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solution sets for a parametric generalized vector equilibrium problem without the
uniform compactness assumption and improved the results of [14,17]. Under a key
assumption, Peng and Yang [27] obtained the lower semicontinuity of the solution
maps for two classes of weak parametric generalized vector equilibrium problems
when the f -solution set is a general set by removing the assumption of C-strict
monotonicity.

Recently, there are some stability results for the vector optimization and vector
variational inequality with a sequence of sets converging in the sense of Painlevé-
Kuratowski, e.g., [10, 11, 21, 24, 25]. Huang [21] discussed the convergence of the
approximate efficient sets to the efficient set of vector-valued and set-valued opti-
mization problems in the sense of Painlevé-Kuratowski and Mosco. Lucchetti and
Miglierina [25] investigated the Painlevé-Kuratowski set convergence of the solution
sets of the perturbed problems both in the given space and its image space for a con-
vex vector optimization problem. Fang et al. [11] established Painlevé-Kuratowski
upper and lower convergences of the solution sets of the perturbed set-valued weak
variational inequality with a sequence of converging mappings in a Banach space.
Very recently, Fang and Li [10] obtained the Painlevé-Kuratowski convergence of
the efficient solution sets, the weak efficient solution sets and various proper effi-
cient solution sets for the perturbed generalized system with a sequence of mapping
converging.

In this paper, under new assumptions, which are weaker than the assumption of
C-strict monotonicity mapping, we obtain the Painlevé-Kuratowski convergence of
the weak efficient solution sets and global efficient solution sets for the perturbed
generalized system with a sequence of mappings converging in a real locally convex
Hausdorff topological vector space. These results improve the recent ones in the
literature [10]. Several examples are given for the illustration of our results.

2. Preliminaries

Throughout this paper, let X be a real Hausdorff topological vector space, Y be
a real locally convex Hausdorff topological vector space and Y ∗ be the topological
dual space of Y, Z be a topological space. Let C be a closed convex pointed cone
in Y with nonempty topological interior intC.

Let
C∗ := {f ∈ Y ∗ : f(y) ≥ 0, ∀y ∈ C}

be the dual cone of C. Denote the quasi-interior of C∗ by C♯, i.e.,

C♯ := {f ∈ Y ∗ : f(y) > 0, ∀y ∈ C \ {0}}.
It is easy to see that C♯ ̸= ∅ if and only if C has a base.

Let A be a nonempty subset of X and F : A × A → Y be a bifunction. We
consider the following generalized system

(GS) Find x ∈ A such that F (x, y) ̸∈ −K, ∀y ∈ A,

where K ∪ {0} is a convex cone in Y .
For a sequence of bifunctions Fn : A×A → Y, n = 1, 2, . . . , we define a sequence

of generalized system

(GS)n Find xn ∈ A such that Fn(xn, y) ̸∈ −K, ∀y ∈ A,
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where K ∪ {0} is a convex cone in Y .
For each f ∈ C∗ \ {0}, let Vf and V n

f denote the set of f -efficient solutions to the

(GS) and (GS)n, i.e.,

Vf ={x ∈ A : f(F (x, y)) ≥ 0, ∀y ∈ A},

V n
f ={xn ∈ A : f(Fn(xn, y)) ≥ 0, ∀y ∈ A}.

A vector x ∈ A is called a global efficient solution to (GS)n if there exists a point
convex cone H ⊂ Y, with C \ {0} ⊂ intH, such that Fn(x,A) ∩ ((−H) \ {0}) = ∅.
The set of global efficient solutions to (GS)n is denoted by IGn .

A vector x ∈ A is called a positive proper efficient solution to the (GS) if there
exists f ∈ C♯ such that

f(F (x, y)) ≥ 0, for all y ∈ A.

Throughout this paper, we always assume Vf ̸= ∅ and V n
f ̸= ∅.

In this paper, under new assumptions, we discuss the Painlevé-Kuratowski con-
vergence of the weak efficient solution sets and the global efficient solution sets of
(GS)n.

