(C) Copyright 2014

GENERALIZED n-METRIC SPACES AND FIXED POINT THEOREMS

KAMRAN ALAM KHAN

Abstract

Gähler ([3],[4]) introduced the concept of 2-metric as a possible generalization of usual notion of a metric space. In many cases the results obtained in the usual metric spaces and 2-metric spaces are found to be unrelated (see [5]). Mustafa and Sims [8] took a different approach and introduced the notion of G metric. The author [6] generalized the notion of G-metric to more than three variables and introduced the concept of K-metric as a function $K: X^{n} \rightarrow \mathbb{R}^{+}$, $(n \geq 3)$. In this paper, We improve the definition of K-metric by making symmetry condition more general. This improved metric denoted by G_{n} is called the Generalized n-metric. We develop the theory for generalized n-metric spaces and obtain some fixed point theorems.

1. Introduction

Gähler ([3],[4]) introduced the concept of 2-metric as a possible generalization of usual notion of a metric space. K. S. Ha et al [5] have pointed out that the construction by Gähler is an independent approach and in many cases there is no connection between the results obtained in the usual metric spaces and 2 -metric spaces. It was mentioned by Gähler [3] that the notion of a 2 -metric is an extension of an idea of ordinary metric and geometrically $d(x, y, z)$ represents the area of a triangle formed by the points x, y and z in X as its vertices. But this is not always true. Sharma [9] showed that $d(x, y, z)=0$ for any three distinct points x, y, z $\in \mathbb{R}^{2}$.
B. C. Dhage [2] introduced the concept of D-metric in order to translate results from usual metric space to D-metric space. Mustafa and Sims [7] showed that most of the results concerning D-metrics are incorrect. This led them to introduce a new class of generalized metrics called G-metric in which the tetrahedral inequality is replaced by an inequality involving repetition of indices (see [8]).Many authors(such as [1]) obtained fixed point results for G-metric spaces. Recently the author [6] generalized the notion of G-metric space to more than three variables and introduced the concept of K-metric. In the present work we improve the definition of K-metric by making symmetry condition more general. This improved metric denoted by G_{n} is called the Generalized n-metric. We develop the theory for generalized n-metric spaces and obtain some fixed point theorems.
Definition 1.1 ([6]). Let X be a non-empty set, and \mathbb{R}^{+}denote the set of nonnegative real numbers. Let $K: X^{n} \rightarrow \mathbb{R}^{+},(n \geq 3)$ be a function satisfying the following properties:
[K 1] $K\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if $x_{1}=x_{2}=\cdots=x_{n}$,
2010 Mathematics Subject Classification. Primary 54E35; Secondary 47H10.
Key words and phrases. 2-metric space, G-metric space, K-metric space, fixed point.
[K 2] $K\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right)>0$ for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$,
[K 3] $K\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right) \leq K\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with the condition that any two of the points x_{2}, \ldots, x_{n} are distinct,
[K 4] $K\left(x_{1}, x_{2}, \ldots, x_{n}\right)=K\left(x_{\pi^{r}(1)}, x_{\pi^{r}(2)}, \ldots, x_{\pi^{r}(n)}\right)$, for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and a permutation π of $\{1,2, \ldots n\}$ such that $\pi(s)=s+1$ for all $1 \leq s<n, \pi(n)=1$ and for all $r \in \mathbb{N}$,
[K 5] $K\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq K\left(x_{1}, x_{n+1}, \ldots, x_{n+1}\right)+K\left(x_{n+1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1} \in X$.
Then the function K is called a K-metric on X, and the pair (X, K) a K-metric space.
Example 1.2. Let \mathbb{R} denote the set of all real numbers. Define a function $\rho: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{+},(n \geq 3)$ by

$$
\rho\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{\left|x_{1}-x_{2}\right|, \ldots,\left|x_{n-1}-x_{n}\right|,\left|x_{n}-x_{1}\right|\right\}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$. Then (\mathbb{R}, ρ) is a K-metric space.
Example 1.3. For any metric space (X, d), the following functions define K-metrics on X :
(1) $K_{1}^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{n}\left[\sum_{r=1}^{n-1} d\left(x_{r}, x_{r+1}\right)+d\left(x_{n}, x_{1}\right)\right]$,
(2) $K_{2}^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right), \ldots, d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{1}\right)\right\}$.

