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A CONSTRUCTIVE PROOF OF THE SKLAR’S THEOREM ON
COPULAS

W. ANAKKAMATEE, S. DHOMPONGSA®, AND S. TASENA

ABSTRACT. Using the fact that the family of shuffles of min is dense in the
family of all copulas under supremum norm and using a well-known result of W.
Takahashi [10], we are able to give a new and constructive proof of the Sklar’s
Theorem on copulas.

1. INTRODUCTION

Let F be a distribution function, i.e., F' : R — [0, 1] is nondecreasing, F(—oc) = 0,
F(o0) =1, and F is right continuous. For each u € [0, 1], put

F~Y(u) .= inf{z : F(z) > u}.

Thus FF~Y(u) = u for all u € Rp (the range of F). For a joint distribution
H with marginals F},..., Fy, Sklar’s Theorem simply states that the function
Cr(uy,... ug) == H(Fl_l(ul), e ,Fd_l(ud)) for u; € Ri(= RpE,) (it =1,...,d) is
a subcopula.

Definition 1.1. Let Uy, Us,...,U; be nonempty subsets of R. For a function
H:U xUyx---Ug =R, let S =a,b] :=[a,b1] X -+ X [ag, bg] be a d-box all of
whose vertices are in the domain of H. Then the H-volume of S is defined by

Via(8) == 3 sign(o) H(v),

where the sum is taken over the 27 vertices v of the box [a, b]; here

sign(v) = 1, if v; = a; for an even number of indices,
g | -1, ifvj=a; for an odd number of indices.

The function H is d-increasing if Vi (S) > 0 for any such d-box S.

Definition 1.2. A d-dimensional subcopula is a function C' with the following prop-
erties:
(1) C: Uy x Uz x --- xUg — [0,1], where U;, i = 1,...,d are subsets of [0, 1]
which contain {0, 1},
(2) C(x1,...,24) =0 if z; = 0 for some 1,
(3) C is d-increasing,
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(4) C has uniform margins, i.e., for each i, C(1,...,1,2;,1,...,1) = x; for all
z; € U;.

A copula is a subcopula with domain 7¢ (= [0, 1]%).

Theorem 1.3 (Sklar’s Theorem [8]). Let H be a joint distribution with univariate
marginals F1, Fo, ..., Fy. Then there exists a d-copula C' such that, for every point
z € R?,

H({L‘) = C(Fl(xl), Fg(ﬂfg), . ,Fd(l‘d)).

If the marginals Fy, Fs, . .., Fy are continuous, then the copula C is uniquely defined.

Observe that H(x1,...,zq) = C(Fi(x1), Fa(xa), ..., Fi(zq)) for x = (x1,...,24) €
R? if and only if C(u1,...,uq) = H(Fy *(u1),. ..., Fy *(ug)) for all u; € Rp,, i =
1,...,d. Thus C is a subcopula defined on Rp, X --- X Rp,.

Sklar announced his theorem in 1959 [8] and gave its proof in 1974 [7]. Another
proofs can be found respectively in [1-3,5, 6].

It is the purpose of this paper to present another proof of the Sklar’s Theorem
which is constructive. The method of the proof is based on the standard argument
in proving the denseness of the space of shuffles of min in the class of all copulas.
The result immediately implies a well-known fact that every subcopula is extendable
to a copula. Some examples are given where the algorithms involved can be easily
derived from the proof of the main theorem.

2. PRELIMINARIES

We recall that a copula C induces a probability measure pc defined on the Borel
o-algebra (B(I?%)) of I? so that

pc(S) == Vo(9),
for every nonempty d-box S C I¢ (I = [0,1]). The measure uc satisfies the property:
(2.1) pe(Ar x -+ x Ag) = MAq)

whenever, A; = I for all j # ¢, where X is the Lebesgue measure on I. On the other
hand, given any measure p on B(I%) with property (2.1), it induces a copula Cy
via the formula

Cu(w) := p([0, u])
for all u = (uy,...,uq) € I%, where [0,u] = [0,u1] X --- x [0, ug).

For example, if p is the measure that corresponds to the Min copula M (u,v) =
u A v, then the measure p is uniformly distributed along the main diagonal D of
1% ie., p(A) = Xr(AN D)), where 77 is the projection from I? onto I. Here
the main diagonal means the one joining the points (0,0) and (1,1). Start with
this measure p on I2, cut the I? vertically into k strips. Rearrange (or shuffle) the
strips to obtain a new copy of I? according to a permutation o on {1,...,k}. The
resulting mass distribution will correspond to a copula Min, called a shuffle of min.
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Consider the cube I ¢ R%. For each i = 1,...,d, let 0 = uip < ujp < --- <
uik, = 1 be a partition of I. Set U = Hle{uﬂ, ..., Uik, + and order points in U

lexicographically. Put m;; = u;; —u;(;—1) for j =1,..., k;. Now suppose a function
H :U — [0,1] be such that
i F(unl, ce ,’U,dd/) = Uy’ if Ujjr = 1 for all ] 7é i, and

)
ii) H is d-increasing.
Let h(uir,...,uqe) = Vg(S(u)) if u;z > 0 for all i, where S(u) is the box
H?Zl [wi(ir—1), usir]. Thus h is a probability mass function of the distribution function

H whose it"

That is,

marginal having {71, ..., M, } as the set of its probability mass values.

