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ON ROBUST CONVEX MULTIOBJECTIVE OPTIMIZATION

DAISHI KUROIWAT AND GUE MYUNG LEE*

ABSTRACT. The robust approach (the worst-case approach) for convex multiob-
jective optimization problem (UCMP) with uncertainty data is considered. Using
the robust approach, we define three kinds of robust efficient solutions for an un-
certain convex multiobjective optimization problem (UCMP) which consists of
more than two objective functions with uncertainty data and constraint functions
with uncertainty data. The purpose of this paper is to give a necessary and suf-
ficient constraint qualification for the three kinds of robust efficient solutions for
(UCMP). We give a formula for calculating the subdifferential of certain maxi-
mum function, and then we obtain results concerned with optimality conditions
for the three kinds of robust efficient solutions of (UCMP). Moreover, we give
examples illustrating that our main result is very useful for properly and weakly
robust efficient solutions for (UCMP). Finally, we give the closedness constraint
qualification for (UCMP) and show that under the constraint qualification, the
optimality conditions hold.

1. INTRODUCTION AND PRELIMINARIES

Consider an uncertain convex multiobjective optimization problem:

(UCMP) minimize (frlz,ur), ..., filz,w))
subject to gj(z,v;) <0, j=1,...,m,

where f; : R” x RP — R and f;(-,u;) is convex for each i = 1,...,l and uncertain
parameter u; € U;, g; : R” x R — R and g;(-,v;) is convex for each j =1,...,m
and uncertain parameter v; € V;, and every if; in RP and V; in R? are some convex
compact sets.

Recently, robust optimization has emerged as a powerful deterministic approach
for studying (single-objective) optimization problem under uncertainty, and uncer-
tain scalar optimization problems have been studied by many authors ([1, 2, 6, 7]).
In particular, Kuroiwa and Lee ([10]) investigated scalarizations and optimality
conditions for robust multiobjective optimization problems.

In this paper, we treat the robust approach for (UCMP), which is the worst-case
approach for (UCMP), in the same way as [10]. We associate with the uncertain
multiobjective optimization problem (UCMP) its robust counterpart:

(RCMP) minimize (max fi(z,uy1),..., max fi(x,u;))
u1 €U u €Uy
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subject to max gj(z,v;) <0, j=1,...,m.
v E€V;

A vector z € R" is a robust feasible solution of (UCMP) if max, ey, gj(7,v;) <
Ofor all j =1,...,m. Let F be the set of all the robust feasible solutions of (UCMP),
that is

F ={2z € R" | max gj(z,v;) <0, forall j=1,...,m}.
v;€V;

Following solution concepts for multiobjective optimization problem in [14], we
define three solution concepts for (UCMP). A robust feasible solution z of (UCMP)
is said to be

(i) arobust efficient solution of (UCMP) if there does not exist a robust feasible
solution x of (UCMP) such that

max f;(x,u;) < max f;(Z,u;), foralli=1,... ], and
u; €U; u; EU;

max fi(z,u;) < max f;(Z,u; for some j=1,...,1.
ujGZ/{j f]( 9 ]) ujGZ/{j f]( ) ])7 J ) 9

(ii) a weakly robust efficient solution of (UCMP) if there does not exist a robust
feasible solution x of (UCMP) such that

max f;(x,u;) < max f;(Z,u;), foralli=1,... 1.
u; €U; u; EU;

(iii) a properly robust efficient solution of (UCMP) if it is a robust efficient
solution of (UCMP) and if there is a number M > 0 such that for all
i =1,...,0 and z € F satisfying maxy, ey, fi(z,u;) < maxycy, fi(T,u;),
there exists an index j = 1,...,[ such that
o fi(@,u5) < ma fi(@,u;), and
maXy,; eld; fl(jjv ul) — MaXy, ey, fZ(Q?, UZ)
maXUjEUj f] <I’, ’LL]) - ma‘XUjEZ/{j fj (@7 'LL])
(RCMP) can be interpreted as the worst-case of (UCMP) in the following sence:
we denote the set of all efficient solutions of (RCMP) by Eff(RCMP) and the set of
all optimal values of (RCMP) by

Val(RCMP) = {(max fi(x,u1),..., max fi(z,u;)) | z € Ef(RCMP)}.
u1€UL w €Uy

< M.

