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The elements of V and B will be denoted respectively, by x, y, z and a, b, c (with
or without indices); the zero of V and also null-element of B will both be denoted

by 0, while the universal element (= 0
′
) of B will be denoted by 1.

Example 1.2. Let B be any Boolean algebra and V be the additive group of the
corresponding Boolean ring; then V is a B-vector space if we define: For a ∈ B
and x ∈ V, ax =the (Boolean) product of a and x in B.

Example 1.3. Let R be any Ring with unity element 1 and let B denote the set
of all the central idempotents of R ; then it is known that (B,∪,∩, ′) is a Boolean
algebra, where, by definition, a ∪ b = a+ b− ab, a ∩ b = ab and a′ = 1− a. If V is
the additive group of the ring R, and for a ∈ B and x ∈ V, ax = the product of a
and x in R, then V is a Boolean vector space over (B,∪,∩, ′).

Definition 1.4. A Boolean vector space V over a Boolean algebra B is said to
be B-normed (or simply, normed) if and only if there exists a mapping ∥.∥ (called
norm): V → B such that

(i) ∥x∥ = 0 if and only if x = 0, and
(ii) ∥ax∥ = a∥x∥ for all a ∈ B and x ∈ V.

In view of [3, Cor. 3.2], we note the following.

Let V be a B-normed vector space and d∗ : V ×V → B then d∗(x, y) = ∥x − y∥
defines a Boolean metric on V, i.e.

(i) d∗(x, y) = 0 if and only if x = y;
(ii) d∗(x, y) = d(y, x) and
(iii) d∗(x, z) < d∗(x, y) + d∗(y, z).

Definition 1.5. Let B be a σ-complete (= countably complete) Boolean algebra.
If {an} is a sequence of elements of B, we define :

lim inf an = ∪k≥1 ∩n≥k an; and lim sup an = ∩k≥1 ∪n≥k an;

and if

lim inf an = a = lim sup an,

then we say that an converges to a, and will be written as an → a. A sequence {an}
in B is a Cauchy sequence if and only if d(an, am) → 0, where d is the Boolean

metric on B defined by d(a, b) = a
′
b+ ab

′
.

Definition 1.6. If {xn} is a sequence of elements of V, we say that xn → x (x ∈ V)
if and only if ∥xn − x∥ → 0; and a sequence {xn} in V is a Cauchy sequence if and
only if ∥xn − xm∥ → 0.

1We shall use ∪ and ∩ instead of + and . whenever confusion is possible; however, for the sake
of comparison with the usual concept of a vector space (over a field), we generally prefer to use +
and ·, which is not without a precedent.
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2. Coincidence and common fixed point theorems

Let V be a normed Boolean vector space and T : V → V a mapping. A point
z ∈ V is called fixed point of T if Tz = z. The point z is a called a coincidence
point of f, T : V → V if fz = Tz and a common fixed point if z = fz = Tz.

Let Φ denotes the class of all functions φ : B → B satisfying:

(i) φ is monotonically increasing and continuous;
(ii) φ(0) = 0;
(iii) lim

n→∞
φn(a) = 0 for all a ∈ B.

Example 2.1. Let A be a set and B the class of all subsets of A with three set
operation ∪, ∩, ′ (union, intersection and complement). Then B defines a Boolean
algebra. For all X,Y ∈ B we define a function φ : B → B by

φ(X) =

{
∅ if X = ∅,
Y if X ̸= ∅, whenever Y ⊂ X and Y ̸= X.

Then it can be easily verified that lim
n→∞

φn(X) = ∅ for all X ∈ B.

To prove our main result we need the following lemma due to Rao and Pant [5].

Lemma 2.2. Let V be a finite dimensional normed Boolean vector space with a
finite basis G = {g1, g2, . . . , gt}. If {yn} is a sequence in V such that for n → ∞,
∥yn − yn+1∥ → 0 then

lim
n→∞

d(an+1j , anj) = 0,

where for each n, yn =
∑t

j=1 anjgj , 1 ≤ j ≤ t with anj .ank = 0 for j ̸= k and d is

the Boolean metric on B defined by d(a, b) = a
′
b+ ab

′
.

Now, we obtain a coincidence and common fixed point theorem for a pair of self
mapping on a finite dimensional normed Boolean vector space.

Theorem 2.3. Let T , f be self mappings of a finite dimensional normed Boolean
vector space V over a σ-Complete Boolean algebra B such that

(A) TV ⊆ fV;
(B) ∥Tx− Ty∥ < φ(∥fx− fy∥) for all x, y ∈ V, where φ ∈ Φ.

Then f and T have a coincidence in V.
Further, f and T have a common fixed point provided that ffu = fu and f and

T commute at the coincidence point.

Proof. Let x0 ∈ V. Define sequences {xn} and {yn} in V by yn+1 = Txn = fxn+1,
n = 0, 1, 2, . . . . This can be done since the range of f contains the range of T . We
show that {yn} is a Cauchy sequence.

∥yn+1 − yn∥ = ∥Txn − Txn−1∥
< φ(∥fxn − fxn−1∥) < φ2(∥fxn−1 − fxn−2∥) . . .
< φn(∥fx1 − fx0∥).

