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which is a strong one. Among other things, Shahzad and Zegeye [23] defined an
Ishikawa iteration for multivalued mappings and obtained the interesting results as
follows.

Let E be a nonempty closed convex subset of a Banach space X, {αn}, {βn} ⊂
[0, 1], and T : E → 2E be a multivalued mapping.
(A): The sequence of Ishikawa iterates [23] is defined by x1 ∈ E,

yn = βnzn + (1− βn)xn, n ≥ 1,

where zn ∈ T (xn), and

xn+1 = αnz
′
n + (1− αn)xn, n ≥ 1,

where z′n ∈ T (yn).

Theorem 1.1 ( [23, Theorem 2.3]). Let X be a uniformly convex Banach space, E
be a nonempty closed convex subset of X and T : E → 2E be a quasi-nonexpansive
mapping whose values are nonempty closed bounded subsets of E. Let {xn} be
the sequence of Ishikawa iterates defined by (A) with αn, βn ∈ [a, b] ⊂ (0, 1). If T
satisfies condition (I) and the endpoint condition, then {xn} converges strongly to
a fixed point of T.

Theorem 1.2 ( [23, Theorem 2.5]). Let X be a uniformly convex Banach space, E
be a nonempty closed convex subset of X and T : E → 2E be a quasi-nonexpansive
mapping whose values are nonempty closed bounded subsets of E. Let {xn} be
the sequence of Ishikawa iterates defined by (A) with 0 ≤ αn, βn < 1, βn → 0
and

∑
αnβn = ∞. If T is hemicompact and continuous and satisfies the endpoint

condition, then {xn} converges strongly to a fixed point of T.

Moreover, to avoid the endpoint condition, Shahzad and Zegeye [23] constructed
a modified Ishikawa iteration for proximally nonexpansive mappings and proved
strong convergence theorems of the proposed iteration as the following results.

Let E be a nonempty closed convex subset of a Banach space X, {αn}, {βn} ⊂
[0, 1], and T : E → 2E be a multivalued mapping whose values are nonempty
proximinal subsets of E. For each x ∈ E, let PT (x) = {u ∈ T (x) : ∥x − u∥ =
dist(x, T (x))}.
(B): The sequence of Ishikawa iterates [23] is defined by x1 ∈ E,

yn = βnzn + (1− βn)xn, n ≥ 1,

where zn ∈ PT (xn), and

xn+1 = αnz
′
n + (1− αn)xn, n ≥ 1,

where z′n ∈ PT (yn).

Theorem 1.3 ( [23, Theorem 2.7]). Let X be a uniformly convex Banach space,
E be a nonempty closed convex subset of X and T : E → 2E be a proximally
nonexpansive mapping whose values are nonempty proximinal subsets of E with
Fix(T ) ̸= ∅. Let {xn} be the sequence of Ishikawa iterates defined by (B) with
αn, βn ∈ [a, b] ⊂ (0, 1). If T satisfies condition (I), then {xn} converges strongly to
a fixed point of T.
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Theorem 1.4 ( [23, Theorem 2.8]). Let X be a uniformly convex Banach space,
E be a nonempty closed convex subset of X and T : E → 2E be a proximally
nonexpansive mapping whose values are nonempty proximinal subsets of E with
Fix(T ) ̸= ∅. Let {xn} be the sequence of Ishikawa iterates defined by (B) with
0 ≤ αn, βn < 1, βn → 0 and

∑
αnβn = ∞. If T is hemicompact, then {xn}

converges strongly to a fixed point of T.

In 2011, Song and Cho [25] introduced the notion of proximally quasi-nonexpansive
mappings and extended Theorems 1.3 and 1.4 to the case of proximally quasi-
nonexpansive mappings. However, in general Banach spaces, the class of such
mappings is different from the class of multivalued quasi-nonexpansive mappings
(see Examples 4.2 and 4.3). Therefore, the convergence of an Ishikawa iteration for
multivalued quasi-nonexpansive mappings without the endpoint condition is still
unknown.

On the other hand, the present authors [21] proved the convergence of an Ishikawa
iteration for multivalued quasi-nonexpansive mappings in an R-tree by assuming the
gate condition which is weaker than the endpoint condition. Summary: there is no
any result in Banach or metric spaces concerning the convergence of an Ishikawa
iteration for multivalued quasi-nonexpansive mappings which completely removes
the endpoint condition. Therefore, the following question can be of interest:

Question 1.5. Let T be a multivalued quasi-nonexpansive mapping defined on a
complete R-tree X and let {xn} be a sequence of the Ishikawa iterates defined from
T. Assume that T satisfies condition (I) or T is hemicompact and continuous. Does
{xn} converge to a fixed point of T?

