for any α ≥ α0,
we have

F (x, y, v) ⊆ F (x, y, uα) + C(x, y)

⊆ F (x, y, u) + V + C(x, y) + C(x, y)

⊆ F (x, y, u) + V + C(x, y).(4.1)

By the arbitrary of V , we can prove that F (x, y, v) ⊆ F (x, y, u) + C(x, y). Indeed,
suppose that it is not the case, then there exists some z ∈ F (x, y, v) such that
z ̸∈ F (x, y, u) + C(x, y). Since F (x, y, u) + C(x, y) is a closed set, there exists a
neighborhood V0 of the origin in Z such that

(4.2) (z + V0) ∩ (F (x, y, u) + C(x, y)) = ∅.
Note that Z is a topological vector space. There exists a balanced neighborhood V1

of the origin in Z such that V1 ⊆ V0. Then, by (4.2), we have

(z + V1) ∩ (F (x, y, u) + C(x, y)) = ∅.
Since V1 is balanced, we obtain that

(z − V1) ∩ (F (x, y, u) + C(x, y)) = ∅.
It follows that

0 ̸∈ (F (x, y, u) + C(x, y))− (z − V1) = −z + F (x, y, u) + V1 + C(x, y),



GENERALIZED QUASIVARIATIONAL INCLUSION PROBLEMS WITH APPLICATIONS 1273

i.e.,
z ̸∈ F (x, y, u) + V1 + C(x, y),

which contradicts (4.1). So F (x, y, v) ⊆ F (x, y, u) + C(x, y), i.e., v ∈ G(x, y, u). It
follows that u ∈ N and so N is closed.

(IV) Let (xα, yα, uα) ∈ X × Y ×X with (xα, yα, uα) converges to (x, y, u) ∈ X ×
Y ×X, and S(xα) ⊆ G(xα, yα, uα) for all α. We shall show that S(x) ⊆ G(x, y, u).
In fact, for any v ∈ S(x), since S is l.s.c., it follows from Lemma 2.2 (iv) that there
exists a net {vα} such that vα ∈ S(xα) for all α and vα → v. Then, we have

(4.3) F (xα, yα, vα) ⊆ F (xα, yα, uα) + C(xα, yα), ∀α.
For any neighborhood V of the origin in Z, since Z is a topological vector space,
there exists a balanced neighborhood V0 of the origin in Z such that V0+V0+V0 ⊆ V .
Moreover, since C is u.s.c. and F is upper C(x, y)-continuous and lower −C(x, y)-
continuous for each (x, y) ∈ X × Y , there exists α0 such that, for any α ≥ α0,

(4.4) C(xα, yα) ⊆ C(x, y) + V0;

(4.5) F (xα, yα, uα) ⊆ F (x, y, u) + V0 + C(x, y);

and

(4.6) F (x, y, v) ⊆ F (xα, yα, vα) + V0 + C(x, y).

Noting that C(x, y) is a convex cone with apex at the origin of Z, for any α ≥ α0,
by (4.6),(4.3),(4.5) and (4.4), we have

F (x, y, v) ⊆ F (xα, yα, vα) + V0 + C(x, y)
⊆ F (xα, yα, uα) + C(xα, yα) + V0 + C(x, y)
⊆ F (x, y, u) + V0 + C(x, y) + C(xα, yα) + V0 + C(x, y)
⊆ F (x, y, u) + V0 + C(x, y) + V0 + C(x, y) + V0 + C(x, y)
= F (x, y, u) + C(x, y) + C(x, y) + C(x, y) + V0 + V0 + V0

⊆ F (x, y, u) + C(x, y) + V.

i.e., F (x, y, v) ⊆ F (x, y, u) + C(x, y) + V . Since V is arbitrary, we obtain

F (x, y, v) ⊆ F (x, y, u) + C(x, y)

and so v ∈ G(x, y, u). Since v is arbitrary, we know that S(x) ⊆ G(x, y, u).
Thus, all the conditions of Theorem 3.1 are satisfied and it follows from Theorem

3.1 that there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

S(x̄) ⊆ G(x̄, ȳ, x̄),

i.e.,
F (x̄, ȳ, x) ⊆ F (x̄, ȳ, x̄) + C(x̄, ȳ), ∀x ∈ S(x̄).