> h(u) =mj

UGUij

foralli=1,...,dand j =1,...,k; where U;; := {(u1,...,uq) € U : u; = uj;}.

The cube I? now comprises of ki - - - kg nonempty boxes S(u), u € U. Put m; =
Hj# kj and let w = (u11/,u22, ..., uqe) € U. We divide the box S(u) into H;flzl e
small boxes as follow. We start the process by dividing the interval [u;(;/_1y, ug] for
each i into ; subintervals whose lengths are all numbers h(u) for u € U;. Thus the
box S(u) is partitioned into Hfle m; subboxes one of which is a cube Q(u) having
h(u) as the length of its edges. It is straightforward to see that the projection of
all the cubes Q(u),u € U onto each I cover the whole I. Moreover, these cubes
can be used to formulate a copula C; with the property that Cy(u) = H(u)
for each u € U. Indeed for every u € U, let pp be a measure on Q(u) so that
it is uniformly distributed along any chosen (but fixed) diagonal D of Q(u), i.e.,
to(A) = Mm7(AN D)). Then we define a measure p on B(I?) by the relation

H(A N S() = oA N Q).
Clearly, y is a measure on B(I%) and satisfies the property (2.1).

In summary, it is shown that every discrete distribution function defined on a
lattice U above can be extended to a copula C.

Given a joint distribution H of some random variables having Fi,..., Fy as its
marginals. It is easy to see that

d
(22)  |H(z1,..wa) = Hyr, - oya)| <D (Fi(wi Vi) — Fi(wi A i) -
=1

Thus every copula C' € €, the set of all d-copulas, is nonexpansive as a mapping
from I¢ into I C I? under L'—norm since C' can be considered as a distribution
with uniform marginals. That is,

d d
|C(u1,...,uq) — C(v1,...,vq)] < Z(Ui\/vi —u ANv;) = Z|ui—vi .
i=1

=1
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In the course of the proof of our main Theorem, we will apply the following
result of Takahashi [10]. Let (X,d) be a metric space. Following [10], a mapping
W:X x X x[0,1] - X is a convez structure on X if

d(u, W(z,y; \)) < Ad(u,z) + (1 — N)d(u,y)

for all u,z,y € X and A € [0,1]. Let K be a compact convex subset of a Banach
space and X be the set of all nonexpansive mappings of K into itself. Then for each
pair of elements A and B of X, define a metric d by d(A, B) = sup{||Az—Bzx|| : = €
K} whence X is a metric space with d. Define a mapping W : X x X x [0,1] = X
by

W(A,B;\)(xz) = Mz + (1 — \)Bzx
for x € K and A € [0, 1].

Theorem 2.1 ([10]). The set X is a compact convex metric space with respect to
metric d and the convex structure W .

Denote by C(I?%) the family of all real valued continuous functions on I¢. Now
consider the metric space (C(I%),ds), where dy is the distance given, for all f
and f in C(I%), by

doo(f1, f2) = sup [ fi(u) — fao(u)].

ueld
Thus the following result is immediately a consequence of Theorem 2.1 since €, is
closed in (C(I%),ds).

Theorem 2.2 ([3, Theorem 3.3]). The set €4 is a compact subset in (C(I?),dx).

3. MAIN RESULTS

Theorem 3.1 (Sklar’s Theorem). Let H be a joint distribution with univariate
marginals F1, Fy, ..., Fy. Then there exists a d-copula C such that, for every point
xr € RY,

H(IL‘) = C(Fl(x‘l), FQ(I’Q), PN ,Fd(l‘d)).
If the marginals F1, Fy, ..., Fy are continuous, then the copula C' is uniquely defined.

Proof. For each n, divide I into 2" subintervals each of whose length is 2% Form

a set D;, consisting of points one from each subinterval which also lies in R;. We
require the sequence {Djy, } to be increasing and write Dy, = {0, Uit, - - -, Ui, (n) } IN
an increasing order. Observe that D;, = R; for all large n whenever F; is discrete.
By adding 0 and 1 into Djy,, we may assume that 0 = u;o and gy, (,,) = 1.

For each n, let U,, = H?:l D;,, and define H,, on U,, by

(31) ﬁn(uux, NN ,udd/) = H(Ffl(un/), .. .,Fgl(udd/)).

