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FIXED POINTS OF CORRESPONDENCES IN VECTOR VALUED
METRIC SPACES AND APPLICATIONS IN INTEGRAL
EQUATIONS

RAVI P. AGARWAL, FATEMEH LAEL, KOUROSH NOUROUZI, AND DONAL O’'REGAN

ABSTRACT. In the present paper, we give some fixed point theorems for corre-
spondences defined on vector valued metric spaces. Our main results reformulate
the fixed point theorems given by Assad, Kirk, Zamfirescu, Kannan, Chatter-
jea and Ciri¢ in vector valued metric spaces. We also apply the main results in
solving some integral equations.

1. INTRODUCTION AND PRELIMINARIES

The motivation of vector valued metric spaces was initiated in [1] by the first
author and then formulated in [2] to give a vector version of Caristi’s fixed point
theorem and Kirk’s problem.

The purpose of this work is to investigate the fixed points of correspondences
satisfying special contractive conditions in vector valued metric spaces. We show
how the results in this paper reformulate the Assad- Kirk [3], Zamfirescu [8], Kannan
7], Chatterjea [4], and Ciri¢ theorems to non-self correspondences on vector valued
metric spaces. Also we give applications of the main results for integral equations.

We first recall some notions which will be used in the sequel.

Let (£,=) be an ordered Banach space with (positive) cone &, = {c € £ : ¢ = 0},
where 0 is the null vector.

Throughout this paper the notation z < y indicates that < y and x # y, while
r < y stands for y — x € int€,, where int€, denotes the interior of &, .

Definition 1.1 ([2]). Let X be a nonempty set and (£, <) be an ordered Banach
space. If a mapping d : X x X — & satisfies the following conditions:

(1) 0 < d(z,y) for all z,y € X and d(x,y) = 0 if and only if x = y;
(2) d(z,y) = d(y,z) for all z,y € X;

(3) d(z,y) 2 d(z,2) +d(y, z) for all z,y,z € X;
then (X, d) is called a vector valued metric space (vvms for short).

Let {x,} be a sequence in vvms X, x € X, and ¢ > 6. If there is a positive
integer N such that d(x,,z) < ¢ for all n > N, then {x,} is said to be convergent
to x, denoted by x,, — x. If there is a positive integer N such that d(x,,z,) < ¢
for all n,m > N, then {z,} is called a Cauchy sequence in X. If every Cauchy
sequence is convergent to a point of X, then X is called a complete vvms.

A subset C' C X is said to be closed if it contains the limit of all its convergent
sequences. The closure of C' denoted by C is defined as the set of all points of X

2010 Mathematics Subject Classification. Primary 47H10; Secondary 47H04.
Key words and phrases. Vector valued metric spaces, fixed point, contraction, correspondence.



1168 R. P. AGARWAL, F. LAEL, K. NOUROUZI, AND D. O’'REGAN

that are the limit point of some sequence in C. For a subset C' of X, the set of all
x € C'NC¢is called the boundary of C and it is denoted by 0C.

2. MAIN RESULTS

A correspondence T from a set C' to a set X assigns to each x in X a nonempty
subset T'(x) of X. For any subset C' of X and a correspondence T : C' — X, an
element = € C is said to be a fixed point if x € T'(z). Also, T(C) := UeecT (c).

In the sequel, it is assumed that X is a vvms over an ordered Banach space
(€,=) which its positive cone has nonempty interior, C' a closed subset of X with
nonempty boundary, and for any = € C, y € X \ C, there exists a point z € 9C
such that d(z,z) 4+ d(z,y) = d(x,y). It is also supposed that T': C — X is a
correspondence with closed values and T'(z) C C for each x € 9C.

