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GENERALIZED n-METRIC SPACES AND FIXED POINT
THEOREMS

KAMRAN ALAM KHAN

ABSTRACT. Gihler ([3],[4]) introduced the concept of 2-metric as a possible gen-
eralization of usual notion of a metric space. In many cases the results obtained
in the usual metric spaces and 2-metric spaces are found to be unrelated (see [5]).
Mustafa and Sims [8] took a different approach and introduced the notion of G-
metric. The author [6] generalized the notion of G-metric to more than three
variables and introduced the concept of K-metric as a function K: X" — R™T,
(n > 3). In this paper, We improve the definition of K-metric by making sym-
metry condition more general. This improved metric denoted by G, is called the
Generalized n-metric. We develop the theory for generalized n-metric spaces and
obtain some fixed point theorems.

1. INTRODUCTION

Gahler ([3],[4]) introduced the concept of 2-metric as a possible generalization
of usual notion of a metric space. K. S. Ha et al [5] have pointed out that the
construction by Géhler is an independent approach and in many cases there is no
connection between the results obtained in the usual metric spaces and 2-metric
spaces. It was mentioned by Géhler [3] that the notion of a 2-metric is an extension
of an idea of ordinary metric and geometrically d(z,y, z) represents the area of a
triangle formed by the points z,y and z in X as its vertices. But this is not always
true. Sharma [9] showed that d(x,y,z) = 0 for any three distinct points z, y, z
€ R2

B. C. Dhage [2] introduced the concept of D-metric in order to translate results
from usual metric space to D-metric space. Mustafa and Sims [7] showed that most
of the results concerning D-metrics are incorrect. This led them to introduce a new
class of generalized metrics called G-metric in which the tetrahedral inequality is
replaced by an inequality involving repetition of indices (see [8]).Many authors(such
as [1]) obtained fixed point results for G-metric spaces. Recently the author [6]
generalized the notion of G-metric space to more than three variables and introduced
the concept of K-metric. In the present work we improve the definition of K-metric
by making symmetry condition more general. This improved metric denoted by G,
is called the Generalized n-metric. We develop the theory for generalized n-metric
spaces and obtain some fixed point theorems.

Definition 1.1 ([6]). Let X be a non-empty set, and R* denote the set of non-
negative real numbers. Let K: X" — R*, (n > 3) be a function satisfying the
following properties:

K 1] K(xi,22,...,2p) =0if 21 =22 = -+ =z,
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K 2] K(x1,21,...,21,22) > 0 for all 21, x9 € X with x1 # x2,

K 3] K(z1,21,...,21,22) < K(x1,%2,...,2,) for all 1, x9,..., 2, € X with the
condition that any two of the points zo, ..., , are distinct,

K 4] K(z1,72,...,20) = K(Trr(1); Tar(2)s - - Tar(ny), for all xq, z2,... 2, € X
and a permutation 7 of {1,2,...n} such that 7(s) = s+ 1 for all
1<s<n,n(n)=1and for all r € N,

[K 5] K(z1,22,...,2,) < K(21,Zpt1y -+ Tnt1) + K(Tpt1, 22, ..., z,) for all
T1,22, .-+, Tny Tntl € X.

Then the function K is called a K -metric on X, and the pair (X, K) a K-metric space.

Example 1.2. Let R denote the set of all real numbers. Define a function p: R™ —
R*, (n > 3) by

p(xi,xa,. .., xy) = max{|z1 — z2|,...,|Tn—1 — Tn|, |Tn — 21|}
for all x1, xo,...,x, € R. Then (R, p) is a K-metric space.

Example 1.3. For any metric space (X, d), the following functions define K-metrics
on X:

(1) K{l(xla Z2,. .. 7xn) = % [Zf;ll d(xh xr+1) + d(xna xl)]?