Then H, satisfies conditions i) and ii) for H. Obtain the corresponding h,, as well
as a copula Cg satisfying

(3.2) Cp. =Hy
on U,. Observe that
(3.3) Cﬁn+k (u) = C’ﬁn(u)
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for all w € U, and k > 1. As €, is compact, we assume that the sequence {Cﬁn}
converges to C for some C' € €; under the supremum norm. It follows from (3.2)

and (3.3) that
(3.4) C(u) = Cq (u) = Hp(u)

for all n € N and u € U,.

Finally, if a d—tuple (z1,...,24) € R?, then we choose a sequence {u,} with
un € U, for each n and u, \, (F1(x1),...,Fq(xq)). Write up, = (Uin, ..., Ugn)-
Since the sequence {Ffl(um)} is decreasing, it converges to a point z}. Thus
Fi(z}) = Fi(z;) for each i. Now, from (2.2), (3.1) and (3.4),

C(Fi(x1),...,Fy(zq)) = li}lnC(uln,...,udn)
= lirrlnﬁn(uln, ey Udn)
= lim H(F;  (uin), - Fy Hugn))
= H(zy,...,zp) =H(z1,...,24).

Clearly, if F1, .., Fy are continuous, the sequence {Cﬁn} converges to the copula C'
and consequently C is uniquely determined . O

The following result is an immediate consequence of Theorem 3.1 since each
subcopula is a d—distribution.

Corollary 3.2 (The extension theorem for d-subcopulas [9]). Every d-subcopula
can be extended to a d-copula, i.e., given any d-subcopula C' there is a d-copula C
such that

Clut, ... uq) = Cluy, ..., uq)
for all (uy,...,uq) in the domain of C.

Remark 3.3. The copula Cf = obtained in the proof of Theorem 3.1 is a shuflle
of min for d = 2. We present here a corresponding permutation of the shuffle. We
start with a distribution H(u,v) defined for u = u1,uz, ..., Uk, V= 01,02, ..., Vpy,
where 0 = ug < ug <upg < - <up =1,0=v <vy <vg <+ < =1
and H(u;,1) = w;, H(1,v;) = v;. As usual, define h(u;,v;) to be the volume
VF(S(UM’L)J)) B

Order the kike numbers h(u;,v;) for i =1,...,k; and j =1,..., ks following the
order of (7,7) which is ordered lexicographically. Let 0 = tg < t; < -+ < tgp, = 1
be a partition of [0, 1] so that ¢, — t_1 is the k'® number in the list of {h(u;, vj)}.

For each i = 1,... k1, divide [u;—1,u;] at points uy (K = 1,...,k — 1) so
that uir < wj(p41) and wpy1) — wik = h(ui,vg). Do the same for [v;_1,v;] and
obtain points of division called v;s, s = 1,...,k; — 1. Obtain a copula Cg as

indicated in the proof of Theorem 3.1. Here we use the main diagonal of the box
[(wigj—1),vj(i-1) (uij, vji)]. We now slice I? into k1k pieces along the lines

ZC:tk
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for each k = 1,...,k1ko. Define a permutation o on {1,2,..., k1ks} by

S — k
U(k) = (k mod k1 — 1)]{22 + [k——|,
1
where £ mod k; € {1,....,k1} and [%] is the smallest integer bigger than kﬁl
Following an observation below, we see that the copula Cz is Min,.
1 - 1
2 = ko+1

ki — (kl—l)kQ—i-l
k1+1 2
ky+2 ko +2

11

2k =ki+k — (k1 —1)ko+2

(/{72 — 1)k1 +1
(/{72 — 1)k1 +2

ko
ko + ko

kok1 = (kg — l)kl +k (k‘l — l)kQ + ko = k1ko

We end the paper by presenting examples to demonstrate the achievement of the
algorithm described above.

Example 3.4. The table displays the joint distribution H(z,y) of a pair of random
variables with values x = 0,1,2,3 and y =0, 1, 2.
H ‘ r=0 =1 z=2 =3
y=0| 0.1 0.15 035 045
y=1| 0.2 0.25 0.55 0.65
y=2| 0.2 0.45 0.85 1

Here is the copula C'y corresponding to H.

Example 3.5. Consider the density function.

_Jr+y, O<r<1l,0<y <],
hiz,y) _{ 0, otherwise.
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We see that the copula corresponding to this density function can be given by the
formula:

=3 () (-2) (o)

for all u,v € [0,1]. The figure compares the copula C' with the copula generated by
our method.

Example 3.6. Consider the density function.
1 —tel—1yl
h(a:7y): Ze ya (Q?,yER)

We see that the copula corresponding to this density function can be given by the
formula:

I(u,v) = uv

for all u,v € [0,1].

Example 3.7. The table displays the joint distribution H(z,y, z) of random vari-
ables X, Y, Z with values t =0,1,2, y=0,1 and 2 = 0,1, 2.
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The figures demonstrate cross sections of Ciy at z = 0, z = 1, and z = 2, respectively.
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