Definition 2.1 ([21]). Let X be a normed space. A sequence of sets {An ⊂ X :
n ∈ N} is said to converge in the sense of Painlevé-Kuratowski(P.K.) to A(denoted

as An
P.K.−−−→ A) if

lim sup
n→∞

An ⊂ A ⊂ lim inf
n→∞

An

with

lim inf
n→∞

An :={x ∈ X|∃(xn), xn ∈ An, ∀n ∈ N, xn → x},

lim sup
n→∞

An :={x ∈ X|∃(nk),∃(xnk
), xnk

∈ Ank
, ∀k ∈ N,xnk

→ x}.

Definition 2.2 ([10, 26]). Let Fn, F : X → Y (n ∈ N) be vector-valued mappings
and let U(x) be the family of neighborhoods of x. We say that (Fn)n∈NΓC-converges

to F (denoted as Fn
ΓC−−→ F ) if for every x ∈ X :

(i) ∀ U ∈ U(x), ∀ϵ ∈ intC, ∃nϵ,U ∈ N such that ∀n ≥ nϵ,U ,∃xn ∈ U such that

Fn(xn) ∈ F (x) + ϵ− C;

(ii) ∀ϵ ∈ intC,∃Uϵ ∈ U(x), kϵ ∈ N such that ∀x′ ∈ Uϵ, ∀n ≥ kϵ,

Fn(x
′) ∈ F (x)− ϵ+ C.

Definition 2.3 ([29]). Let Fn, F : X → Y (n ∈ N) be vector-valued mappings.
We say that Fn continuously converges to F if the fact that xn → x implies that
Fn(xn) → F (x).

Definition 2.4. Let A be a nonempty convex subset in X. The mapping F (·, y)
is called to be C-concave on A if, for each fixed y ∈ A, for every x1, x2 ∈ A, t ∈
[0, 1], tF (x1, y) + (1− t)F (x2, y) ∈ F (tx1 + (1− t)x2, y)− C.

Definition 2.5. Let A be a nonempty convex subset in X. The mapping F (·, y)
is called to be C-strictly concave on A if, for each fixed y ∈ A, for every x1, x2 ∈
A(x1 ̸= x2), t ∈ (0, 1), tF (x1, y) + (1− t)F (x2, y) ∈ F (tx1 + (1− t)x2, y)− intC.
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3. Painlevé-Kuratowski convergence for f-efficient solution sets

The next part in this paper, set F0 = F, V 0
f = Vf .

Lemma 3.1. Let f ∈ C∗ \ {0}, A be a convex set. For n = 0, 1, 2, . . . , assume that
the following conditions are satisfied:

(i) For each x ∈ A,Fn(x, x) = {0};
(ii) For each y ∈ A,Fn(·, y) is C-strictly concave mapping on A.

Then, V n
f is a singleton.

Proof. Suppose that there exist x1, x2 ∈ V n
f and x1 ̸= x2, then we have

(3.1) f(Fn(x1, y)) ≥ 0, ∀ y ∈ A.

(3.2) f(Fn(x2, y)) ≥ 0, ∀ y ∈ A.

As x1, x2 ∈ A, and A is a convex set, then for all t ∈ [0, 1],

tx1 + (1− t)x2 ∈ A.

By (3.1) and (3.2), we get

(3.3) f(Fn(x1, tx1 + (1− t)x2)) ≥ 0.

(3.4) f(Fn(x2, tx1 + (1− t)x2)) ≥ 0.

By assumptions (i) and (ii), we have

tFn(x1, tx1 + (1− t)x2) + (1− t)Fn(x2, tx1 + (1− t)x2)

⊂ Fn(tx1 + (1− t)x2, tx1 + (1− t)x2)− intC = −intC.

Since f ∈ C∗ \ {0}, we have

(3.5) f(tFn(x1, tx1 + (1− t)x2) + (1− t)Fn(x2, tx1 + (1− t)x2)) < 0.

By (3.3) and (3.4), we get

f(tFn(x1, tx1 + (1− t)x2) + (1− t)Fn(x2, tx1 + (1− t)x2)) ≥ 0,

which contradicts to (3.5). Thus, V n
f is a singleton. �

Remark 3.2. In Lemma 3.1, we obtain V n
f is a singleton under new assumptions,

where the assumptions are weaker than the assumption of C-strict monotonicity.
Therefore, Lemma 3.1 extends the corresponding results of [6, 7, 10,14,17,18].