In this paper, we show that every multivalued quasi-nonexpansive mapping de-
fined on a subset of a complete R-tree is proximally quasi-nonexpansive. Moreover,
we prove the strong convergence of the Ishikawa iteration defined by (B) for proxi-
mally quasi-nonexpansive mappings without assuming the endpoint condition. This
gives an affirmative answer to the question mentioned above.

2. Preliminaries and lemmas

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a
map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and
d(c(t), c(t′)) = |t−t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image of c is called a geodesic segment joining x and y. When it is unique this
geodesic is denoted by [x, y]. For x, y ∈ X and α ∈ [0, 1], we denote the point
z ∈ [x, y] such that d(x, z) = αd(x, y) by (1 − α)x ⊕ αy. The space (X, d) is said
to be a geodesic space if every two points of X are joined by a geodesic, and X is
said to be uniquely geodesic if there is exactly one geodesic joining x and y for each
x, y ∈ X. A subset E of X is said to be convex if E includes every geodesic segment
joining any two of its points. If x ∈ X and E ⊂ X, then the distance from x to E
is defined by

dist(x,E) = inf{d(x, y) : y ∈ E}.
The set E is called proximinal if for each x ∈ X, there exists an element y ∈ E such
that d(x, y) = dist(x,E), and E is said to be gated if for any point x /∈ E there is
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a unique point yx such that for any z ∈ E,

d(x, z) = d(x, yx) + d(yx, z).

The point yx is called the gate of x in E. We shall denote by 2E the family of
nonempty subsets of E, by P(E) the family of nonempty proximinal subsets of E,
by C(E) the family of nonempty closed subsets of E and by CC(E) the family of
nonempty closed convex subsets of E. Let H(·, ·) be the Hausdorff distance on 2E ,
i.e.,

H(A,B) = max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

}
, A,B ∈ 2E .

Let T : E → 2E be a multivalued mapping. For each x ∈ E, we let

PT (x)(x) = {u ∈ T (x) : d(x, u) = dist(x, T (x))}.
In the case of PT (x)(x) is a singleton we will assume, without loss of generality, that
PT (x)(x) is a point in E. A point x ∈ E is called a fixed point of T if x ∈ T (x).

Definition 2.1. Let E be a nonempty subset of a metric space (X, d) and T : E →
2E . Then T is said to be

(i) nonexpansive if H(T (x), T (y)) ≤ d(x, y) for all x, y ∈ E;
(ii) quasi-nonexpansive if Fix(T ) ̸= ∅ and

H(T (x), T (p)) ≤ d(x, p) for all x ∈ E and p ∈ Fix(T ).

(iii) proximally nonexpansive if the map PT : E → 2E defined by x 7→ PT (x)(x)
is nonexpansive;

(iv) proximally quasi-nonexpansive if the map PT : E → 2E defined by x 7→
PT (x)(x) is quasi-nonexpansive.

The mapping T is said to satisfy condition (I) if there is a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that

dist(x, T (x)) ≥ f(dist(x,Fix(T ))) for all x ∈ E.

The mapping T is called hemicompact if for any sequence {xn} in E such that

lim
n→∞

dist(xn, T (xn)) = 0,

there exists a subsequence {xnk
} of {xn} and q ∈ E such that limk→∞ xnk

= q.

Definition 2.2. An R-tree (sometimes called metric tree) is a geodesic metric space
X such that:

(i) there is a unique geodesic segment [x, y] joining each pair of points x, y ∈ X;
(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

By (i) and (ii) we have

(iii) if u, v, w ∈ X, then [u, v] ∩ [u,w] = [u, z] for some z ∈ X.

An R-tree is a special case of a CAT(0) space. For a thorough discussion of
these spaces and their applications, see [1]. We now collect some basic properties
of R-trees.

Lemma 2.3. Let X be a complete R-tree and E be a nonempty subset of X. Then
the following statements hold:
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(i) [6, page 1048] the gate subsets of X are precisely its closed and convex
subsets;

(ii) [1, page 176] if E is closed and convex, then for each x ∈ X, there exists a
unique point PE(x) ∈ E such that

d(x, PE(x)) = dist(x,E).

That is, every nonempty closed convex subset of a complete R-tree is prox-
iminal.