Also, for given uncertain parameters u = (u1,...,u;) € II'_U4; and v =
(V1,...,0m) € 7, V;, we denote the problem by (UCMP),,, the set of all feasible
solutions of (UCMP),, ,, by F,, all efficient solutions of (UCMP),,,, by Eff(UCMP),, ,,
and the set of all optimal values of (UCMP),,,, by

Val(UCMP),, , = {(fi(z,ur),..., filz,w)) |z € Eff(UCMP)WJ}.
Under the well-known domination property for (UCMP),, ,,, see [14]: for each z € F,,
there exists ¢ € Eff(UCMP), , such that
fl(957ul) < fl(ﬁ, ui), for all i = 1, ceey l,

we have the following observation: if z €Eff(RCMP) then there exists & €
Eff(UCMP),,, such that
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fi(@,u;) < max fi(@,u;), foralli=1,...,1.
S

K3 7

In this mean, (RCMP) can be interpreted as the worst-case of (UCMP). In addition,
it is also written as Val(UCMP),, <UDVal(RCMP), by using set-relation <0,
which is a relation between two sets, see [11]. The study of set optimization, which
is set-valued optimization based on the set-relations, has been developed rapidly,
see [3, 4, 8, 9].

In this paper, we give a necessary and sufficient constraint qualification for the
three robust efficient solutions for (UCMP). To the purpose, we give a formula
for calculating the subdifferential of certain maximum function, and then we get
results concerned with optimality conditions for the three robust efficient solutions
for (UCMP). Moreover, we give examples showing that our main result is very useful
for properly and weakly efficient robust efficient solutions for (UCMP). Finally, we
give the closedness constraint qualification for (UCMP) and show the optimality
conditions hold under the constraint qualification.

Let us first recall some notation and preliminary results which will be used
throughout the paper. For a function h : R — R U {+oc}, the effective domain
and the epigraph of h are given by

domh = {x € R" | h(x) < 400}
and
epih = {(z,r) € R" x R | h(z) <1},
respectively. h is said to be proper if domh is nonempty, and h is said to be convex
if epih is a convex set, or equivalently,
h((1 —a)x 4+ ay) < (1 —a)h(x) + ah(y)
for all x,y € R, and « € (0,1). Moreover, h is concave if —h is convex.
For any proper convex function h : R” — RU {400}, the subdifferential of h at
Z € domh is given by
Oh(z) = {v e R" | h(z) > h(Z) + (v,z — T), for all z € R"},
where (-, -) is the inner product on R”, and the e-subdifferential of h at Z is defined
by
Och(z) ={v e R" | h(z) > h(Z) + (v,x — T) — €, for all z € R"}.
The conjugate function h* : R” — R U {+oc} of h is defined by
h*(z*) = sup{(z*,z) — h(z) | z € R"},
for any z* € R".
Proposition 1.1 ([5]). If h : R* - RU {400} is a continuous convex function
and if a € domh, then

epih® = | J{(v, (v,a) + ¢ — h(a)) | v € Och(a)}.
>0
Now, let us recall the normal cone of convex sets, which is important to consider
necessary and sufficient robust optimality conditions.

Definition 1.2. Let C be a closed convex set in R™ and z € C. Then N¢(z) =
{veR"| (v,y—x) < 0, for all y € C} is called the normal cone to C at x.
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2. SUBGRADIENTS OF MAXIMUM FUNCTIONS

In this section, we give the subgradient formula for certain maximum function,
which is important to characterize properly and weakly robust efficient solutions of
(UCMP). To the purpose, we give the following propositions and lemma.

Proposition 2.1. Let U be a nonempty compact conver subset of RP, and ¢ :
R™ x R — R a convex-concave function, that is, ¢(-,y) is a convex function for
each y € RP and ¢(z,-) is a concave function for each x € R™. Then for each