Theorem 2.1. Let T : C — X be a correspondence that for each z,y € C, and
p € T(x) there exists ¢ € T(y) such that

d(p,q) = ku(z,y,p,q),

where k € (0,1) and
(2.1) w(z,y,p.q) € {d(ﬂg y)’ d(z, p) ;r d(y, Q)’ d(z,q) —?t d(y,p)j d(z;p)’ d(y2, q) }

Then T has a fixed point.

Proof. We first construct a sequence {p,} in C as follows. Choose py € C and
py € T(po). If pj € C, set p1 = p}. Otherwise, select a point p; € C C C such
that d(po, p1) + d(p1,p}) = d(po, py). We choose py € T'(p1) such that

d(pl, ph) = ku(po, p1, P, ph)-

Now, if p, € C, set pl, = pa, otherwise again choose ps € 9C such that d(p;,p2) +
d(p2,p5) = d(p1,p5). Continuing in this manner, we obtain sequences {p,} and
{pl,} such that for n € NU {0},

b p;erl € T(pn)7

® d(p;—‘rl?p/n) = ku(pn—lvpnap;wp;l+1)7
o if pj ;€ C, then p | = pyy1; otherwise ppy1 € 9C such that d(pn, ppy1) +

d(pr+1,pg1) = A(Pn, Ppsr)-
Now, set
P = {p; € {pa} : pi = pj;i € NU{0},
Q = {pi € {pn} : pi # i € NU{0}}.
Choose n > 2. We have the following three cases:
Case 1. Suppose that p,,pp+1 € P.

Then, if
d(pn, pn—1
U(pn—lapﬂmp;wp/n-i-l) = (an)’
we have
d(pnapn-‘rl) = d(p;wp;wrl)

PN

%d(pmpn—l)'
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If w(Pp—1, Pns P Plyy1) = 2(d(pn—1,p},) + d(P)y1,Pn)), We have
d(pn7pn+1) = d(p'/nap%-l,-l)
< E(d(pn,pn—1) + d(Pnt1,n)),

therefore

k
= 5 d(Pn, Pn—1).
= 5740 Pa-1)

If u(pn*hpnvp;wp{n-}—l) = %(d(pnap{n) + d(p;l-i,-lvpnfl))a we have

d(pnapn+1)

d(Pn,Pnv1) = A0y, D)iy)
=< E(d(pns1,pn—1) + A, pn))
= %(d(pn—&—lapn)+d<pmpn—1))7

SO

k
d ny ’n j —d ny M’n— .
(Pns Pn+1) 3—k:(p Pn-1)
If wW(pn—1, P, P Plhy1) = 5d(Pp—1,p,), we have
d(pmpn-‘rl) = d(pﬁm,p%_H)

= %d(pmpnfl)-

If u(pn—17pn7p;17p;b+1) = %d(pn,p,/n_;’_l), we have

d(p'/nap%-l,-l)
%d(pna pn+1)7

d(pn7pn+1)

PN

SO d(pn7pn+l) = 0.
Thus, for pn, pn+1 € P we have

d(pn7pn+1) = kd(pnapnfl)-
Case 2. Suppose that p, € P,pp+1 € Q.
If u(pnfl’pnap;wp'ln,-l,-l) = %d(pnflapn)a we have

d(pnap%+1) = d(p;wpéwrl)
= %d(pnvpn—l)-

If u(pn—hpnup/n?p;)fkl) = %(d(pn—bp;),) + d(p;pklapn))a we have
d(pn7p;1+1) = d(p;wp;ﬂ-l)
j %(d(p;wpn—l) + d(p;z+17pn))
SO
, k
d(]?mpn+1) = ?)_—kd(pnapn—l)-

If w(pn—1, Pn, P Plys1) = 5(d(pn, D)) + d(Plyyr, Pr-1)), we have
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d(pmp;wl) = d(p;up;prl)
= E(d(p) g1, Paa1) + (D, )
= %(d(p;z-i-ppn) + d(pn,pnq)),

SO

d(pn7p;l+1) = d(pnapn—l)‘

L
3k

If u(pnfhpnap;wp;@-}l) = %d(pnflvp'ln,)a we have

QU

d(pnap;1+1) = (p;wp%—i-l)
< Ed(pn,pn-1).