The following example is given to illustrate this case.

Example 3.3. Let X = R, Y = R2, C = R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0}. Let

A = [0, 1], it is clear that A is a convex set.
Define the mappings Fn : A×A −→ R2 by

Fn(x, y) =

(
−1

2

((
x− 1

n

)2
−

(
y − 1

n

)2)
,−2

((
x− 1

n

)2
−

(
y − 1

n

)2))
, ∀x, y ∈ A.
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It is clear that condition (i) of Lemma 3.1 is satisfied. For each y ∈ A, Fn(·, y)
is C-strictly concave mappings on A. In fact, for every x1, x2 ∈ A(x1 ̸= x2) and
t ∈ (0, 1), we have

Fn(tx1 + (1− t)x2, y) =

(
−1

2

((
tx1 + (1− t)x2 −

1

n

)2
−

(
y − 1

n

)2)
,

−2
((

tx1 + (1− t)x2 −
1

n

)2
−

(
y − 1

n

)2))
∈
(
−1

2

(
t
(
x1 −

1

n

)2
+ (1− t)

(
x2 −

1

n

)2
−

(
y − 1

n

)2)
,

−2
(
t
(
x1 −

1

n

)2
+ (1− t)

(
x2 −

1

n

)2
−

(
y − 1

n

)2))
+ int C

=tFn(x1, y) + (1− t)Fn(x2, y) + int C.

Thus, condition (ii) of Lemma 3.1 is satisfied. Hence, it is easy to obtain that
V n
f = { 1

n} is a singleton.

But Fn(·, ·) is not C-strictly monotone on A × A. In fact, for any x, y ∈ A and
x ̸= y, and

Fn(x, y) + Fn(y, x) = (0, 0) ̸∈ −intC.

Hence, the corresponding results in [6, 7, 10,14,17,18] are not applicable.

Lemma 3.4. Let A be a nonempty compact convex set. For n = 0, 1, 2, . . . , assume
that the following conditions are satisfied:

(i) For each x ∈ A,Fn(x, x) = {0};
(ii) For each y ∈ A,Fn(·, y) is C-strictly concave mapping on A;

(iii) For each y ∈ A, −Fn(·, y)
ΓC−−→ −F (·, y).

Then, for each f ∈ C∗ \ {0}, limn→∞ V n
f = Vf .

Proof. In view of Lemma 3.1, for n = 0, 1, 2, . . . , V n
f is a singleton. Let {xn} = V n

f

and {x} = Vf . Then, we have xn ∈ A and f(Fn(xn, y)) ≥ 0, ∀ y ∈ A. Take an
arbitrary subnet {xnk

} ⊂ {xn} ⊂ A, we may assume that xnk
−→ z(z ̸= x). Thus,

we have

f(Fnk
(xnk

, y)) ≥ 0, ∀ y ∈ A.

Since −Fn(·, y)
ΓC−−→ −F (·, y), it follows from definition 2.2 that for any ϵ ∈ intC,

∃Nϵ ∈ N such that

−Fnk
(xnk

, y) ∈ −F (z, y)− ϵ+ C, ∀ nk ≥ Nϵ.

Furthermore, we have f(F (z, y)) ≥ f(Fnk
(xnk

, y))− f(ϵ).
By the arbitrariness of ϵ, we get

(3.6) f(F (z, y)) ≥ f(Fnk
(xnk

, y)) ≥ 0.

Noting that z ̸∈ Vf , there exists y0 ∈ A such that

(3.7) f(F (z, y0)) < 0,
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which contradicts to (3.6). Therefore z = x, i.e., xnk
−→ x as nk −→ ∞. Since

the subnet {xnk
} ⊂ {xn} is arbitrary, we have xn −→ x as n −→ ∞. That is,

limn−→∞ V n
f = Vf . �

Now we give an example to show this case.

Example 3.5. Let X = R, Y = R2, C = R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0}. Let

A = [0, 1], it is clear that A is a compact convex set.
Define the mappings Fn : A×A −→ R2 by

F (x, y) =
(
− 1

3
(x2 − y2),−1

2
(x2 − y2)

)
, n = 0, ∀x, y ∈ A.