Geometrically the K-metric represents the notion of the perimeter of an oriented polygon with vertices $x_{1}, x_{2}, \ldots, x_{n}$. Here we observe that the condition of symmetry is not satisfied in general as in G-metric. Thus the notion of a K-metric is not a straight forward translation of the concept of G-metric. Now we introduce an n point analogue of G-metric as follows.

2. Main Results

Definition 2.1. Let X be a non-empty set, and \mathbb{R}^{+}denote the set of non-negative real numbers. Let $G_{n}: X^{n} \rightarrow \mathbb{R}^{+},(n \geq 3)$ be a function satisfying the following properties:
[G 1] $G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if $x_{1}=x_{2}=\cdots=x_{n}$,
[G 2] $G_{n}\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right)>0$ for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$,
[G 3] $G_{n}\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right) \leq G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with the condition that any two of the points x_{2}, \ldots, x_{n} are distinct,
[G 4] $G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=G_{n}\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$, for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and every permutation π of $\{1,2, \ldots n\}$,
[G 5] $G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq G_{n}\left(x_{1}, x_{n+1}, \ldots, x_{n+1}\right)+G_{n}\left(x_{n+1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1} \in X$.
Then the function G_{n} is called a Generalized n-metric on X, and the pair $\left(X, G_{n}\right)$ a Generalized n-metric space.

From now on we always have $n \geq 3$ for $\left(X, G_{n}\right)$ to be a generalized n-metric space.
Example 2.2. Define a function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+},(n \geq 3)$ by

$$
\rho\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{\left|x_{r}-x_{s}\right|: r, s \in\{1,2, \ldots n\}, r \neq s\right\}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$. Then (\mathbb{R}, ρ) is a generalized n-metric space.

Example 2.3. For any metric space (X, d), the following functions define generalized n-metrics on X :
(1) $K_{1}^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{r} \sum_{s} d\left(x_{r}, x_{s}\right)$,
(2) $K_{2}^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{d\left(x_{r}, x_{s}\right): r, s \in\{1,2, \ldots, n\}, r \neq s\right\}$.

Proposition 2.4. Let $G_{n}: X^{n} \rightarrow \mathbb{R}^{+},(n \geq 3)$ be a generalized n-metric defined on X, then for $x, y \in X$ we have

$$
\begin{equation*}
G_{n}(x, y, y, \ldots, y) \leq(n-1) G_{n}(y, x, x, \ldots, x) \tag{2.1}
\end{equation*}
$$

Proof. Using [G 5] it is trivial to prove the result.
Definition 2.5. Let $\left(X, G_{n}\right)$ be a generalized n-metric space, then for $x_{0} \in X, r>$ 0 , the G_{n}-ball with centre x_{0} and radius r is

$$
B_{G}\left(x_{0}, r\right)=\left\{y \in X: G_{n}\left(x_{0}, y, y, \ldots, y\right)<r\right\}
$$

Proposition 2.6. Let $\left(X, G_{n}\right)$ be a generalized n-metric space, then the G_{n}-ball is open in X.

Proof. The proof is straightforward.
Hence the collection of all such balls in X is closed under arbitrary union and finite intersection and therefore induces a topology on X called the generalized n-metric topology $\Im\left(G_{n}\right)$ generated by the generalized n-metric on X.