If wW(Pn—1, P, Pys Plyy1) = 5d(Pps Phyyq), We have

QU

d(pn,p;ﬁl) = (p/n’p;l-l—l)
= %d(pnaanrl)a

and therefore d(py, pn+1) = 0 since d(pn, Ppt1) +d(Prt1, Py y1) = d(Pn, P}, 1) implies
d(pn, Pnt1) = d(pn,D)4q)- Observe that if p, € P,pn41 € Q, by the relations above
we get

oyl

(2'2) d(pnapn+1) _d(pmpn 1)

\V]

Next suppose p, € Q. Note p, # pl, i.e. p,, & C and so p, € 9C. Since
T(0C) C C and p;, ., € T(pn), therefore pf, . ; € C' and consequently p;, | = ppi1,
i.e., pn+1 € P. This implies that the case p, € @ and p,41 € @ is impossible. Thus,
it remains to consider the following case.

Case 3. Suppose p, € Q and p,41 € P.

We note that by the last argument p,—1 € P. If u(pp—1,pn, P Phy1) = %d(pn_l,pn),
we have

IA

d(pn,p},) + d(ph, Prt1)

(
d(p;
(
(pr

d(pn, Pn+1)

IA

P pn) + Ed(pn, pp—1)

Pn)

I
2

Pn—1,P
p 17

I
a

/
n
/
TL

A

kd(pn—2,pn-1)-

If w(pn—1, Pn, P Plys1) = 3(d(pn—1,p},) + d(pl,41,pn)), we have
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=Y

(P Prs1)
d(py, pn) + d(D, Py
(Pn—1,7n) + (P Py
d(Pn-2,Pn-1) + 5(d(P) Prn1) + d(Pn> Pry1))
(5d(pn—2,Pn—1) + d(Prs Pnt1)) + Ed(Pp—2,Pn—1)

d(Pm pn+1)

A TA T
U

A
SOESCIES

= B d(pn-2,pn1) + Edpn, pri1)) + Ed(pn—2, pa1).

Therefore

k? + 3k
6 — 2k

d(pn,Pr+1) =< d(pn—2,Pn—1)-

If u(pn*bpnvp;wp{n-}—l) = %(d(prnp;) + d(p',n-i,-lvpnfl))v we have

d(pn,pny1 = d(PnsPry1)
d(py, pn) + d(Py, Pri)
d(pp,_1,0) + d(py, D)

LA TA

k
d<pn—27pn—1) + = d(p;ppn) + d(pn—lupn-i-l))

5

IA
s

k
= _d(pn—27pn—1) + g(d(p;wpizfl) - d(pn—lapn) + d(pn—lvpn—i—l))

TN

A

-d n—2 ’n—
2(1? 2,Pn—1)

k
+=(d(phy ph1) — d(pn—1,n) + d(Pn=1,Pn) + d(Pn, Pnt1))

3
k k
3(2d(]9n 2, Pn—1) + d(Pns Pnt1)),

PN

k
2d(pn 2, Pn—1) +

and so

k* + 3k
6 — 2k

d(pmpn—H) = d(pn—Qapn—l)-

If w(pn—1, s Dy Progr) = 5d(Pp—1,p},), we have

IA

d(pn, py,) + d(py, Pry1)
APy, pn) + Ed(p},, Pn—1)

d(pn—1,p},) + Ed(p,, pn_1)
k2 2k
4

d(pmpn+1)

IA

IA

PN

d(panapnfl)

If wW(Pr—1, P, Py Play1) = 5d(Pp,Dhyyq), We have
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d(pnvpn—i-l) j pnapn) + d(pn7pn+1)

d(
< d(p,pn) + 5d(pn;poi1)
< d(pu-1,7,) + 5d(pn, pps1)
= %d(pnf%pnfl) + §d(pnapn+1),