(iii) [1, page 176] if E is closed convex and if x′ belong to [x, PE(x)], then
PE(x

′) = PE(x);
(iv) [15, Lemma 3.1] if A and B are closed convex subsets of X, then, for any

u ∈ X,
d(PA(u), PB(u)) ≤ H(A,B);

(v) [5, Lemma 2.5] if x, y, z ∈ X and α ∈ [0, 1], then

d2((1− α)x⊕ αy, z) ≤ (1− α)d2(x, z) + αd2(y, z)− α(1− α)d2(x, y);

(vi) [21, Lemma 3.1] if E is closed convex and there exist u ∈ X and v ∈ X−E
such that v ∈ [PE(v), u], then PE(v) = PE(u).

The following lemma can be found in [25]. We observe that the boundedness of
the images of T is superfluous.

Lemma 2.4. Let E be a nonempty subset of an R-tree X and T : E → P(E) be a
multivalued mapping. Then

(i) dist(x, T (x)) = dist(x, PT (x)(x)) for all x ∈ E;
(ii) x ∈ Fix(T ) ⇐⇒ x ∈ Fix(PT ) ⇐⇒ PT (x)(x) = {x};
(iii) Fix(T ) = Fix(PT ).

The following lemma is also needed.

Lemma 2.5 ([17]). Let {αn}, {βn} be two real sequences such that

(i) 0 ≤ αn, βn < 1;
(ii) βn → 0 as n → ∞;
(iii)

∑
αnβn = ∞.

Let {γn} be a nonnegative real sequence such that
∑

αnβn(1 − βn)γn is bounded.
Then {γn} has a subsequence which converges to zero.

3. Main results

Proposition 3.1. Let E be a nonempty subset of a complete R-tree X. If T : E →
CC(E) is quasi-nonexpansive, then T is proximally quasi-nonexpansive.

Proof. Let x ∈ E and p ∈ Fix(PT ). By Lemma 2.4, PT (p)(p) = {p}. In the case of
PT (x)(x) ∈ [x, p], we have d(PT (x)(x), PT (p)(p)) ≤ d(x, p) and the conclusion follows.
But, if PT (x)(x) /∈ [x, p], we will show that PT (x)(x) = PT (x)(p). Let v be the gate of
PT (x)(x) in [x, p]. Then v ̸= PT (x)(x). Since v ∈ [x, PT (x)(x)], then by Lemma 2.3(iii)
we have PT (x)(v) = PT (x)(x). This implies that v ∈ [PT (x)(v), p]. Since v /∈ T (x), by
Lemma 2.3(vi) we have

PT (x)(x) = PT (x)(v) = PT (x)(p).
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This, together with Lemma 2.3(iv), we obtain that

d(PT (x)(x), PT (p)(p)) = d(PT (x)(p), PT (p)(p))

≤ H(T (x), T (p))

≤ d(x, p).

Therefore, the proof is complete. �

If E is a nonempty subset of a complete R-tree X and T : E → CC(E) a mul-
tivalued mapping with Fix(T ) ̸= ∅, then by using Lemma 2.4, Proposition 3.1
and [21, Proposition 3.2] we can obtain the following implications. Examples 4.1
and 4.2 show that the converses do not hold.

T is nonexpansive ⇒ T is quasi-nonexpansive

⇓ ⇓
T is proximally nonexpansive ⇒ T is proximally quasi-nonexpansive

The following theorem is a consequence of Theorem 3.2 in [19].

Theorem 3.2. Let X be a complete R-tree, E be a nonempty closed convex subset
of X and T : E → C(E) be a quasi-nonexpansive mapping with Fix(T ) ̸= ∅ and
T (p) = {p} for each p ∈ Fix(T ). Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be the sequence
of Ishikawa iterates defined by (A) (replacing + with ⊕). If T satisfies condition
(I), then {xn} converges strongly to a fixed point of T.

Now, we are ready to prove our main theorems.

Theorem 3.3. Let X be a complete R-tree, E be a nonempty closed convex subset
of X and T : E → P(E) be a proximally quasi-nonexpansive mapping. Let {xn}
be the sequence of Ishikawa iterates defined by (B) (replacing + with ⊕). Assume
that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1). Then {xn} converges to a
fixed point of T .

Proof. It follows from Lemmas 2.4 that dist(x, PT (x)(x)) = dist(x, T (x)) for all
x ∈ E,

Fix(PT ) = Fix(T ) and PT (p) = {p} for all p ∈ Fix(PT ).