From example 2.3 it is clear that for a given metric we can always define generalized n-metrics. The converse is also true for if G_{n} is a generalized n-metric then we can define a metric d_{G} as follows

$$
d_{G}(x, y)=G_{n}(x, y, y, \ldots, y)+G_{n}(x, x, \ldots, x, y)
$$

Proposition 2.7. Let $B_{d_{G}}(x, r)$ denote the open ball in the metric space $\left(X, d_{G}\right)$ and $B_{G}(x, r)$ the G_{n}-ball in the correponding generalized n-metric space $\left(X, G_{n}\right)$. Then we have

$$
B_{G}\left(x, \frac{r}{n}\right) \subseteq B_{d_{G}}(x, r)
$$

Proof. Let $y \in B_{G}\left(x, \frac{r}{n}\right)$ then $G_{n}(x, y, y, \ldots, y)<\frac{r}{n}$. From (2.1) and [G 4] we have

$$
G_{n}(x, x, \ldots, x, y) \leq(n-1) G_{n}(x, y, y, \ldots, y)<(n-1) r / n
$$

Therefore

$$
d_{G}(x, y)=G_{n}(x, y, y, \ldots, y)+G_{n}(x, x, \ldots, x, y)<\frac{r}{n}+(n-1) \frac{r}{n}=r
$$

Hence we have $y \in B_{d_{G}}(x, r)$ and therefore $B_{G}\left(x, \frac{r}{n}\right) \subseteq B_{d_{G}}(x, r)$
This indicates that the topology induced by the generalized n-metric on X coincides with the metric topology induced by the metric d_{G}. Thus every generalized n-metric space is topologically equivalent to a metric space.

Definition 2.8. Let $\left(X, G_{n}\right)$ be a generalized n-metric space. A sequence $\left\langle x_{m}\right\rangle$ in X is said to be G_{n}-convergent if it converges to a point x in the generalized n-metric topology $\Im\left(G_{n}\right)$ generated by the G_{n}-metric on X.

Proposition 2.9. Let $G_{r}: X^{r} \rightarrow \mathbb{R}^{+},(r \geq 3)$ be a generalized r-metric defined on X. Then for a sequence $\left\langle x_{n}\right\rangle$ in X and $x \in X$ the following are equivalent:
(1) The sequence $\left\langle x_{n}\right\rangle$ is G_{r}-convergent to x.
(2) $d_{G}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(3) $G_{r}\left(x_{n}, x_{n}, \ldots, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
(4) $G_{r}\left(x_{n}, x, \ldots, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Since the topology induced by the G_{r}-metric on X coincides with the metric topology induced by the metric d_{G}, hence $(1) \Leftrightarrow(2)$. Now

$$
\begin{equation*}
d_{G}\left(x_{n}, x\right)=G_{r}\left(x_{n}, x, \ldots, x\right)+G_{r}\left(x_{n}, x_{n}, \ldots, x_{n}, x\right) \tag{2.2}
\end{equation*}
$$

Hence $G_{r}\left(x_{n}, x, \ldots, x\right) \rightarrow 0$ and $G_{r}\left(x_{n}, x_{n}, \ldots, x_{n}, x\right) \rightarrow 0$ whenever $d_{G}\left(x_{n}, x\right) \rightarrow 0$. Thus $(2) \Rightarrow(3)$ and $(2) \Rightarrow(4)$. From (2.1) we have

$$
\begin{equation*}
G_{r}\left(x_{n}, x, \ldots, x\right) \leq(r-1) G_{r}\left(x, x_{n}, \ldots, x_{n}\right) \tag{2.3}
\end{equation*}
$$

Thus $(3) \Rightarrow(4)$. Similarly $(4) \Rightarrow(3)$. Also from (2.2) and (2.3) we have

$$
d_{G}\left(x_{n}, x\right) \leq r G_{r}\left(x_{n}, x_{n}, \ldots, x_{n}, x\right)
$$

Therefore $(3) \Rightarrow(2)$.
Definition 2.10. Let $\left(X, G_{n}^{X}\right)$ and $\left(Y, G_{n}^{Y}\right)$ be generalized n-metric spaces. A function $f: X \rightarrow Y$ is said to be Generalized n-continuous at a point $x \in X$ if $f^{-1}\left(B_{G_{n}^{Y}}(f(x), r)\right) \in \Im\left(G_{n}^{X}\right)$, for all $r>0$. The function f is said to be generalized n-continuous if it is generalized n-continuous at all points of X.