(2) K$(w1,29,...,2,) = max{d(z1,12),d(w2,23),...,d(Tn_1,7n),d(xn, 1)}
Geometrically the K-metric represents the notion of the perimeter of an oriented
polygon with vertices x1, x2, ..., x,. Here we observe that the condition of symme-
try is not satisfied in general as in G-metric. Thus the notion of a K-metric is not
a straight forward translation of the concept of G-metric. Now we introduce an n
point analogue of G-metric as follows.

2. MAIN RESULTS

Definition 2.1. Let X be a non-empty set, and R™ denote the set of non-negative
real numbers. Let Gp,: X™ — RT, (n > 3) be a function satisfying the following
properties:

G 1] Gp(z1,22,...,2p) =0if 21 =29 = -+ - =z,

G 2] Gp(z1,21,...,21,22) > 0 for all z1, x9 € X with x1 # x9,

G 3] Gp(z1,21,...,21,22) < Gp(z1,22,...,2y,) for all z1, x9,...,2, € X with
the condition that any two of the points xo, ..., x, are distinct,

[G 4] Gn(xl,azg, e ,In) = Gn(xﬂ.(l),$7r(2), ce ,xﬂ.(n)), for all 1, x2,...,2, € X
and every permutation 7 of {1,2,...n},
(G 5] Gn(z1,22,...,2n) < Gu(x1,Tnt1y- - Tnt1) + Gu(Tpt1, 22, ..., xy,) for all
T1,L2, -+, Tn, Tntl € X.
Then the function G, is called a Generalized n-metric on X, and the pair (X, G,)
a Generalized n-metric space.

From now on we always have n > 3 for (X,G,,) to be a generalized n-metric
space.

Example 2.2. Define a function p: R" — Rt (n > 3) by
p(x1, o, ..., xy) = max{|z, — x| : r,s € {1,2,...n},r # s}

for all x1, xo,...,x, € X. Then (R, p) is a generalized n-metric space.
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Example 2.3. For any metric space (X, d), the following functions define general-
ized n-metrics on X:

(1) Kii(xlax% e Ty) = Zr Zs d(zr, xs),
(2) K2d($17$27 ooy y) = max{d(x,, xg): s € {1,2,...,n},r # s}.

Proposition 2.4. Let G,: X" — Rt (n > 3) be a generalized n-metric defined on
X, then for x,y € X we have

(2.1) Gn(z,y,y,...,y) < (n—1)Gn(y,z,z,...,x).
Proof. Using [G 5] it is trivial to prove the result. O

Definition 2.5. Let (X, G),) be a generalized n-metric space, then for xg € X, r >
0, the G,,-ball with centre xg and radius r is

BG(:Z:Uvr) = {y € X: Gn(xovyaya' . 7y) < 7"}

Proposition 2.6. Let (X, G),) be a generalized n-metric space, then the Gy,-ball is
open in X.

Proof. The proof is straightforward. O

Hence the collection of all such balls in X is closed under arbitrary union and
finite intersection and therefore induces a topology on X called the generalized
n-metric topology J(G),) generated by the generalized n-metric on X.

From example 2.3 it is clear that for a given metric we can always define gener-
alized n-metrics. The converse is also true for if G, is a generalized n-metric then
we can define a metric dg as follows

dG(«T,y) = Gn($7y7y7 s 7y) + Gn(fL’,IIZ‘, s ,.’E,y)-

Proposition 2.7. Let By, (z,r) denote the open ball in the metric space (X,dq)
and Bg(z,r) the Gp-ball in the correponding generalized n-metric space (X, Gy).

Then we have ,

Ba (a:, ﬁ) C By, (x,r)
Proof. Let y € Bg(x, =) then Gp(z,y,y,...,y) < . From (2.1) and [G 4] we have
Gn(z,z,...,z,y) < (n—1)Gp(z,y,y,...,y) < (n—1)r/n.
Therefore
da(z,y) = Gn(z,y,y,...,y) + Gp(z,z,...,2,y) < % + (n — 1)% =7
Hence we have y € By, (x,r) and therefore Bg(z, 1) € Bq(x,7) O
This indicates that the topology induced by the generalized n-metric on X coin-

cides with the metric topology induced by the metric dg. Thus every generalized
n-metric space is topologically equivalent to a metric space.