SO

k
d ny ’n —< —d n—zy Fn—
(p p +1) 2k (p 2, P 1)

Combining all cases, for n > 2, we have
d(pn;pn-{-l) j kd(pnvpn—l)a
or
d(pmanrl) = kd(pnf%pnfl)-
Let M € {d(po,p1),d(p1,p2)}. We have
m—1 En

d(pn,pm) = D d(pipiv) 2 T

i=n
Let ¢ > 6 be given. Choose ¢ > 0 such that ¢ + Ns(0) C P, where
N5(0) = {y € X : |lyll < é}.

Then %M € Ns(0), for all sufficiently large n. Thus for all sufficiently large m
and n where m > n, we have

M.

n

M .
~1-% <L c

d(pn7pm)

That is {p,} is a Cauchy sequence in (X, d). Now, by the completeness of (X,d),
there exists p € X such that p, — p. By our choice of {p,}, there exists a sub-
sequence {p,,} of {p,} such that p,, € P, ie., p,, = p,,, i = 1,2,.... Note
Py, € T(pn,—1) for i € N. Let ¢ > 6 be given. For p,. € T(pp,—1) there exists
dn; € T(p) such that

d(Qni ) pni) = kU(Pni—l,P,Pnia Qni)-

If U(pnifl,P,pnpqm) — %d(pni—hp)’ we have

d(qn;,p) = d(qn;sPn;) + d(Pn;,p)

If w(pn,—1, P, Pny» Gn;) = 3(d(pri—1,Pn;) + d(p, an,)), then

IA

d(p, ph,) + d(Ph,» an;)
%(d(pnmpnl—l) + d(qnzvp)) =+ d(pniap>7

d(qn;,p)

IA
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SO (1 )d(QH“p) %d(pnppni—l) + d(pnivp)a and hence
k 3
(ana ) -3 k (pni;pni—l) + B—kd(pn“p)
It u(pnlfbp)pnza in) = %( (pnlap) + d(Qnmpnzfl))a we have

d(gn;,p) = d(Gn;,Pn;) + d(Pn;, D)
=< E(d(pni-1,an,) + (P}, p)) + d(pn,, D)
< E(d(pn,—1,p) + d(p, @n,) + APy, P)) + d(pn,, p).
This implies that
k 3
d g = n;—1 d /-7 —d Ny ) -
(ani»p) = 5= (d(pni—1,p) + d(pn,, p) + 5— d(Pni, )

If u(pni—l)prnia in) - %d(pni—lapni)7 we have
d(qn;,p) = d(qn;,Pn;) + d(pn;,p)
= d(pn,,p) + Ed(pn,—1,Pn,)-

If u(pni—17p7pni7 Q’nl) - %d(p7 QTLl)7 we have
=< d(pn,,p) + 5d(p, an,)-

Thus, d(gn,,p) < c for sufficiently large n. Since T'(p) is closed, p € T'(p). O

Arguing similarly as in the theorem above, we also have the next result which
generalizes Ciri¢’s Theorem [5] for the quasi-contraction mappings when k € (0, 3).
We omit its proof.

Theorem 2.2. Let T : C'— X be a correspondence that for each x,y € C, p € T(x)
there exists g € T'(y) such that

d(p,q) = ku(z,y,p,q),
where k € (0, 3) and

u(z,y,p,q) € {d(z,y),d(x,q),d(y,p),d(x,p),d(y,q)}.
Then T has a fized point.

Now, we list some corollaries of Theorem 2.1.