Moreover, the solution set of (GUQVIP) is a compact subset of X. This completes
the proof. �

In Theorem 4.1, if for any (x, y) ∈ X × Y , C(x, y) ≡ C (C ⊆ Z is a nonempty
closed convex cone with apex at the origin of Z), then we have the following result.

Corollary 4.2. Let E1, E2, X and Y be as in Theorem 4.1. Let Z be a Hausdorff
topological vector space, C ⊆ Z a nonempty closed convex cone with apex at the
origin of Z. Suppose that
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(i) S : X → 2X is a continuous multi-valued mapping such that, for any x ∈ X,
S(x) is a nonempty closed convex subset of X;

(ii) T : X → 2Y is an upper semicontinuous multi-valued mapping such that,
for any x ∈ X, T (x) is a nonempty closed convex subset of Y ;

(iii) F : X ×Y ×X → 2Z is upper C-continuous and lower −C-continuous such
that, for any (x, y, u) ∈ X × Y ×X, F (x, y, u) + C is a closed set, and for
any (x, y) ∈ X × Y , F (x, y, u) is upper properly C-quasiconvex in u ∈ X.

Then, the following upper quasivariational inclusion problem (for short, UQVIP) is
solvable, i.e., there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(UQVIP) F (x̄, ȳ, x) ⊆ F (x̄, ȳ, x̄) + C, ∀x ∈ S(x̄).

Moreover, the solution set of (UQVIP) is a compact subset of X.

Remark 4.3. The upper quasivariational inclusion problem (UQVIP) was studied
by Lin and Shei [30], Lin and Tan [31], and Tan [38]. We note that Theorem 3.1 of
Tan [38] required the following assumption (A):

(A) the dual C∗ of the cone C has a weak∗ compact base.

However, Corollary 4.2 does not require assumption (A). It is well known that the
assumption (A) is equivalent to intC ̸= ∅, which can not be satisfied in many cases
(see, for example, [16, 25]). Furthermore, Corollary 4.2 shows both the existence
of solution and the compactness of the solution set, while Theorem 3.1 of Tan [38]
only showed the existence of solution. Therefore, Corollary 4.2 is quite different
from Theorem 3.1 of Tan [38].

Corollary 4.4. Let E1, E2, X, Y, Z and C be as in Corollary 4.2. Assume that the
conditions (i)-(iii) of Corollary 4.2 and the following condition hold:

(iv) for any (x, y) ∈ X × Y , F (x, y, x) ⊆ C.

Then, the following generalized strong vector quasiequilibrium problem (for short,
GSVQEP) is solvable, i.e., there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(GSVQEP) F (x̄, ȳ, x) ⊆ C, ∀x ∈ S(x̄).

Moreover, the solution set of (GSVQEP) is a compact subset of X.

Proof. By Corollary 4.2, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

F (x̄, ȳ, x) ⊆ F (x̄, ȳ, x̄) + C, ∀x ∈ S(x̄).

Noting that F (x̄, ȳ, x̄) ⊆ C and C is a convex cone with apex at the origin of Z, we
have

F (x̄, ȳ, x) ⊆ C + C ⊆ C, ∀x ∈ S(x̄).