Since every generalized n-metric space is topologically equivalent to a metric space, hence we have the following result:

Proposition 2.11. Let $\left(X, G_{n}^{X}\right)$ and $\left(Y, G_{n}^{Y}\right)$ be generalized n-metric spaces. A function $f: X \rightarrow Y$ is said to be generalized n-continuous at a point $x \in X$ if and only if it is generalized n-sequentially continuous at x; that is, whenever the sequence $\left\langle x_{m}\right\rangle$ is G_{n}^{X}-convergent to x, the sequence $\left\langle f\left(x_{m}\right)\right\rangle$ is G_{n}^{Y}-convergent to $f(x)$.

Proposition 2.12. Let $\left(X, G_{n}\right)$ be a generalized n-metric space, then the function $G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is jointly continuous in the variables $x_{1}, x_{2}, \ldots, x_{n}$.

Proof. Let $\left\langle x_{m_{1}}\right\rangle,\left\langle x_{m_{2}}\right\rangle, \ldots,\left\langle x_{m_{n}}\right\rangle$ be the sequences in the generalized n-metric space $\left(X, G_{n}\right)$ such that $x_{m_{1}} \rightarrow x_{1}, x_{m_{2}} \rightarrow x_{2}, \ldots, x_{m_{n}} \rightarrow x_{n}$. Then by [G 4] and [G 5] we can show that

$$
\begin{aligned}
G_{n}\left(x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{n}}\right)-G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq & G_{n}\left(x_{m_{1}}, x_{1}, \ldots, x_{1}\right) \\
& +G_{n}\left(x_{m_{2}}, x_{2}, \ldots, x_{2}\right) \\
& +\cdots+G_{n}\left(x_{m_{n}}, x_{n}, \ldots, x_{n}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-G_{n}\left(x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{n}}\right) \leq & G_{n}\left(x_{1}, x_{m_{1}}, \ldots, x_{m_{1}}\right) \\
& +G_{n}\left(x_{2}, x_{m_{2}}, \ldots, x_{m_{2}}\right) \\
& +\cdots+G_{n}\left(x_{n}, x_{m_{n}}, \ldots, x_{m_{n}}\right)
\end{aligned}
$$

Therefore on using (2.1) we have

$$
\begin{aligned}
\left|G_{n}\left(x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{n}}\right)-G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right| \leq & (n-1)\left\{G_{n}\left(x_{1}, x_{m_{1}}, \ldots, x_{m_{1}}\right)\right. \\
& +G_{n}\left(x_{2}, x_{m_{2}}, \ldots, x_{m_{2}}\right) \\
& \left.+\cdots+G_{n}\left(x_{n}, x_{m_{n}}, \ldots, x_{m_{n}}\right)\right\} .
\end{aligned}
$$

Making $m_{1} \rightarrow \infty, m_{2} \rightarrow \infty, \ldots, m_{n} \rightarrow \infty$ we have

$$
G_{n}\left(x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{n}}\right) \rightarrow G_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Hence the result follows.
Definition 2.13. Let $\left(X, G_{m}\right)$ be a generalized m-metric space. A sequence $\left\langle x_{n}\right\rangle$ in X is said to be G_{m}-Cauchy if for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
G_{m}\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{m}}\right)<\epsilon \text { for all } n_{1}, n_{2}, \ldots, n_{m} \geq N .
$$

Proposition 2.14. Let $\left(X, G_{m}\right)$ be a generalized m-metric space. A sequence $\left\langle x_{n}\right\rangle$ in X is G_{m}-Cauchy if and only if for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
G_{m}\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{2}}\right)<\epsilon \text { for all } n_{1}, n_{2} \geq N . \tag{2.4}
\end{equation*}
$$

Proof. If $\left\langle x_{n}\right\rangle$ is G_{m}-Cauchy then the result follows from definition 2.13. Conversely suppose that the condition (2.4) holds for a sequence $\left\langle x_{n}\right\rangle$ in X. Then for $n_{1}, n_{2}, n_{3} \geq$ N we have from [G5]

$$
\begin{aligned}
G_{m}\left(x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots, x_{n_{3}}\right) & \leq G_{m}\left(x_{n_{1}}, x_{n_{3}}, \ldots, x_{n_{3}}\right)+G_{m}\left(x_{n_{3}}, x_{n_{2}}, x_{n_{3}}, \ldots, x_{n_{3}}\right) \\
& <\epsilon+\epsilon=2 \epsilon .
\end{aligned}
$$

Continuing the above argument, for $n_{1}, n_{2}, \ldots, n_{m} \geq N$ we have

$$
G_{m}\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{m}}\right)<(m-1) \epsilon .
$$

i.e. $\left\langle x_{n}\right\rangle$ is G_{m}-Cauchy.