Corollary 2.3. Let T : C — X be a correspondence that for each x,y € C, p € T(x)
there exists q € T(y) such that

d(p,q) = ku(z,y,p,q),

where

(2.3) u(z,y.p.q) € {d(ﬂg y)’ d(fr;p)7 d(y2, q)’ d(z,p) zd(y,q)7 d(:v,q)z.—d(y,p)},

and k € (0,1),€ > 14 2k. Then T has a fized point.
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Proof. 1t is easy to see that (2.3) implies that

d(p7 q) j kl’lj;(l’, Y, D, q)7

where
d(z,y) d(z,p) d(y,q) d(z,p)+d(y,q) d(z,q)+ d(y,p)}
u(m7y7p7Q)e{ 2 b 2 ) 2 ) 3 ) 3 )
and k1 = % Thus, by Theorem 2.1, T has a fixed point. U

The following corollary is a generalization of Zamfirescu’s Theorem [8] when
0<a<30<B<iand0<y<s3.

Corollary 2.4. Let o, 3,7 be positive real numbers with o < %, B8 < %, v < %, and
T :C — X such that for each xz,y € C and p € T'(x) there exists q € T'(y) which at
least one of the following conditions holds:

a) d(p,q) = ad(z,y),

b) d(p,q) = B(d(z,p) + d(q,y)),

c) d(p,q) = v(d(y,p) + d(q, z)).
Then T has a fixed point.

Proof. Let k := max{2«, 30,3~v}. Then, we have d(p,q) < ku(z,y,p,q), where

d(z,y) d(z,p)+d(g,y) d(y,p) +d(q,x)}
2 3 ’ 3 )
Now, Theorem 2.1 guarantees that 1" has a fixed point. Il

u(x,y,p,q) € {

Corollary 2.5. Let T : C — X be a correspondence that for each x,y € C, p € T(x)
there exists g € T'(y) such that

(2.4) d(p,q) = kd(z,y),

where k € (0,1). Then T has a fized point.

Remark 2.6. By an argument similar to that in Theorem 2.1, we can show that

Corollary 2.5 is also valid for k € (0,1). For the reader’s convenience, we give the

details: Let a sequence {p,} in C be constructed as the proof of Theorem 2.1. To

estimate the distance d(py, pnt1) for n > 2, we consider the following three cases:
First, if p,,, pn+1 € P, we have

d(PnsPny1) = d(Ph,Phy1)
= kd(pn,Pn-1)-
Second, if p, € P,pp+1 € @, we have
d(pn,Prt1) = d(pn,Ppi)
= kd(pn;pn-1)-

A

Third, if p, € Q,pnt+1 € P, we get
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d(pnvpn-f—l) = pn;pn) + d(pn7pn+1)

d(
= d(py,pn) + kd(pn,Pn—1)
= d(pn-1,0,)
= d(ph—_1,Pn)
= kd(pn—2,Pn-1).

Thus, for n > 2, we have

d(pn, Pr+1) = kd(pp, pn-1)
or
d(Pn, Pn+1) = kd(pn—2,pn—1)-
Let M € {d(po,p1),d(p1,p2)} and m > n. We have

m—1
En
d(pmpm) = Z d(Phpz'H) = 1—%

1=n

M.

This implies that {p,} is a Cauchy sequence in (X, d) and therefore is convergent.
Let p, — p. By our choice of {pn}, there exists a subsequence {py,,} of {p,} such
that p,, € P, i.e., pn, = py,,, i = 1,2,.... Note that p;,, € T'(pn,—1) for i € N. Now
for p,. € T(pn,—1) there eX1sts In; € T( ) such that d(gn,,p},,) < kd(pn,—1,p). We
have

= d(pn;;p) + kd(pn;—1,p).
Now the closedness of T'(p) implies that p € T'(p).