Fn(x, y) =

(
−1

3

((
x− 1

n
)2 −

(
y − 1

n

)2)
,−1

2

((
x− 1

n
)2 −

(
y − 1

n

)2))
,

n = 1, 2, . . . , ∀x, y ∈ A.

It is clear that conditions (i) (ii) of Lemma 3.4 are satisfied. It is easy to obtain that
V n
f = 1

n and Vf = 0. The condition (iii) of Lemma 3.4 can be checked as follows:

In fact, (i) ∀ϵ ∈ intC, ∃Uϵ = (x − 1
n , x + 1

n) ∈ U(x), ∃Nϵ such that ∀ x′ ∈ Uϵ =

(x− 1
n , x+ 1

n), ∀ n ≥ Nϵ, we have

−Fn(x
′, y) =

(
1

3

(
x′2 − y2 − 2x′

n
+

2y

n

)
,
1

2

(
x′2 − y2 − 2x′

n
+

2y

n

))
,

−Fn(x
′, y) + F (x, y) =

(
1

3
(x′2 − x2) +

2

3n
(y − x′),

1

2
(x′2 − x2) +

1

n
(y − x′)

)
From the above two inequalities, we obtain

−Fn(x
′, y) ∈ −F (x, y)− ϵ+ C.

(ii) ∀ U ∈ U(x), ∀ϵ ∈ intC, ∃nϵ,U ∈ N such that ∀n ≥ nϵ,U , ∃xn = x ∈ U such
that

−Fn(x, y) + F (x, y) =
(2y
3n

− 2x

3n
,
y

n
− x

n

)
,

Thus, we have
−Fn(xn, y) ∈ −F (x, y) + ϵ− C.

Therefore, it follows from Lemma 3.4, for each f ∈ C∗ \ {0}, limn→∞ V n
f = Vf = 0.

By virtue of Lemma 3.1 and Lemma 3.4, using the similar method of Lemma 2.3
in [10], we can easily obtain the following Lemma.

Lemma 3.6. Let A be a nonempty compact convex set. For n = 0, 1, 2, . . . , assume
that the following conditions are satisfied:

(i) For each x ∈ A,Fn(x, x) = {0};
(ii) For each y ∈ A,Fn(·, y) is C-strictly concave mapping on A;

(iii) For each y ∈ A, −Fn(·, y)
ΓC−−→ −F (·, y).

Then, we have ∪f∈SV
n
f −→ ∪f∈SVf in the sense of Painlevé-Kuratowski, that is,

lim sup
n→∞

∪f∈SV
n
f ⊂ ∪f∈SVf ⊂ lim inf

n→∞
∪f∈SV

n
f ,

where S ∈ {C∗ \ {0}, C♯}.
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Remark 3.7. In [10], Fang et al. obtained the results under the assumption of
C-strict monotonicity, but in Lemma 3.6, we obtain the same results only using the
C-strict concavity of F with respect to the first variable.

4. Painlevé-Kuratowski convergence of the weak efficient solution
sets

Let IW and IWn denote the set of the weak efficient solution sets to (GS) and
(GS)n, i.e.,

IW = {x ∈ A|F (x, y) ∈ Y \ −int C, ∀ y ∈ A},

IWn = {xn ∈ A|Fn(xn, y) ∈ Y \ −int C,∀ y ∈ A}.

Similarly as in the proof of Lemma 2.1 in Ref. [15], we can get the following
Lemma.

Lemma 4.1. Suppose that intC ̸= ∅ and for n = 0, 1, 2, . . . , ∀ x ∈ A,Fn(x, ·) is
C-convexlike on A. Then,

IWn = ∪f∈C∗\{0}V
n
f .

Theorem 4.2. Let A be a nonempty compact convex set. For n = 0, 1, 2, . . . ,
assume that the following conditions are satisfied:

(i) For each x ∈ A,Fn(x, x) = {0};
(ii) For each y ∈ A,Fn(·, y) is C-strictly concave mapping on A;

(iii) For each y ∈ A, −Fn(·, y)
ΓC−−→ −F (·, y);

(iv) For each x ∈ A,Fn(x, ·) is C-convexlike on A;
(v) intC ̸= ∅.