Since φ ∈ Φ, we have

(2.1) lim
n→∞

∥yn+1 − yn∥ < lim
n→∞

φn(∥fx1 − fx0∥) = 0.
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Since V is finite dimensional, let G = {g1, g2, . . . , gt} be the basis of V. Then for

each n, yn =
∑t

j=1 anjgj , 1 ≤ j ≤ t with anj .ank = 0 for j ̸= k. Hence from (2.1)

and Lemma 2.2 it follows that d(an+1j , anj) → 0.

Now we show that {anj} is a Cauchy sequence. Observe that for any m,n ∈ N

lim sup d(amj , anj) = (lim sup anj)(lim inf anj)
′
.

For m,n ∈ N

lim sup d(amj , anj) = lim sup(amja
′
nj + a

′
mjanj)

= ∩k≥1 ∪m,n≥k (amja
′
nj + a

′
mjanj)

= ∩k≥1 ∪m,n≥k (amja
′
nj)

= ∩k≥1{∪m≥kamj ∪n≥k a
′
nj}(2.2)

= lim sup anj · lim sup a
′
nj

= (lim sup anj)(lim inf anj)
′
.

For m = n+ 1, the above equation reduces to

lim sup d(an+1j , anj) = (lim sup anj)(lim inf anj)
′
.

Since d(an+1j , anj) → 0 so lim sup d(an+1j , anj) → 0. Therefore

(2.3) (lim sup anj)(lim inf anj)
′
= lim sup d(anj , an+1j) = 0.

By (2.2) and (2.3)

lim sup d(amj , anj) = (lim sup anj)(lim inf anj)
′
= 0.

Thus d(amj , anj) → 0 which yields that {anj} is a Cauchy sequence in B. In view
of [3, Lem. 18], the sequence {yn} is Cauchy in V. Since V is a normed Boolean-
vector space over a σ-complete Boolean algebra B with a finite basis, by [3, Th.
12], V is a complete (topologically). Hence {yn} has a limit in V. Call it z, then
fu = z for some u ∈ V. Using (B), we get

∥yn+1 − Tu∥ = ∥Txn − Tu∥ < φ(∥fxn − fu∥).

Making n → ∞, we obtain fu = Tu and u is a coincidence point of f and T .
Further, if ffu = fu, and the mappings f and T commute at their coincidence
point u then fu = fTu = Tfu and fu is a common fixed point of f and T . �

Now we obtain the following result which ensure the uniqueness of common fixed
point.

Theorem 2.4. Let T , f be self mappings of a finite dimensional normed Boolean
vector space V over a σ-Complete Boolean algebra B such that

(A) TV ⊆ fV;
(B) ∥Tx− Ty∥ < φ(∥fx− fy∥) for all x, y ∈ V, where φ ∈ Φ.

Then f and T have a coincidence in V.
Further, in addition to (A) and (B) suppose that the following condition holds
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(C) ∥Tx − Ty∥ = ψ(∥fx − fy∥) for all x, y ∈ V, where ψ : B → B is a
continuous function such that ψ(a) < a′.

Then f and T have a unique common fixed point provided that ffu = fu and T
and f commute at the coincidence point.

Proof. By Theorem 2.3, we know that f and T have a common fixed point. Suppose
z1, z2 are two common fixed points of f and T . Then Tz1 = fz1 = z1 and Tz2 =
fz2 = z2. Using the condition (C)

∥z1 − z2∥ = ∥Tz1 − Tz2∥ = ψ(∥fz1 − fz2∥) < (∥z1 − z2∥)
′
.

Which follows that z1 = z2. �

Corollary 2.5. Let V be a finite dimensional normed Boolean vector space over a
σ-complete Boolean algebra B and T : V → V such that

(2.4) ∥Tx− Ty∥ < φ(∥x− y∥)

for all x, y ∈ V, where φ ∈ Φ. Then T has a fixed point in V.

Proof. This comes from Theorem 2.3, when f is an identity mapping on V.

Corollary 2.6. Let V be a finite dimensional normed Boolean vector space over a
σ-complete Boolean algebra B and T : V → V such that

(i) ∥Tx− Ty∥ < φ(∥x− y∥) for all x, y ∈ V, where φ ∈ Φ;
(ii) ∥Tx − Ty∥ = ψ(∥x − y∥) for all x, y ∈ V, where ψ is as in Theorem 2.4.

Then T has a unique fixed point in V.

Proof. This comes from Theorem 2.4, when f is an identity mapping on V.

Now we present an example to illustrate our results.

Example 2.7. Let A be a non-empty finite set and B the class of all subsets
of A. Then the class B with three set operation +, ·, ′ (union, intersection, and
complement) defines a Boolean algebra. Further, this class B with the set operation
“exclusive-or addition” ⊕ (symmetric difference of sets) defines a Boolean ring. Let
V = (V,⊕) be the additive abelian group of this Boolean ring. For a in B and x
in V, we define ax = a · x (the Boolean) product of a and x in B. Then V is a
Boolean vector space over B.

Let T, f : V → V be self-mappings defined by

fx = x and Tx = ξ for all x ∈ V (ξ is some element in V).

Let φ : B → B defined as in Example 2.1 and ψ : B → B defined by ψ(a) = a− 1
for all a ∈ B, where ‘1’ is the universal element of B.

Then TV ⊂ fV and for all x, y ∈ V

∥Tx− Ty∥ < φ(∥fx− fy∥)

where ∥.∥ is any norm defined on V. Thus all the hypotheses of Theorem 2.4 are
satisfied and ξ is a unique common fixed point of f and T .
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