Definition 2.8. Let (X, G,,) be a generalized n-metric space. A sequence (Z,,) in
X is said to be G,,-convergent if it converges to a point = in the generalized n-metric
topology (G,,) generated by the Gj-metric on X.
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Proposition 2.9. Let G,: X" — R", (r > 3) be a generalized r-metric defined on
X. Then for a sequence (x,,) in X and x € X the following are equivalent:

(1) The sequence (x,,) is Gy-convergent to x.

()dG(a?n,)—>0asn—>oo
(3) Gr(zpn,Tn, ..., xp,x) — 0 as n — oo.
(4) Gr(zp,z,...,2) = 0 as n — oco.

Proof. Since the topology induced by the G,-metric on X coincides with the metric
topology induced by the metric dg, hence (1)< (2). Now
(2.2) da(zn,x) = Gr(Tp, @, ..., x) + Gp(Tp, Tpy o ooy Ty, T).
Hence G, (zp,z,...,z) = 0 and Gy(zy, Zn, ..., Tn,x) — 0 whenever dg(zy,x) — 0.
Thus (2)=(3) and (2)=(4). From (2.1) we have
(2.3) Gr(zp,z,...,2) < (r— 1)Gr(z,2n,...,Tn).
Thus (3)=(4). Similarly (4)=(3). Also from (2.2) and (2.3) we have
dg(xn, ) < rGr(Tn, Tn, - .., T, T).
Therefore (3)=(2). O

Definition 2.10. Let (X,G) and (Y,G)) be generalized n-metric spaces. A
function f: X — Y is said to be Generalized n-continuous at a point z € X if
fH(Bgy (f(x),7)) € I(GX), for all » > 0. The function f is said to be generalized
n-continuous if it is generalized n-continuous at all points of X.

Since every generalized n-metric space is topologically equivalent to a metric
space, hence we have the following result:

Proposition 2.11. Let (X,GX) and (Y,GY) be generalized n-metric spaces. A
function f: X — Y is said to be generalized n-continuous at a point v € X if
and only if it is generalized n-sequentially continuous at x; that is, whenever the
sequence (T.,) is GiX -convergent to x, the sequence (f(xy)) is GY -convergent to

f(z).

Proposition 2.12. Let (X,G,) be a generalized n-metric space, then the function

Gn(x1,29,...,2y) 18 jointly continuous in the variables x1, o, ..., Ty.
Proof. Let (zm,), (Tmy),---,{(Tm,) be the sequences in the generalized n-metric
space (X,Gy) such that ©,, — 1, Tmy, — T2,...,Tm, — Tn. Then by [G 4]
and [G 5] we can show that
Gn(Tmy, Timgs - - oy Tmy,) — Gu(x1, 22, ..o, Tp) < Gr(Tmy, T1, ..., 21)
+ Gn(l'm2,l‘2, cee 7552)

+ -+ G, Ty, -y Ty).
Similarly
Gn(1,22, .., Tn) — Gp(Tmy, Tmgy - - s Tmy, ) < Gr(X1, Ty s+ v oy Ty )
+Gn($2,l‘m2,.--,xm2)

+ o+ G Xy Ty s ey Ty,
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Therefore on using (2.1) we have

|Gn( Ty s Tngs - - s Ty, ) — Gr(x1, 22,y xn)| <(n— DG (21, Ty s - -+ s Tiny)
+ Gn (T2, Ty - - - Timy)
4.+ Gn(xn,xmm . ,fEmn)}

Making m; — 0o, mg — 00,...,m, — o0 we have
Grn(Tmys Timgs -y Tm,,) — Gr(x1,22,. .., 2p).
Hence the result follows. O

Definition 2.13. Let (X, G)y,) be a generalized m-metric space. A sequence (x,)
in X is said to be G,,-Cauchy if for every € > 0, there exists N € N such that

Go(Tnys Tngy -y T, ) < € for all ny,ng,...,ny > N.