Thus, x̄ is a solution of (GSVQEP).
Now we shall show that the solution set V of (GSVQEP) is a compact subset of

X. In fact, by noting that X is compact and V ⊆ X, we need only to show that V
is closed in X. Let {xα} ⊆ V be an arbitrary net such that xα → x ∈ X. Then, for
every α, we have xα ∈ S(xα) and there exists yα ∈ T (xα) such that

F (xα, yα, u) ⊆ C, ∀u ∈ S(xα).(4.7)
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Since S is u.s.c. and close-valued, it follows from Lemma 2.2(i) that S is closed.
Thus, we have x ∈ S(x). Since Y is compact and T is u.s.c. with closed values, it
follows from Lemma 2.2(iii) that there exist y ∈ T (x) and a subnet {yβ} of {yα}
such that yβ → y. So (xβ, yβ) → (x, y). For any u ∈ S(x), since S is l.s.c., it follows
from Lemma2.2(iv) that there exists a net {uβ} such that uβ ∈ S(xβ) for all β and
uβ → u. Thus (xβ, yβ, uβ) → (x, y, u). Moreover, by (4.7), we have

F (xβ, yβ, uβ) ⊆ C, ∀ β.

For any neighborhood U of the origin in Z, since F is lower −C-continuous, there
exists β0 such that, for any β ≥ β0,

F (x, y, u) ⊆ F (xβ, yβ, uβ) + U + C
⊆ C + U + C
⊆ C + U.

i.e., F (x, y, u) ⊆ C + U . Since U is arbitrary, we obtain that F (x, y, u) ⊆ C.
Therefore,

F (x, y, u) ⊆ C, ∀u ∈ S(x).

It follows that x ∈ V and so V is closed. This completes the proof. �

Now we consider the following quasioptimization problem (for short, QOP)(see,
for example, [17, 38]):

Find x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(QOP) F (x̄, ȳ, x̄) ∩Min{F (x̄, ȳ, S(x̄))/C} ̸= ∅,

where E1, E2 and Z are Hausdorff topological vector spaces, X ⊆ E1 and Y ⊆ E2

are nonempty subsets, C ⊆ Z is a cone, S : X → 2X , T : X → 2Y and F :
X × Y × X → 2Z are multi-valued mappings, and Min{A/C} denotes the set of
Pareto efficient points of the set A ⊆ Z with respect to the cone C.

As a consequence of Corollary 4.2, we can obtain the following sufficient condi-
tions for the solution existence of (QOP).

Corollary 4.5. Let E1, E2, X, Y, Z and C be as in Corollary 4.2. Assume that the
conditions (i)-(iii) of Corollary 4.2 and the following condition hold:

(iv) for any (x, y) ∈ X × Y , F (x, y, x) is a compact set of Z.

Then (QOP) is solvable.

Proof. By Corollary 4.2, there exist x̄ ∈ X and ȳ ∈ T (x̄) such that x̄ ∈ S(x̄) and

(4.8) F (x̄, ȳ, x) ⊆ F (x̄, ȳ, x̄) + C, ∀x ∈ S(x̄).

We claim that

(4.9) F (x̄, ȳ, x̄) ∩Min{F (x̄, ȳ, S(x̄))/C} ̸= ∅.

In fact, since F (x̄, ȳ, x̄) is a compact set, Min{F (x̄, ȳ, x̄)/C} ̸= ∅. Assume that

v̄ ∈ Min{F (x̄, ȳ, x̄)/C} but v̄ ̸∈ Min{F (x̄, ȳ, S(x̄))/C}.

It follows that there exist some x ∈ S(x̄) and v ∈ F (x̄, ȳ, x) such that

v̄ − v ∈ C\(C ∩ (−C)).
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By virtue of (4.8), we have v ∈ F (x̄, ȳ, x̄)+C, i.e., v = v∗+c for some v∗ ∈ F (x̄, ȳ, x̄)
and c ∈ C. It follows that

v̄ − v∗ = v̄ − v + v − v∗ ∈ C\(C ∩ (−C)) + C ⊆ C\(C ∩ (−C)),

which contradicts the fact that v̄ ∈ Min{F (x̄, ȳ, x̄)/C}. Therefore, (4.9) holds and
so (QOP) is solvable. This completes the proof. �
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