Proposition 2.15. Every G_{n}-convergent sequence in a generalized n-metric space is G_{n}-Cauchy.

Proof. The result follows from proposition 2.9 and (2.4).
Definition 2.16. A generalized n-metric space $\left(X, G_{n}\right)$ is said to be G_{n}-complete if every G_{n}-Cauchy sequence in $\left(X, G_{n}\right)$ is G_{n}-convergent in $\left(X, G_{n}\right)$.

Theorem 2.17. Let $G_{r}: X^{r} \rightarrow \mathbb{R}^{+},(r \geq 3)$ be a generalized r-metric and $\left(X, G_{r}\right)$ be a G_{r}-complete generalized r-metric space. Let f and g be self mappings on X satisfying the following conditions:
(1) $f(X) \subseteq g(X)$,
(2) g is continuous,
(3) $G_{r}\left(f \xi_{1}, f \xi_{2}, \ldots, f \xi_{r}\right) \leq q G_{r}\left(g \xi_{1}, g \xi_{2}, \ldots, g \xi_{r}\right)$ for every $\xi_{1}, \xi_{2}, \ldots, \xi_{r} \in X$ and $0<q<1$
Then f and g have a unique common fixed point in X provided f and g commute.

Proof. Let x_{0} be an arbitrary point in X. Since $f(X) \subseteq g(X)$ hence there exists a point x_{1} such that $f x_{0}=g x_{1}$. In general we can choose x_{n+1} such that $y_{n}=f x_{n}=$ $g x_{n+1}$.Using (3) we have

$$
\begin{aligned}
G_{r}\left(f x_{n}, f x_{n+1}, \ldots, f x_{n+1}\right) & \leq q G_{r}\left(g x_{n}, g x_{n+1}, \ldots, g x_{n+1}\right) \\
& =q G_{r}\left(f x_{n-1}, f x_{n}, \ldots, f x_{n}\right)
\end{aligned}
$$

Proceeding in above manner we have

$$
\begin{aligned}
G_{r}\left(f x_{n}, f x_{n+1}, \ldots, f x_{n+1}\right) & \leq q^{n} G_{r}\left(f x_{0}, f x_{1}, \ldots, f x_{1}\right) \\
\Rightarrow G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) & \leq q^{n} G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right)
\end{aligned}
$$

We claim that the sequence $\left\langle y_{n}\right\rangle$ in X is G_{r}-Cauchy in X. For all natural numbers n and $m(>n)$ we have from [G 5]

$$
\begin{aligned}
G_{r}\left(y_{n}, y_{m}, \ldots, y_{m}\right) \leq & G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right)+G_{r}\left(y_{n+1}, y_{n+2}, \ldots, y_{n+2}\right) \\
& +\cdots+G_{r}\left(y_{m-1}, y_{m}, \ldots, y_{m}\right) \\
\leq & \left(q^{n}+q^{n+1}+\cdots+q^{m-1}\right) G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right) \\
\leq & \left(q^{n}+q^{n+1}+\ldots\right) G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right) \\
= & \frac{q^{n}}{1-q} G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right) \rightarrow 0 \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Thus the sequence $\left\langle y_{n}\right\rangle$ is a G_{r}-Cauchy sequence in X. By completeness of $\left(X, G_{r}\right)$, there exists a point $u \in X$ such that $\left\langle y_{n}\right\rangle$ is G_{r}-convergent to u. Since $y_{n}=f x_{n}=$ $g x_{n+1}$ hence we have $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} g x_{n}=\lim _{n \rightarrow \infty} f x_{n}=u$. Now g is continuous hence

$$
\lim _{n \rightarrow \infty} g g x_{n}=\lim _{n \rightarrow \infty} g f x_{n}=g u
$$