Since T satisfies condition (I), for each x ∈ E we have

dist(x, PT (x)(x)) = dist(x, T (x)) ≥ f (dist(x,Fix(T ))) = f (dist(x,Fix(PT ))) .

That is, PT satisfies condition (I). Next, we show that PT (x)(x) is closed for any
x ∈ E. Let {yn} ⊂ PT (x)(x) and limn→∞ yn = y for some y ∈ E. Then

d(x, yn) = dist(x, T (x)) and lim
n→∞

d(x, yn) = d(x, y).

It follows that d(x, y) = dist(x, T (x)) and this implies y ∈ PT (x)(x). Applying
Theorem 3.2 to the map PT , we can conclude that the sequence {xn} defined by
(B) converges to a point x0 ∈ Fix(PT ) = Fix(T ). This completes the proof. �

As a consequence of Proposition 3.1 and Theorem 3.3, we obtain
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Corollary 3.4. Let X be a complete R-tree, E be a nonempty closed convex
subset of X and T : E → CC(E) be a quasi-nonexpansive mapping. Let {xn} be
the sequence of Ishikawa iterates defined by (B) (replacing + with ⊕). Assume that
T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1). Then {xn} converges to a fixed
point of T .

Theorem 3.5. Let X be a complete R-tree, E be a nonempty closed convex subset
of X and T : E → P(E) be a proximally quasi-nonexpansive mapping. Let {xn}
be the sequence of Ishikawa iterates defined by (B) (replacing + with ⊕). Assume
that T is hemicompact and continuous and (i) 0 ≤ αn, βn < 1; (ii) βn → 0 and (iii)∑

αnβn = ∞. Then {xn} converges to a fixed point of T.

Proof. Let p ∈ Fix(T ) = Fix(PT ). Then PT (p)(p) = {p}. For each n ≥ 1, we have

d(yn, p) = d(βnzn ⊕ (1− βn)xn, p)

≤ βnd(zn, p) + (1− βn)d(xn, p)

= βnd(zn, PT (p)(p)) + (1− βn)d(xn, p)

≤ βnH(PT (xn)(xn), PT (p)(p)) + (1− βn)d(xn, p)

≤ βnd(xn, p) + (1− βn)d(xn, p)

≤ d(xn, p)

and

d(xn+1, p) = d(αnz
′
n ⊕ (1− αn)xn, p)

≤ αnd(z
′
n, p) + (1− αn)d(xn, p)

= αnd(z
′
n, PT (p)(p)) + (1− αn)d(xn, p)

≤ αnH(PT (yn)(yn), PT (p)(p)) + (1− αn)d(xn, p)

≤ αnd(yn, p) + (1− αn)d(xn, p)

≤ d(xn, p).

This shows that the sequence {d(xn, p)} is decreasing and bounded below. Thus
limn→∞ d(xn, p) exists for any p ∈ Fix(T ). Applying Lemma 2.3(v), for each p ∈
Fix(T ) we have

d2(xn+1, p) = d2(αnz
′
n ⊕ (1− αn)xn, p)

≤ (1− αn)d
2(xn, p) + αnd

2(z′n, p)− αn(1− αn)d
2(xn, z

′
n)

≤ (1− αn)d
2(xn, p) + αnH

2(PT (yn)(yn), PT (p)(p))

−αn(1− αn)d
2(xn, z

′
n)

≤ (1− αn)d
2(xn, p) + αnd

2(yn, p)− αn(1− αn)d
2(xn, z

′
n)

≤ (1− αn)d
2(xn, p) + αnd

2(yn, p).(3.1)

and

d2(yn, p) = d2(βnzn ⊕ (1− βn)xn, p)

≤ (1− βn)d
2(xn, p) + βnd

2(zn, p)− βn(1− βn)d
2(xn, zn)

≤ (1− βn)d
2(xn, p) + βnH

2(PT (xn)(xn), PT (p)(p))
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−βn(1− βn)d
2(xn, zn)

≤ (1− βn)d
2(xn, p) + βnd

2(xn, p)− βn(1− βn)d
2(xn, zn)

≤ d2(xn, p)− βn(1− βn)d
2(xn, zn).(3.2)

By (3.1) and (3.2), we have

d2(xn+1, p) ≤ (1− αn)d
2(xn, p) + αnd

2(xn, p)− αnβn(1− βn)d
2(xn, zn).

Therefore,
αnβn(1− βn)d

2(xn, zn) ≤ d2(xn, p)− d2(xn+1, p).