Remark 2.7. We recall that a metric space (Y, d) is metrically convex if for any
x,y € Y with x # y, there exists z € Y such that x # y # z and d(z, z) + d(z,y) =
d(x,y). This fact immediately yields that if B is a nonempty closed subset of a
complete and metrically convex space Y, then for any z € B, y € Y \ B, there
exists a point z € dB such that d(zx, z) + d(z,y) = d(z,y). Now, if Y is a complete
metrically convex space, B a closed subset of Y and T': B — Y satisfies (2.4) and
also T(0B) C B, then since for each z € B, y € Y \ B, there exists z € 0B such
that d(z, z) +d(z,y) = d(x,y), by Remark 2.6, T has a fixed point. Hence, Remark
2.6 simultaneously generalizes a type of Assad- Kirk’s Theorem for correspondences
on vector valued metric spaces [3] in terms of a given contraction.

The next corollary is a type of Kannan contraction [7] for the correspondences
that generalizes it to the setting of vvms when k € (0, %)

Corollary 2.8. LetT : C — X be a correspondence that for each x,y € C, p € T(x)
there exists ¢ € T(y) such that

(2.5) d(p,q) = k(d(z,p) + d(q,y)),

where k € (0,%). Then T has a fized point.

In the following corollary, we see a type of Chatterjea Theorem [4] for k € (0, %)
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Corollary 2.9. Let T : C — X be a correspondence that for each z,y € C, p € T(x)
there exists ¢ € T(y) such that

(2.6) d(p,q) = k(d(y,p) + d(q, )),

where k € (0, %) Then T has a fized point.

Theorem 2.10. Let T : C' — X be a correspondence that for each x,y € C,
p € T(x) there exists ¢ € T'(y) such that

(2.7) d(p, q) = kd(y, =) + ld(y, p),
where k+1 < 1. Then T has a fixed point.

Proof. Let {p,} be a sequence in C constructed as in the proof of Theorem 2.1. To
estimate the distance d(py,, pn+1) for n > 2, we consider the following three steps:
Step 1. If py,ppr1 € P, then

d(pmpn-‘rl) = d(p;mp;w-i-l)
= kd(pnvpnfl)-

Step 2. If p, € P,ppy1 € @Q, then

IA

d(pnsPhi1)
= d(pp,Ppi1)
= kd(pm pn—l)'

d(pmpn+1)

Step 3. If p, € Q,pny1 € P, and p = d(pn, puy1), then

d(pTL?p;H-l)

d(p;wpn) + d(p;wpiwrl)

d(Pn, Pp) + kd(pp—1,pn) + 1d(Pn, P)y)

d(Pn—1,Pn) — d(Pn—1,pPn) + kd(Pn-1,Pn) + Ud(Pn-1),P},) — d(Pn—1,Pn))

(k + kl)d(pn—2:Pn—1)

This implies that, as in the proof of Theorem 2.1, {p,} is a Cauchy sequence.
Because C'is closed, {p,} converges to a point p € C. By our choice of {p,}, there
exists a subsequence {p,,} of {p,} such that p,, € P, ie., py, =), i =1,2,....
Note that pj,. € T'(pp,—1) for i € N. Now for pl,. € T'(pp,—1) there exists g,, € T(p)

such that d(qn,,p,,) = kd(pn,—1,p) + 1d(p},,, gn;). This implies d(gn,, pn;) — 0 and
therefore ¢,, — p. Since T'(p) is closed and ¢,, € T'(p), p € T(p). O

P

A TA A

3. APPLICATIONS IN INTEGRAL EQUATIONS

In this section, we denote min and max for minimum and maximum functions,
respectively, and Cﬁ{ [0, 1] the space of all real continuously differentiable functions
on [0, 1].
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Theorem 3.1. Consider the integral equation

(3.1) m(t):/o k(s, 2(t), min{a(s) : 5 € [0, 1]}, max{z(s) : 5 € [0, 1]})ds + g(#),

where

1) k:R* - R and g : R — R are continuous mappings,
2) there exist a,b € (0,1) and ¢ € R such that

k(c,b,a,b) < —g(1) or k(c,a,a,b)>1— g(0)
and
_g(t) < /‘C(S’%Oan) <1 _g(t) and _g(t) < k(s>77£71) <1 _g(t)>
for every t,y € R and s,&,m € [0,1],