Proposition 2.14. Let (X, G)y,) be a generalized m-metric space. A sequence (x)
in X is Gp-Cauchy if and only if for every € > 0, there exists N € N such that

(2.4) Grm(Tny, Tngs -« Tny) < € for allng, ng > N.

Proof. 1f (x,) is G,,-Cauchy then the result follows from definition 2.13. Conversely
suppose that the condition (2.4) holds for a sequence (x,,) in X. Then for ny,ne,n3 >
N we have from [G 5]

G (Tny, Tngs Tngs -+ 3 Tng) < Go(Tnys Tngy - -« s Tng) + Gm(Tngs Tngy Tngy - - - Tng)
< e+ e=2e
Continuing the above argument, for ni,no,...,n, > N we have
Go(Tnys Tngy -3 Ty, ) < (M —1)e.
ie. (x,) is Gy-Cauchy. O

Proposition 2.15. Every G,-convergent sequence in a generalized n-metric space

is Gip-Cauchy.
Proof. The result follows from proposition 2.9 and (2.4). O

Definition 2.16. A generalized n-metric space (X, Gy,) is said to be Gy, -complete
if every G,-Cauchy sequence in (X, Gy,) is G,-convergent in (X, Gy,).

Theorem 2.17. Let G,: X" — RY, (r > 3) be a generalized r-metric and (X, G,)
be a G,.-complete generalized r-metric space. Let f and g be self mappings on X
satisfying the following conditions:

(1) f(X) € g(X),

(2) g is continuous,

(3) Gr(f&, f&o, - [&) < aGr(g61, 982, ..., 9&) for every &1, &o,...,&6 € X
and 0 < qg<1

Then f and g have a unique common fized point in X provided f and g commute.
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Proof. Let xg be an arbitrary point in X. Since f(X) C g(X) hence there exists a
point x1 such that fzg = gz;. In general we can choose x,, 1 such that y, = fz, =
gTpn+1.Using (3) we have
G’r’(fxna fxn-‘rla DRI 7fx7l+1) S q GT(gxna 9gTn+1, - - - 7gxn+1)
=qG,(frn_1, fxn,..., fxn)

Proceeding in above manner we have

Gr(fxn7 fmn—i—l? cee fxn-‘rl) < q?’L GT’(fx07 th ceey fflfl)

= G'r‘(yn, Yn+1s - - - 7yn+1) < qn GT’(y07y17 s 7y1)‘

We claim that the sequence (y,) in X is G,-Cauchy in X. For all natural numbers
n and m(> n) we have from [G 5]

Gr(Yns Yms -+ Ym) < Gr(Yns Ynsts - Ynt1) + Gr(Unt1, YUnt2s - -+ Unt2)
+ -+ Gr(Ym—1,Ymy - - -y Ym)
<@+ "+ ) Gr(yo vy - 1)
<@+ 4. )G (o, Y1)

n

1 GT(yanlw"ayl)—>OaS7’L,m—>oo,
q

1_
Thus the sequence (y,,) is a G,-Cauchy sequence in X. By completeness of (X, G,),
there exists a point u € X such that (y,) is G,-convergent to u. Since y,, = fx, =
gTn+1 hence we have limy, o yp = limy, o0 gz = limy oo fz, = u. Now g is
continuous hence

lim ggx, = lim gfz, = gu.
n—oo n—oo
Also f and g commute, therefore
lim fgx, = lim gfx, = lim g9z, = gu.
n—oo n—oo n—oo
Taking & = gxp, &k = 2, (2 < k <) in (3) we have
G'I‘(fgmna fmn7 L 7f«73n) S qGT’(ggx’fM gwna v 7gxn)
Making n — oo we have
Gr(gu,u,...,u) < qGr(gu,u,...,u).
Which gives gu = u. For otherwise ¢ > 1 contradicting the fact that 0 < ¢ < 1.
Now by taking & = xp, & = u (2 < k <r) in (3) we have
G’r‘(fxnv fU, cee fu) S qGT(gxﬂnguv s 79“’)
Making n — oo we have fu = w. Therefore we have fu = gu = u, i.e. uis a
common fixed point of f and g.
For uniqueness of u, suppose that v # u is such that fv = gu = v. Then we have
Gr(u,v,...,v) >0 and
GT(U,’U,...,U) = Gr(fuafva" ~afv) S qGr(gu,gv,...,gv) = QGT(U,’U,...,U)
< Gr(u,v,...,v).

