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(ii) for a.a. t ∈ T , one has

{x ∈ X : F (t, ·) is not lower semicontinuous at x} ⊆ E.

Then, there exist a selection ϕ : T × X → S of F and a set V ∈ B(X), with
ψ(V ) = 0, such that:

(a) ϕ(·, x) is Tµ-measurable for each x ∈ X \ (E ∪ V );
(b) for a.a. t ∈ T , one has

{x ∈ X : ϕ(t, ·) is not continuous at x} ⊆ E ∪ V.

As an application of Theorem 1.2, the following existence result for solutions of
second-order (scalar) differential inclusions was proved in [5] (as usual, W 2,p([a, b])
denotes the space of all functions u ∈ C1([a, b]) such that u′ is absolutely continuous
in [a, b] and u′′ ∈ Lp([a, b]); moreover, L([a, b]) will denote the family of all Lebesgue-
measurable subsets of [a, b]).

Theorem 1.3 (Theorem 3 of [5]). Let [a, b] be a closed interval, F : [a, b]×IR→ 2IR

a multifunction, p ∈ [1,+∞[ .

Assume that there exists a multifunction G : [a, b] × IR → 2IR, with nonempty
closed values, and two functions α : [a, b] →]0,+∞[ and β ∈ Lp([a, b]) such that:

(i) G is L([a, b])⊗ B(IR) -measurable;
(ii) there exists E ⊆ IR, with m(E) = 0, such that for a.a. t ∈ [a, b] one has{

x ∈ IR : G(t, · ) is not l.s.c. at x
}
∪
{
x ∈ IR : G(t, x) ̸⊆ F (t, x)

}
⊆ E;

(iii) for a.a. t ∈ [a, b] and for all x ∈ IR, one has

G(t, x) ⊆ [α(t), β(t)].

Then, there exists u ∈W 2,p([a, b]) such that{
u′′(t) ∈ F (t, u(t)) for a.a. t ∈ [a, b]

u(a) = u(b) = 0.

The aim of this note is simply to extend Theorem 1.3 to the implicit case. Namely,
our aim is to prove the following result.

Theorem 1.4. Let [a, b], F , p, G, α and β be as in Theorem 1.3. Let A ⊆ ]0,+∞[
be another interval, and h : A→ IRa continuous function. Assume that assumptions
(i) and (ii) of Theorem 1.3 are satisfied. Moreover, assume that:

(iii)′ int(h−1(z)) = ∅ for all z ∈ int(h(A));
(iv)′ for a.a. t ∈ [a, b] and for all x ∈ IR, one has

G(t, x) ⊆ h(A) and h−1(G(t, x)) ⊆ [α(t), β(t)] ⊆ A.

Then, there exists u ∈W 2,p([a, b]) such that

(1.1)

{
h(u′′(t)) ∈ F (t, u(t)) for a.a. t ∈ [a, b]

u(a) = u(b) = 0.
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Of course, the main peculiarity of Theorems 1.3 and 1.4 resides in the kind
of discontinuity that is allowed for F . Indeed, assumption (ii) of Theorem 1.3 is
satisfied, for instance, if (taking F = G) there exists a null-measure set E ⊆ IR such
that for a.a. t ∈ [a, b] one has

{x ∈ IR : F (t, · ) is not lower semicontinuous at x
}
⊆ E.

As a matter of fact, Theorems 1.3 and 1.4 allow much more discontinuity for F .
Assumption (ii) is satisfied, for instance, if for a.a. t ∈ [a, b] one has{

x ∈ IR : G(t, · ) is not l.s.c. at x
}
∪
{
x ∈ IR : G(t, x) ̸= F (t, x)

}
⊆ E,

where G : [a, b]× IR→ 2IR is a multifunction and E ⊆ IR has null Lebesgue measure.
In this case, for a.a. t ∈ [a, b], the multifunction F (t, ·) is required to be a.e. equal
to a multifunction G(t, ·) which, in turn, is a.e. lower semicontinuous in IR. As
can be easily seen, such a multifunction F can fail to be lower semicontinuous
even at all points x ∈ IR. Therefore, assumption (ii) of Theorem 1.3 seems to be
much less restrictive than the usual lower semicontinuity, Lipschitz, Caratheodory,
almost lower semicontinuity conditions usually required in the literature (see, for
instance, [1–3,6–8,12,13] and the references therein).