Then, we have IWn −→ IW in the sense of Painlevé-Kuratowski.

Proof. (i) We need to prove lim supn→∞ IWn ⊂ IW . Suppose to the contrary that
there exists x ∈ lim supn→∞ IWn with x ̸∈ IW .

From x ∈ lim supn→∞ IWn , we have x = limk→∞ xnk
, where xnk

∈ IWnk
and {nk}

is a subnet of N. Thus, we have

(4.1) Fnk
(xnk

, y) ∈ Y \ −intC, ∀ y ∈ A.

Noting that x ̸∈ IW , there exists y0 ∈ A such that

(4.2) F (x, y0) ∈ −intC.

For (4.1), in particular, we have

Fnk
(xnk

, y0) ∈ Y \ −intC.

Since −Fn(·, y0)
ΓC−−→ −F (·, y0), we have ∀ϵ ∈ intC,∃Uϵ ∈ U(x), kϵ ∈ N such that

∀xnk
∈ Uϵ, ∀nk ≥ kϵ,

(4.3) F (x, y0) ∈ Fnk
(xnk

, y0)− ϵ+ C.

By the arbitrariness of ϵ, we get

F (x, y0) ∈ Y \ −intC,

which contradicts to (4.2). Hence, the proof is complete.
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(ii) We need to prove that IW ⊂ lim infn→∞ IWn . In view of Lemma 4.1, we have

IWn = ∪f∈C∗\{0}V
n
f , n = 0, 1, 2, . . . .

From Lemma 3.6, it is easy to obtain the conclusion. Hence, the proof is complete.
�

Example 4.3. Let X = R, Y = R2, C = R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0}. Let

A = [0, 1], it is clear that A is a compact convex set.
Define the mappings Fn : A×A −→ R2 by

F (x, y) =(−(ey + 10)(sin(x− 1)− sin(y − 1)),−(sin(x− 1)− sin(y − 1))),

n = 0, ∀ x, y ∈ A.

Fn(x, y) =

(
−(ey + 10)

(
sin

(
x− 1− 1

(n+ 10)2

)
− sin

(
y − 1− 1

(n+ 10)2

))
,

−
(
sin

(
x− 1− 1

(n+ 10)2

)
− sin

(
y − 1− 1

(n+ 10)2

)))
,

n = 1, 2, . . . , ∀ x, y ∈ A.

Clearly, it is easy to show conditions (i) (iii) (v) in Theorem 4.2 are satisfied.
The condition (ii) of Theorem 4.2 can be checked as follows: Let n = 0, f(x) =

−(ey + 10)(sin(x − 1) − sin(y − 1)), g(x) = −(sin(x − 1) − sin(y − 1)), we have
f ′(x) = −(ey + 10)cos(x − 1), f ′′(x) = (ey + 10)sin(x − 1) < 0, g′(x) = −cos(x −
1), g′′(x) = sin(x − 1) < 0. Thus, for each y ∈ A,F (·, y) is a C-strictly concave
mapping on A.

The condition (iv) of Theorem 4.2 can be checked as follows: Let h(y) = −(ey +
10)(sin(x − 1) − sin(y − 1)), p(y) = −(sin(x − 1) − sin(y − 1)), we have h′(y) =
−eysin(x−1)+eysin(y−1)+(ey+10)cos(y−1), h′′(y) = −eysin(x−1)+2eycos(y−
1) − 10sin(y − 1) > 0, p′(y) = cos(y − 1), p′′(y) = −sin(y − 1) > 0. Thus, for each
x ∈ A,F (x, ·) is C-convexlike on A.

Using the similar method, it is easy to check Fn satisfies conditions (ii) (iv) of
Theorem 4.2.

Therefore, by Theorem 4.2, IWn −→ IW in the sense of Painlevé-Kuratowski.

5. Painlevé-Kuratowski convergence of the global efficient
solution sets

In this section, we discuss the Painlevé-Kuratowski convergence of the global
efficient solution sets of (GS)n.