This implies
∞∑
n=1

αnβn(1− βn)d
2(xn, zn) < ∞.

Thus, by Lemma 2.5, there exists subsequences {xnk
} and {znk

} of {xn} and {zn}
respectively, such that limk→∞ d(xnk

, znk
) = 0. Hence

lim
k→∞

dist(xnk
, T (xnk

)) = lim
k→∞

dist(xnk
, PT (xnk

)(xnk
)) ≤ lim

k→∞
d(xnk

, znk
) = 0.

Since T is hemicompact, by passing through a subsequence, we may assume that
xnk

→ q for some q ∈ E. Since T is continuous,

dist(q, T (q)) ≤ d(q, xnk
) + dist (xnk

, T (xnk
)) +H(T (xnk

), T (q)) → 0 as k → ∞.

This implies that q ∈ Fix(T ). Thus limn→∞ d(xn, q) exists and hence q is the limit
of {xn} itself. �

The following corollary can also be obtained.

Corollary 3.6. Let X be a complete R-tree, E be a nonempty closed convex
subset of X and T : E → CC(E) be a quasi-nonexpansive mapping. Let {xn} be
the sequence of Ishikawa iterates defined by (B) (replacing + with ⊕). Assume that
T is hemicompact and continuous and (i) 0 ≤ αn, βn < 1; (ii) βn → 0 and (iii)∑

αnβn = ∞. Then {xn} converges to a fixed point of T.

4. Examples

Example 4.1 (see [23] (A quasi-nonexpansive mapping which is not nonexpansive
and a proximally quasi-nonexpansive mapping which is not proximally nonexpan-
sive.)). Let E = [0,∞) and T : E → CC(E) be defined by

T (x) =


{0} if 0 ≤ x ≤ 1;[
x− 3

4 , x− 1
2

]
if 1 < x < 10;[

x− 3
4 , x− 1

10

]
if x ≥ 10.

Then Fix(T ) = {0}. It is easy to see that H(T (x), T (0)) ≤ d(x, 0) for each x ∈
E. This implies that T is quasi-nonexpansive and hence T is proximally quasi-
nonexpansive by Proposition 3.1. However, for x = 10 and y = 2, we have

d
(
PT (10)(10), PT (2)(2)

)
= d

(
10− 1

10
, 2− 1

2

)
=

84

10
> d(10, 2).

This implies that T is not proximally nonexpansive. Hence it is not nonexpansive.
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Example 4.2 (see [28] (A proximally nonexpansive mapping which is not nonex-
pansive and a proximally quasi-nonexpansive mapping which is not quasi-nonex-
pansive.). Let E = [0,∞) and T : E → CC(E) be defined by

T (x) = [x, 2x] for all x ∈ E.

By Lemma 2.4, Fix(T ) = Fix(PT ) = [0,∞) and PT (x)(x) = {x} for every x ∈ E.
For each x, y ∈ E we have

d(PT (x)(x), PT (y)(y)) ≤ d(x, y).

This implies that T is proximally nonexpansive and hence proximally quasi-nonexpan-
sive. However, for x = 1 and y = 0, we have

H(T (1), T (0)) = H([1, 2], 0) > d(1, 0).

This shows that T is not quasi-nonexpansive and hence it is not nonexpansive.

Example 4.3 (see [28] (A quasi-nonexpansive mapping which is not proximally
quasi-nonexpansive)). Let E be the triangle in the Euclidean plane with vertexes
O(0, 0), A(1, 0), B(0, 1). Let T : E → CC(E) be given by

T (x, y) = the segment joining (0, 1) and (x, 0).

Then PT (x, y) is the point in T (x, y) which is nearest to (x, y) as shown in Figure
1. By Lemma 2.4, Fix(T ) = Fix(PT ) = {(x, 0) : x ∈ [0, 1]} ∪ {(0, y) : y ∈ [0, 1]}. For
each (x1, y1), (x2, y2) ∈ E, we have

H(T (x1, y1), T (x2, y2)) = |x1 − x2| ≤ d((x1, y1), (x2, y2)).

That is, T is nonexpansive and hence quasi-nonexpansive. But, for (x, y) ∈ E with
0 < x, y < 1 we have

d(PT (x, y), PT (1, 0)) = d(PT (x, y), (1, 0)) > d ((x, y), (1, 0)) .

This implies that PT is not quasi-nonexpansive.

Figure 1. PT (x, y) is the point in T (x, y) which is nearest to (x, y).
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