In particular, when F is single-valued, assumption (ii) is satisfied if there exist
a L([a, b]) ⊗ B(IR)-measurable single-valued function g : [a, b] × IR → IR and a
null-measure set E ⊆ IR such that for a.e. t ∈ [a, b] one has{

x ∈ IR : g(t, · ) is discontinuous at x
}
∪
{
x ∈ IR : g(t, x) ̸= F (t, x)

}
⊆ E.

It is easy to see that such a function F can be discontinuous in the second variable
even at all points x ∈ IR. For instance, one can take (in the autonomous case) F (x)
as the usual Dirichlet function, which is discontinuous at each point x ∈ IR and
it is a.e. equal to a constant function. In this connection, it is useful to compare
Theorem 1.4 with Theorem 2.2 of [12], where the implicit (single-valued) boundary
value problem 1.1 is studied by assuming the continuity of F (under the same
hypotheses on h).

The proof of Theorem 1.4 will be given in Section 2. The main tools will be the
notion of inductively open function and a related result by B. Ricceri (Theorem
2.4 of [15]), together with Theorem 1.2 and an existence result for explicit and
graph-closed differential inclusions (Theorem 3 of [14]).

It is worth noticing that in Theorem 1.4 no convexity assumption is required on
the values of F . For the basic definitions and facts on multifunctions, the reader is
referred to [11].

2. Proof of Theorem 1.4

First, we observe that by assumption (iii)′ and Theorem 2.4 of [15] the function
h is inductively open. That is, there exists a set Y ∈ B(A) such that the function

h|Y : Y → h(A)

is open and h(Y ) = h(A). It follows that the multifunction T : h(A) → 2Y defined
by putting, for each s ∈ h(A),

T (s) = h−1(s) ∩ Y
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is lower semicontinuous in h(A) with nonempty values. To see this, fix any set
ΩY ⊆ Y , with ΩY open in the relative topology of Y . We get

T−(ΩY ) : = {s ∈ h(A) : T (s) ∩ ΩY ̸= ∅}
= {s ∈ h(A) : h−1(s) ∩ Y ∩ ΩY ̸= ∅}
= {s ∈ h(A) : h−1(s) ∩ ΩY ̸= ∅}
= h(ΩY ).

Since the function h|Y : Y → h(A) is open, the set h(ΩY ) is open in h(A). It follows
that the set T−(ΩY ) is open in h(A), hence T is lower semicontinuous in h(A), as
claimed.

Without loss of generality we can assume that assumptions (ii) and (iv)′ are
satisfied for all t ∈ [a, b]. Let Ψ : [a, b]× IR→ 2Y be defined by

Ψ(t, x) := T (G(t, x)) = h−1(G(t, x)) ∩ Y
(note that Ψ is well-defined since G(t, x) ⊆ h(A) for all (t, x) ∈ [a, b] × IR). We
observe the following facts:

(a) the multifunction Ψ is L([a, b])⊗B(IR) - weakly measurable. That is, for each
set Ω ⊆ Y , with Ω open in the relative topology of Y , the set

Ψ−(Ω) = {(t, x) ∈ [a, b]× IR : Ψ(t, x) ∩ Ω ̸= ∅}
belongs to L([a, b]) ⊗ B(IR) (this follows from Proposition 13.2.1 of [11], since G is
L([a, b])⊗ B(IR)-measurable and T is lower semicontinuous);

(b) Ψ has nonempty values and for all t ∈ [a, b] one has{
x ∈ IR : Ψ(t, · ) is not lower semicontinuous at x

}
⊆ E.

Indeed, if t ∈ [a, b] and x ∈ IR\ E are fixed, then the multifunction G(t, ·) is lower
semicontinuous at x, hence (by the lower semicontinuity of T ) the multifunction

x ∈ IR→ Ψ(t, x) = T (G(t, x))

is lower semicontinuous at x, as claimed.

Now, let Ψ : [a, b]× IR→ 2IR be defined by

Ψ(t, x) = Ψ(t, x).

It follows by assumption (iv)′ and by construction that

(2.1) Ψ(t, x) ⊆ [α(t), β(t)] for all (t, x) ∈ [a, b]× IR.