Also f and g commute, therefore

$$
\lim _{n \rightarrow \infty} f g x_{n}=\lim _{n \rightarrow \infty} g f x_{n}=\lim _{n \rightarrow \infty} g g x_{n}=g u
$$

Taking $\xi_{1}=g x_{n}, \xi_{k}=x_{n}(2 \leq k \leq r)$ in (3) we have

$$
G_{r}\left(f g x_{n}, f x_{n}, \ldots, f x_{n}\right) \leq q G_{r}\left(g g x_{n}, g x_{n}, \ldots, g x_{n}\right)
$$

Making $n \rightarrow \infty$ we have

$$
G_{r}(g u, u, \ldots, u) \leq q G_{r}(g u, u, \ldots, u)
$$

Which gives $g u=u$. For otherwise $q \geq 1$ contradicting the fact that $0<q<1$.
Now by taking $\xi_{1}=x_{n}, \xi_{k}=u(2 \leq k \leq r)$ in (3) we have

$$
G_{r}\left(f x_{n}, f u, \ldots, f u\right) \leq q G_{r}\left(g x_{n}, g u, \ldots, g u\right)
$$

Making $n \rightarrow \infty$ we have $f u=u$. Therefore we have $f u=g u=u$, i.e. u is a common fixed point of f and g.

For uniqueness of u, suppose that $v \neq u$ is such that $f v=g u=v$. Then we have $G_{r}(u, v, \ldots, v)>0$ and

$$
\begin{aligned}
G_{r}(u, v, \ldots, v) & =G_{r}(f u, f v, \ldots, f v) \leq q G_{r}(g u, g v, \ldots, g v)=q G_{r}(u, v, \ldots, v) \\
& <G_{r}(u, v, \ldots, v)
\end{aligned}
$$

Thus we get a contradiction, hence we have $u=v$.

Theorem 2.18. Let $G_{r}: X^{r} \rightarrow \mathbb{R}^{+},(r \geq 3)$ be a generalized r-metric and $\left(X, G_{r}\right)$ be a G_{r}-complete generalized r-metric space. Let $f: X \rightarrow X$ be a mapping which satisfies the following condition for all $x_{1}, x_{2}, \ldots, x_{r} \in X$

$$
\begin{aligned}
G_{r}\left(f x_{1}, f x_{2}, \ldots, f x_{r}\right) \leq k \max \{ & G_{r}\left(x_{1}, x_{2}, \ldots, x_{r}\right), G_{r}\left(x_{1}, f x_{1}, \ldots, f x_{1}\right), \ldots \\
& G_{r}\left(x_{r}, f x_{r}, \ldots, f x_{r}\right), G_{r}\left(x_{1}, f x_{2}, \ldots, f x_{2}\right), \\
& \left.G_{r}\left(x_{2}, f x_{3}, \ldots, f x_{3}\right), \ldots, G_{r}\left(x_{r}, f x_{1}, \ldots, f x_{1}\right)\right\} .
\end{aligned}
$$

Where $0 \leq k<1 / 2$. Then f has a unique fixed point (say u) and f is generalized r-continuous at u.

Proof. Let $f: X \rightarrow X$ be a mapping satisfying the given condition. Let $y_{0} \in X$ be an arbitrary point. Define a sequence $\left\langle y_{n}\right\rangle$ by the relation $y_{n}=f^{n} y_{0}$, then by the given condition we have

$$
\begin{aligned}
G_{r}\left(f y_{n-1}, f y_{n}, \ldots, f y_{n}\right) \leq k \max \{ & G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right), \\
& G_{r}\left(y_{n-1}, f y_{n-1}, \ldots, f y_{n-1}\right), \ldots, \\
& G_{r}\left(y_{n}, f y_{n}, \ldots, f y_{n}\right) \\
& G_{r}\left(y_{n-1}, f y_{n}, \ldots, f y_{n}\right) \\
& G_{r}\left(y_{n}, f y_{n}, \ldots, f y_{n}\right), \ldots \\
& \left.G_{r}\left(y_{n}, f y_{n-1}, \ldots, f y_{n-1}\right)\right\}
\end{aligned}
$$

which gives

$$
\begin{equation*}
G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) \leq k \max \left\{G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right), G_{r}\left(y_{n-1}, y_{n+1}, \ldots, y_{n+1}\right)\right\} \tag{2.5}
\end{equation*}
$$