3) there exists ko € (0,1) such that
k(s,71,€m) — k(s,72,&m)| < koU,
where
Ue{PI1,G H,J},
and
P = l|’Y1 —72l,
2

1 1
I = §|'Yl _/ k(sv’}’l,§’77)d5|a
0

1

1 1

G = g(”h _/0 k(Sa’Ylafﬂl)dS‘ + ’72 _A k(57727§a77)d8’)7
1 1 1

H = g(h/? _/0 k(57’)/17§777)d8‘ + h/l _A k(57727§a77)d8’)7

1 1
J = §|72_/ k(87727€)77)d5|7 forall ’Yl,'YQER and 8757776[0’1]'
0

Then the integral equation (3.1) has a solution.

Proof. Consider the Banach space E = {(z,y) : z,y € C4[0,1]} equipped with the

norm
I, )l = /1211 + NIyl

where [|fll1 = [[flloc + [[f'llocs f € Cg[0,1]. Let
P ={(z,y) : 2,y € Cx[0,1],2(t) > 0,y(t) > 0}.
We show that 9P C P. By contradiction, suppose that there exists (xg, yo) € OP\P.

Without loss of generality, we suppose there exists tg € [0, 1] such that z(ty) < 0.
Now the inequality

L ]

gives a contradiction. Hence P is a closed subset of F. Now we prove that
3.2 oP = ,Y) € P mi t)=0 i t) = 0}.
(3.2) {(z,9) tg%(l)g}w( ) =0 or trerféq]y( ) =0}

)

1z, y) = (2o, yo) | >
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Let (z,y) be an element of the right hand side of (3.2) and rr[un] x(t) = 0. Then for
tefo,1

each € > 0 we have
€ €
(x—§,y> EcﬂlQ[()vl}\,Pv H(x_§7y)_(x7y)H <e€

Therefore

. min z(t) =0V min y(t) = 0} C IP.
{(x,y)eP féﬁéﬂfc() féféﬂ}y() }COP

For the converse, let (x1,y1) € OP be such that

i 0 and > 0.
tre%g]xl(b an H%thl()

Letting

= 0, min 21 (t) > 0
€= mm{tre%q}yl(b ’fgféﬂﬁl(b }

and (x,y) € P we may suppose that, without loss of generality, there exists t; €
[0,1] such that z(t;) < 0. Then, we clearly get ||(z,y) — (x1,y1)|| > € which is a
contradiction. On other hand

intP = {(z,y) € P:x(t) > 0,y(t) > 0,for each t € [0,1]}.

Let X = C[0, 1] be the Banach space consisting of all real continuous functions
on [0, 1] equipped with the sup norm. Suppose that mapping d : X x X — P is
defined as

d(z,y) = ([ = ylloos llz = Ylloo),
where p € C4[0,1] and ¢(t) > 0 for ¢ € [0,1]. Also, suppose that C = {z € X : 0 <
xz(t) < 1,t € [0,1]}. Now, the vvms X is complete. Indeed, let {z,,} be a Cauchy
sequence in X and a/,b’ € R>°. We have d(z,,, 1) < (a’,b), for sufficiently large
m,n, hence ||, — Ty || < @’. Since (C[0,1], ] - |loo) is a Banach space, there exists
r € X such that ||z, — ||« — 0. Now, if (f,g) € intP there exists a’, ' € R>Y such
that d(zp, 2) = (||zn — 2]|scs @llzn — 2|leo) < (a’, V) 2 (f, g), for sufficiently large n.
This implies that (X, d) is a complete vvms.
A similar argument given for P shows that
0C={xre€C: min z(t) =0V max z(t) =1} C C.
te[0,1] t€0,1]

It is not hard to see that for each x € C' and y € C10, 1]\C there exists z € 9C such
that d(z,z) + d(z,y) = d(z,y). Now define the mapping A : C' — X by

1
A(z(t)) = /0 k(s,z(t), min{x(s) : s € [0,1]}, max{z(s) : s € [0,1]})ds + g(t).
Let a, b be as given in the assumption and
zi(t)=a+ (b—a)t te]0,1].