By Proposition 2.6 and Theorem 3.5 of [10], the multifunction Ψ is L([a, b])⊗B(IR)-
measurable with nonempty values. Moreover, for all t ∈ [a, b] one has{

x ∈ IR : Ψ(t, · ) is not l.s.c. at x
}
⊆ E.

By Theorem 1.2, there exists a selection ϕ : [a, b]× IR→ IR of Ψ and two neglegible
sets

K1 ⊆ [a, b] and V ⊆ IR

such that, if one puts D := E ∪ V , one has

(a)′ for each x ∈ IR\D, the function ϕ(·, x) is measurable;



IMPLICIT DIFFERENTIAL INCLUSION 1197

(b)′ for each t ∈ [a, b] \K1, one has{
x ∈ IR : ϕ(t, · ) is not continuous at x

}
⊆ D.

Moreover, by (2.1) we get

(2.2) ϕ(t, x) ∈ [α(t), β(t)] for all (t, x) ∈ [a, b]× IR.

Since m(D) = 0 (m denoting the Lebesgue measure on the real line), there exists a

numerable set P ⊆ IR\D which is dense in IR. Let H : [a, b]× IR→ 2IR be defined
by

H(t, x) =
∩

m∈IN

co
( ∪

y∈P,|y−x|≤ 1
m

{ϕ(t, y)}
)

(where “ co ” stands for “closed convex hull”) By Proposition 2 of [4], we have that:
(a)′′ H has nonempty closed convex values;
(b)′′ for all x ∈ IR, the multifunction H(·, x) is measurable;
(c)′′ for all t ∈ [a, b], H(t, ·) has closed graph;
(d)′′ for all t ∈ [a, b] \K1, and for all x ∈ IR\D, one has

H(t, x) = {ϕ(t, x)}.
Moreover, it follows by (2.2) that

H(t, x) ⊆ [α(t), β(t)] for all (t, x) ∈ [a, b]× IR.

By Theorem 3 of [14] (where we can take r = ∥β∥Lp([a,b])), there exists a function

u ∈W 2,p([a, b]) such that{
u′′(t) ∈ H(t, u(t)) for a.a. t ∈ [a, b]

u(a) = u(b) = 0.

Let K ⊆ [a, b], with K1 ⊆ K and m(K) = 0, be such that

u′′(t) ∈ H(t, u(t)) for all t ∈ [a, b] \K.
Since

u′′(t) ∈ H(t, u(t)) ⊆ [α(t), β(t)] for a.e. t ∈ [a, b],

we have that u′′(t) > 0 a.e. in [a, b]. It follows easily that u′ is strictly increasing in
[a, b]. Since u(a) = u(b) = 0, there exists a point c ∈ ]a, b[ such that

u′(t) < 0 for all t ∈ [a, c[ ,

u′(t) > 0 for all t ∈ ]c, b].

Let
g1 := u|[a,c], g2 := u|[c,b].

By Theorem 2 of [17], the functions g−1
1 and g−1

2 are absolutely continuous. There-

fore, by Theorem 18.25 of [9], the sets g−1
1 (D) and g−1

2 (D) have null Lebesgue
measure, hence m(u−1(D)) = 0. Consequently, the set

S := u−1(D) ∪K
has null Lebesgue measure. We claim that

(2.3) h(u′′(t)) ∈ F (t, u(t)) for all t ∈ [a, b] \ S.
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To this aim, fix t ∈ [a, b] \ S. Since u(t) /∈ D and t /∈ K, we get

u′′(t) ∈ H(t, u(t)) = {ϕ(t, u(t))},
hence

(2.4) u′′(t)) ∈ Ψ(t, u(t)) = h−1(G(t, u(t)) ∩ Y ⊆ h−1(G(t, u(t)).

Since G(t, u(t)) is closed and h is continuous, the set W := h−1(G(t, u(t)) is closed
in A. By (iv)′, we have

W := h−1(G(t, u(t)) ⊆ [α(t), β(t)] ⊆ A,

hence W is closed in IR. Consequently, by (2.4) we get

u′′(t) ∈ h−1(G(t, u(t)) = h−1(G(t, u(t)),

and thus h(u′′(t)) ∈ G(t, u(t)). Since u(t) /∈ E, we get G(t, u(t)) ⊆ F (t, u(t)), hence

h(u′′(t)) ∈ F (t, u(t))

and our claim (2.3) is proved. Consequently, the function u satisfies the conclusion.
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