By [G 5] we have

$$
G_{r}\left(y_{n-1}, y_{n+1}, \ldots, y_{n+1}\right) \leq G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right)+G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right)
$$

Hence from (2.5) we have

$$
\begin{array}{r}
G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) \leq k \max \left\{G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right), G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right)+\right. \\
\left.G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right)\right\}
\end{array}
$$

Thus

$$
G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) \leq k\left\{G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right)+G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right)\right\} .
$$

Which gives

$$
\begin{equation*}
G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) \leq \frac{k}{1-k} G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right) \tag{2.6}
\end{equation*}
$$

Let $q=\frac{k}{1-k}$, then $q<1$ since $0 \leq k<1 / 2$ and by repeated application of (2.6) we have

$$
\begin{equation*}
G_{r}\left(y_{n}, y_{n+1}, \ldots, y_{n+1}\right) \leq q^{n} G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right) \tag{2.7}
\end{equation*}
$$

For all natural numbers n and $m(>n)$ we have by repeated use of [G 5] and (2.7) that

$$
G_{r}\left(y_{n}, y_{m}, \ldots, y_{m}\right) \leq \frac{q^{n}}{1-q} G_{r}\left(y_{0}, y_{1}, \ldots, y_{1}\right) \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Thus the sequence $\left\langle y_{n}\right\rangle$ is a G_{r}-Cauchy sequence in X. By completeness of $\left(X, G_{r}\right)$, there exists a point $u \in X$ such that $\left\langle y_{n}\right\rangle$ is G_{r}-convergent to u. Suppose that $f u \neq u$, then

$$
\begin{aligned}
G_{r}\left(y_{n}, f u, \ldots, f u\right) \leq k \max \{ & G_{r}\left(y_{n-1}, u, \ldots, u\right), G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right), \ldots, \\
& G_{r}(u, f u, \ldots, f u), G_{r}\left(y_{n-1}, f u, \ldots, f u\right), \\
& \left.G_{r}(u, f u, \ldots, f u), \ldots, G_{r}\left(u, y_{n}, \ldots, y_{n}\right)\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
G_{r}\left(y_{n}, f u, \ldots, f u\right) \leq k \max \{ & G_{r}\left(y_{n-1}, u, \ldots, u\right), G_{r}\left(y_{n-1}, y_{n}, \ldots, y_{n}\right) \\
& G_{r}(u, f u, \ldots, f u), G_{r}\left(y_{n-1}, f u, \ldots, f u\right) \\
& \left.G_{r}\left(u, y_{n}, \ldots, y_{n}\right)\right\}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, and using the fact that the function G_{r} is continuous on its variables, we have $G_{r}(u, f u, \ldots, f u) \leq k G_{r}(u, f u, \ldots, f u)$, which is a contradiction, since $0 \leq k<1 / 2$. So we have $u=f u$.

For uniqueness of u, suppose that $v \neq u$ is such that $f v=v$, then we have

$$
G_{r}(u, v, \ldots, v)=G_{r}(f u, f v, \ldots, f v) \leq k \max \left\{G_{r}(u, v, \ldots, v), G_{r}(v, f u, \ldots, f u)\right\}
$$

or

$$
G_{r}(u, v, \ldots, v) \leq k \max \left\{G_{r}(u, v, \ldots, v), G_{r}(v, u, \ldots, u)\right\}
$$

So, it must be the case that $G_{r}(u, v, \ldots, v) \leq k G_{r}(v, u, \ldots, u)$.
Again by the same argument we find that $G_{r}(v, u, \ldots, u) \leq k G_{r}(u, v, \ldots, v)$. Thus we have $G_{r}(u, v, \ldots, v) \leq k^{2} G_{r}(u, v, \ldots, v)$. Which implies that $u=v$, since $0 \leq k<1 / 2$.