Thus we get a contradiction, hence we have u = v. O
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Theorem 2.18. Let G,: X" — RT ,(r > 3) be a generalized r-metric and (X, G,)
be a G,.-complete generalized r-metric space. Let f: X — X be a mapping which
satisfies the following condition for all x1,x2,...,x, € X

Gr(fxy, fxa, ..., fxy) < kmar{G,(x1,22,...,2.),Gr(x1, fr1,..., f21),...,
Gr(xr, fry, ..., fx.),Gp(x1, fxo, ..., fra),
Gr(xo, frs, ..., fx3),...,Gr(zy, fr1,..., f21)}.
Where 0 < k < 1/2. Then f has a unique fized point (say u) and f is generalized

r-continuous at u.

Proof. Let f: X — X be a mapping satisfying the given condition. Let yg € X be
an arbitrary point. Define a sequence (y,) by the relation vy, = f™yo, then by the
given condition we have
G’r‘(fyn—17 fyTM LR fyn) S krnax{ T‘(yn 1sYns .-y yn)a
r(Yn—15 fYn—1,- - fyn—1), - -,

T(y fyn» fyn)7

(yn 1, fyn77fyn)7
rYns fYns -5 fyn), -,

(

T ynafyn 17--'7fyn—1)}

r

G
G
G
G
G
G

which gives
(2.5)
Gr(yn7 Yn41,--- ’yn—i-l) < kmaX{Gr(yn—la Yny - - ayn)7 Gr(yn—la Yn+1,--- ayn—&-l)}‘

By [G 5] we have
G'r’(yn—17 Yn41,-- - 7y'rl+1) S Gr(yn—lv Yny oo 7yTL) + G'f‘(yTZ7 Yn+1,--- 7y7’l+1)'

Hence from (2.5) we have

GT(yn7 Yn+1y - - - 7yn+1) S kma'X{G’/‘(y’fL—lv Yny- - 7y7l)7 GT(yn—la Yny - - - 7Z/n)+
GT(y’m Yn+1y-- -, yn—‘rl)}-
Thus

Gr(yna Yn41,--- ,yn+1) <k {Gr(ynfla Yn, - - - ,yn) + Gr(yna Yn41,--- ,yn+1)}-
Which gives

k
(26) Gr(ynvyn+17"'?yn+1) ﬁG (ynflayna"'vyn)-
Let ¢ = % k , then ¢ < 1 since 0 < k < 1/2 and by repeated application of (2.6) we
have
(27) Gr(yna Yn+1, - - - 7Z/n+1) S qn GT‘(y()? Y1, .- 7y1)~

For all natural numbers n and m(> n) we have by repeated use of [G 5] and (2.7)
that

n

Gr(ynayma"'vym) G’r‘(yﬂayla"'ayl) — 0 as n,m — oQ.

- 1-
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Thus the sequence (y,,) is a G,-Cauchy sequence in X. By completeness of (X, G,),
there exists a point v € X such that (y,) is G,-convergent to u. Suppose that
fu # u, then
Gr(Yn, fu, ..., fu) < kmax{G,(Yn—1,U, .. s 0), Gr(Yn—1,Yns---sYn)s-- -,
Gr(u, fu,..., fu),Gr(Yn—1, fu, ..., fu),
Gr(u, fu, ..., fu),...,Gr(u,Yn, .-, Yn)}
or
Gr(Yn, fu, ..., fu) < kmax{G,(Yn—1,U, ..., u), Gr(Yn—1,Yns- -, Yn),
Gr(u, fu,..., fu), Gr(Yn—1, fu, ..., fu),
Gr (U, Yns -+ Yn) }-

Taking the limit as n — oo, and using the fact that the function G, is continu-
ous on its variables, we have G,(u, fu,..., fu) < kG(u, fu,..., fu), which is a
contradiction, since 0 < k < 1/2. So we have u = fu.