By assumption (2), because x1 € C' and A(z1) ¢ C, A is not a self-mapping. Again,
by using (2), we have A(0C) C C. For each z,y € X, we have for ¢t € [0, 1],

(1A(z(@)) = Ay ()], plA(z(1)) = Ay(1))]) =

)/ s, x(t) Srerhl)nl]az(s) Srg[%ﬁ]x(s)) - k(s,y(t),srg(ifll]y(s),srg[%ﬁ]y(s))ds ,
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¢ / s,2(t), min (s), max a(s)) — k(s y(t), min y(s), max y(s))ds| )

s€(0,1] s€[0,1] s€[0,1] s€[0,1]
Since A satisfies the assumptions in Theorem 2.1, it has a fixed point. O

Theorem 3.2. Consider the integral equation

1 1
2(t) = /0 k((t) — s,2(s)) f(s)ds V a(t) = /0 B(a(t) — 5,2(s))g(s)ds,

where
1) k,h : R xR — R20 and f,g: R — R20 are continuous mappings,
2) fol k(—s,0)f(s)ds = 0, fol h(—s,0)g(s)ds = 0 and there exists a,b € (0,1)
such that k(—a,b) f(b) > 0 or h(—a,b)g(b) > 0,
3) (k(mi—s,71)+k(y2—s5,72)) f(s) < ko(y1+72) +lo(y2 + k(1 —s,71)f(s)) and
(h(71 = 5,71) + h(v2 = 5,79)) f(s) < ko(y1 +72) +lo(v2 + (1 = 5,71) f(5)),
where y1,71,72,7 € R and ko +1o <1, ko + 1 < 1.
Then the given integral equation has a solution.

Proof. Let E = CA[0,1] be equipped with the norm [|z| = [|z[s + [|2/]| and
P ={z € E: z(t) > 0}. The cone P has nonempty interior (e.g., z(t) = %,t € [0,1]
is an interior point of P). Suppose that X =P and C = {x € X : 2(0) = 0}. Next,
we define the vector valued metric d on X by

x + X
do)={ THV L2y

Since the only Cauchy sequence of X is {0}, (X, d) is a complete vvms and C' C X
is closed. It is easy to see that for each x € C and y ¢ C there exists z =0 € 9C
such that d(z,y) = d(x,0) + d(0,y). Define

Az(t)) = {/01 k(x(t)—s,x(s))f(s)ds,/ol h(x(t)—s,x(s))g(s)ds}.

Note A is a non-self correspondence on C with A(9C) C C ( z1(t) = bt,t € [0,1]
belongs to C, but A(z1) ¢ C'). Now, we show that A satisfies (2 7) Let o ,yeC

anjpe Az). Ifp = fol k(x(t)—s,2z(s)) f(s)ds, choose ¢ = fo (y(t)—s,y(s))f(s)ds
and note

I k(x(t)—s,x( ))f ds+f0 (y(t)—s,y(s ) (s)ds < [ (k(a(t)—s,x(s))+k(y(t)—
5,9(s))) f(s)ds < fo ko ) (t)>ds+lo Jo (y(t) + E(x(t )—s,x( )))ds = ko(x(t) +
y(t) + lo(y(t) + [ k ,x(s))ds).

Therefore

(3.3) d(p,q) = kod(z,y) + lod(y,p)-

A similar argument with

1
p= /0 h(a(t) — 5, 2(s))g(s)ds
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and
1
¢= /0 Wy (t) — s,y(s))g(s)ds

gives again (3.3) with kg replaced by k{, and Iy replaced by [j. Thus, by Theorem
2.10, A has a fixed point. O
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