By the Theorem 2.1 of [16], we know the following Lemma establishes.

Lemma 5.1. Suppose that for each x ∈ A,F (x, ·) is C-convexlike on A. If C has
a base, then

IG = ∪f∈C♯Vf .

By virtue of Lemma 3.6 and Lemma 5.1, we can also obtain the Painlevé-
Kuratowski convergence of the global efficient solution sets.
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Theorem 5.2. Let A be a nonempty compact convex set. For n = 0, 1, 2, . . . ,
assume that the following conditions are satisfied:

(i) For each x ∈ A,Fn(x, x) = {0};
(ii) For each y ∈ A,Fn(·, y) is C-strictly concave mapping on A;

(iii) For each y ∈ A, −Fn(·, y)
ΓC−−→ −F (·, y);

(iv) For each x ∈ A,Fn(x, ·) is C-convexlike on A;
(v) intC ̸= ∅ and C♯ ̸= ∅.

Then, we have IGn −→ IG in the sense of Painlevé-Kuratowski.

Proof. In a similar way to the proof of Theorem 4.2, with suitable modifications,
we can obtain the conclusion. �
Remark 5.3. In [10], under the assumption of C-strict monotonicity, the Painlevé-
Kuratowski convergence of the global efficient solution sets is obtained. In our paper,
we obtain the Painlevé-Kuratowski convergence of the global efficient solution sets
by using assumption (ii) in Theorem 5.2, which is weaker than C-strict monotonicity.
Therefore, the results extend and improve the corresponding ones obtained in [10].

The following example is given to illustrate Theorem 5.2.

Example 5.4. Let X = R, Y = R2, C = R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0}. Let

A = [−1, 0], it is clear that A is a compact convex set.
Define the mappings Fn : A×A −→ R2 by

F (x, y) =

(
−3

5

(
sinx− siny

)
,−

(
sinx− siny

))
, n = 0, ∀ x, y ∈ A.

Fn(x, y) =

(
−3

5

(
sin

(
x− 1

n+ 15

)
− sin

(
y − 1

n+ 15

))
,

−
(
sin

(
x− 1

n+ 15

)
− sin

(
y − 1

n+ 15

)))
,

n = 1, 2, . . . , ∀x, y ∈ A.

Clearly, it is easy to show all conditions of Theorem 5.2 are satisfied. Therefore,
by Theorem 5.2, we know IGn −→ IG in the sense of Painlevé-Kuratowski.

The following example is given to show the assumption (iii) in Theorem 5.2 is
essential.

Example 5.5. Let X = R, Y = R2, C = R2
+ = {x = (x1, x2) : x1 ≥ 0, x2 ≥ 0}. Let

A = [0, 1], it is clear that A is a compact convex set.
Define the mappings Fn : A×A −→ R2 by

F (x, y) =(−y(x2 − y2),−y(x2 − y2)), n = 0, for all x, y ∈ A.

Fn(x, y) =

(
−
(
32 +

1

n

)
((x− 1)2 − (y − 1)2),−

(
32 +

1

n

)
((x− 1)2 − (y − 1)2)

)
,

n = 1, 2, . . . , ∀x, y ∈ A.

Thus, conditions (i) (ii) (iv) (v) in Theorem 5.2 are satisfied.
It follows from a direct computation that

IGn = {1}, IG = {0}.



1258 Y. ZHAO, Z.Y. PENG, AND X.M. YANG

Obviously, IGn is not convergent to IG, the reason is that it does not satisfy the
assumption (iii) in Theorem 5.2. Indeed, let x = 1

4 , y = 0, ∃ϵ = (12 ,
1
2) ∈ intC,∀ Uϵ ∈

U(x), ∃x = 1
4 ∈ Uϵ, ∀ n ≥ 1 such that

−Fn(x, y) + F (x, y) =

((
32 +

1

n

)
(x2 − y2 − 2x+ 2y)− yx2 + y3,(

32 +
1

n

)
(x2 − y2 − 2x+ 2y)− yx2 + y3

)
=
(
− 14− 7

16n
,−14− 7

16n

)
̸∈ −ϵ+ C.

Therefore, the assumption (iii) in Theorem 5.2 is essential.
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