For uniqueness of u, suppose that v # w is such that fv = v, then we have

Gr(u,v,...,v) = Gr(fu, fo,..., fv) < kmax{G,(u,v,...,v),Gp(v, fu,..., fu)}
or
Gr(u,v,...,v) < kmax{G,(u,v,...,v),G.(v,u,...,u)}.

So, it must be the case that G, (u,v,...,v) < kG,(v,u,...,u).

Again by the same argument we find that G,(v,u,...,u) < kG,(u,v,...,v).
Thus we have G,.(u, v, ...,v) < k*G.(u,v,...,v). Which implies that v = v, since
0<k<1/2.

Now to prove that f is generalized r-continuous at u, let (y,,) be any sequence in
X such that it is G,-convergent to u, then

Gr(fyn, fu, ..., fu) < kmax{Gy(yn,u, ..., w), Gr(Yns fYns- s [Un),y-- -,
Gr(u, fu, ..., fu),Gr(Yn, fu,..., fu),...,
GT(“afu7'-'7fu)7GT(u7fyn7"‘7fyn)}

or

G"‘(fynau7 .- .,U) S kmaX{GT(ynvua e 7u>7GT(yNa fyn7 cey fyn)a
GT(ua fynvafyn)}
By [G 5] we have
Gr(Yns fUns -5 fun) S Gr(Ynsty s w) + Gr(, fyn, - -5 fyn)-
Thus we deduce that
GT(fz/“?“’"'?“) S k’{GT(yn7u7...7u)+Gr(u,fyn7...,fyn)}-
Using proposition 2.4 we have
GT(fynaua-"vu) S k{GT(ynvua--'vu)+(r_]')GT(fyﬂnua'--’u)}
or

Gr(fyn,u,...,u) < i

S mGr(yn,U,... ,’U,).
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Taking the limit as n — oo, we see that G,.(fyn,u,...,u) — 0 and so by proposi-
tion 2.9 the sequence (fyy,) is G-convergent to u = fu. Therefore proposition 2.11
implies that f is generalized r-continuous at w.

O

ACKNOWLEDGEMENT

The author is thankful to the referee for his valuable comments and suggestions
on this manuscript.

REFERENCES

[1] M. Abbas, W. Sintunavarat and P. Kumam, Coupled fized point of generalized contractive
mappings on partially ordered G-metric spaces, Fixed Point Theory Appl.2012, (2012) Article
1D:31.

[2] B. C. Dhage, A study of some fized point theorem, Ph.D. Thesis, Marathwada Univ. Au-
rangabad, 1984.

[3] S. Gahler, 2-metrische raume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.

[4] S. Géahler, Zur geometric 2-metrische raume, Rev. Roum. Math. Pures et Appl. 11 (1966),
664—-669.

[5] K. S. Ha, Y. J. Cho and A. White, Strictly conver and 2-convexr 2-normed spaces, Math.
Japonica 33 (1988), 375-384.

[6] K. A. Khan, On the possibility of N-topological spaces, Int. J. Math. Arc. 3 (2012), 2520-2523.

[7] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in Proceedings of the
International Conferences on Fixed Point Theory and Applications J. G. Falset, E. L. Fuster,
B. Sims (eds), Valencia (Spain), July 2003, Yokohama Publishers, Yokohama, 2004, pp. 189—
198.

[8] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex
Anal. 7 (2006), 289-297.

[9] A. K. Sharma, A note on fized points in 2-metric spaces, Indian J. Pure Appl. Math. 11
(1980), 1580-1583.

Manuscript received May 3, 2013
revised May 8, 2013

K. A. KHAN
Department of Mathematics, V. R. A. L. Govt. Girls P. G. College, Bareilly (U.P.)-INDIA
E-mail address: kamran12341@yahoo.com