Now to prove that f is generalized r-continuous at u, let $\left\langle y_{n}\right\rangle$ be any sequence in X such that it is G_{r}-convergent to u, then

$$
\begin{array}{r}
G_{r}\left(f y_{n}, f u, \ldots, f u\right) \leq k \max \left\{G_{r}\left(y_{n}, u, \ldots, u\right), G_{r}\left(y_{n}, f y_{n}, \ldots, f y_{n}\right), \ldots,\right. \\
\\
G_{r}(u, f u, \ldots, f u), G_{r}\left(y_{n}, f u, \ldots, f u\right), \ldots, \\
\\
\left.G_{r}(u, f u, \ldots, f u), G_{r}\left(u, f y_{n}, \ldots, f y_{n}\right)\right\}
\end{array}
$$

or

$$
\begin{gathered}
G_{r}\left(f y_{n}, u, \ldots, u\right) \leq k \max \left\{G_{r}\left(y_{n}, u, \ldots, u\right), G_{r}\left(y_{n}, f y_{n}, \ldots, f y_{n}\right)\right. \\
\left.G_{r}\left(u, f y_{n}, \ldots, f y_{n}\right)\right\}
\end{gathered}
$$

By [G 5] we have

$$
G_{r}\left(y_{n}, f y_{n}, \ldots, f y_{n}\right) \leq G_{r}\left(y_{n}, u, \ldots, u\right)+G_{r}\left(u, f y_{n}, \ldots, f y_{n}\right)
$$

Thus we deduce that

$$
G_{r}\left(f y_{n}, u, \ldots, u\right) \leq k\left\{G_{r}\left(y_{n}, u, \ldots, u\right)+G_{r}\left(u, f y_{n}, \ldots, f y_{n}\right)\right\}
$$

Using proposition 2.4 we have

$$
G_{r}\left(f y_{n}, u, \ldots, u\right) \leq k\left\{G_{r}\left(y_{n}, u, \ldots, u\right)+(r-1) G_{r}\left(f y_{n}, u, \ldots, u\right)\right\}
$$

or

$$
G_{r}\left(f y_{n}, u, \ldots, u\right) \leq \frac{k}{1-(r-1) k} G_{r}\left(y_{n}, u, \ldots, u\right)
$$

Taking the limit as $n \rightarrow \infty$, we see that $G_{r}\left(f y_{n}, u, \ldots, u\right) \rightarrow 0$ and so by proposition 2.9 the sequence $\left\langle f y_{n}\right\rangle$ is G_{r}-convergent to $u=f u$. Therefore proposition 2.11 implies that f is generalized r-continuous at u.

Acknowledgement

The author is thankful to the referee for his valuable comments and suggestions on this manuscript.

References

[1] M. Abbas, W. Sintunavarat and P. Kumam, Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces, Fixed Point Theory Appl.2012, (2012) Article ID:31.
[2] B. C. Dhage, A study of some fixed point theorem, Ph.D. Thesis, Marathwada Univ. Aurangabad, 1984.
[3] S. Gähler, 2-metrische räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
[4] S. Gähler, Zur geometric 2-metrische räume, Rev. Roum. Math. Pures et Appl. 11 (1966), 664-669.
[5] K. S. Ha, Y. J. Cho and A. White, Strictly convex and 2-convex 2-normed spaces, Math. Japonica 33 (1988), 375-384.
[6] K. A. Khan, On the possibility of N-topological spaces, Int. J. Math. Arc. 3 (2012), 2520-2523.
[7] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in Proceedings of the International Conferences on Fixed Point Theory and Applications J. G. Falset, E. L. Fuster, B. Sims (eds), Valencia (Spain), July 2003, Yokohama Publishers, Yokohama, 2004, pp. 189198.
[8] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[9] A. K. Sharma, A note on fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 11 (1980), 1580-1583.

Manuscript received May 3, 2013
revised May 8, 2013

K. A. Khan

Department of Mathematics, V. R. A. L. Govt. Girls P. G. College, Bareilly (U.P.)-INDIA E-mail address: kamran12341@yahoo.com