7 € R,
U 0(+,u)(z
well(z)
is a convex set, where

U(z) = {u ceu ' ¢(z,u) = max ¢(z, u)}

uel

Proof. At first, we have that U(Z) is convex because U(Z) is the intersection of a level
set of concave function and U. Also it is nonempty because ¢(Z,-) is continuous
and U is compact. Now, we show that |J,ey(z) 09(-,u)(Z) is convex. For any
y1,92 € Uyeu 09(,u)(@) and a € (0,1), there exist w1, u2 € U(x) such that
y1 € 0¢(-,u1)(z) and yo € 9¢(+, u2)(Z). Since U(z) is convex, (1—a)u;+aus € U(T).
Then for each x € R",
o(z, (1 — a)ug + aug)
(1= a)¢(z,u1) + ag(z, uz)
( ) 1)+<y1,x—$>)+a(¢(i‘,ﬂ2)+<y2,$—.f'>)
= (1-a)o(x, ) + ag(z,42) + (1 — a)y1 + ayz,x — )
(1~ ) ma (@, ) + amax 6(7,u) + (1~ a)yn + g, — )
= mgﬂ(a@u) + (1 —)y1 + ays, z — )
= ¢(Z, (1 — a)uy + atz) + (1 — a)y1 + ayo, . — T) .
The inequalities are due to concavity of ¢(z,-), y1 € 0¢(-, u1)(Z), y2 € 0P(-, u2)(Z),
and 1, U2, (1 — Ct)’L_Ll + aug € U(i') Thus
(1 —a)y1 + ayz € 99(-, (1 — a)ug + atig)( U 0¢(-,
ueU(z)

This completes the proof. O

Lemma 2.2 ([13]). Assume that ¢ : R" x Y — R U {400} satisfies the following
conditions:
(i) ¢(-,y) is convex for ally € Y,
(i) ¢(x,-) is upper semicontinuous for all x in a certain neighborhood of a point
Zo;
(iii) The setY C R™ is compact.
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Then
0 (max o)) (an) 2 comv | 00 ) (an),

yey
yEY(xg)

where
Y (zo) = {y €Y ‘ ¢(z0,y) = max ¢(zo,y) }
yeyY

If, in addition, the function f(-,y) is continuous at xo for all y € Y, then

0 (o)) (o) = comv | 00(0)(e0)

ey

Y yeY (o)
Proposition 2.3. Let Uy, Us, ..., U; be nonempty conver and compact subsets of
RP, f1,fo,...,fi : R" xXRP - R be convez-concave functions. For each T € F' and

N>0,i=1,2....1,
<meab>{<Z:)\fZ uz> (Z) U Z)\é?fz ,ui)(Z),
ueU (T

where U = Hé:l U; and

!
Z/{(x):{uEZ/{ D Nifi(@,w) maXZ)\flxul }

Proof. For given A\; > 0,i=1,2,...,1, define ¢ : R” x R””? — R as follows:
l
u) = Z/\ifi(x,ui), r € R u=(uy,...,u,) € RP.

It is clear that ¢ is a convex-concave continuous function. From Lemma 2.2 and
Proposition 2.1, we have

!
0 <rilgzj)[<;)\lfz(,uz)> () = 0 <111ng2,}{{¢( )) (z)
= conv U 0¢(-,u) ()

u€U(Z)

- U 9@

ueU(Z)
= U ZA Afi(- ui)(
uweU(T

This completes the proof. O
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3. A NECESSARY AND SUFFICIENT CONSTRAINT QUALIFICATION FOR ROBUST
OPTIMALITY CONDITIONS

Now, we give a necessary and sufficient constraint qualification for optimality
conditions for the three kinds of robust efficient solutions of (UCMP).

For each j = 1,2,...,m, let V; be a nonempty convex compact set in R? and
g; : R" x R? — R a convex-concave function. Recall that F' is the constraint set of
(UCMP), that is,

F={xeR"| ?gggj(m,vj) <0, forall j=1,...,m}.
J J

At first we observe that the following equality condition:

Np(z) = U > 1095 (-5 v5)(Z).
(0) R XTI, V5 j=1
205 kg (2,05)=0

The following inclusion is always true: for any = € F,

m
Nr(z) D U > 1095 (-5 v5)(Z).
(nv)ERTXITT V) j=1
> kig5(Z,05)=0
Indeed, let (u,v) € R} x IIT",V; satisfying 7", p1;9;(%,v;) = 0. For any y €
> ity #j0g; (-, v;)(Z), there exist y; € dg;(-,v;)(Z) (j = 1,2,...,m) such that y =
Z;”Zl piy;. For fixed z € F,

0> gj(z,v5) > g;(Z,v5) + (yj,* — T)

for each j =1,2,...,m, and then

m m

0> pg;(T,v5) + <Zﬂjyj7x - 3?"> = (y,x — I).
j=1 J=1

Consequently we have y € Np(Z). Therefore the above equality condition is equiv-

alent to

m
Np(z) C U > 1095 v) ().
(pyw)ERTY XIITL V5 j=1
2o7eq 1595(Z,05)=0
We can see that the condition is a necessary and sufficient constraint qualification
for the three kinds of robust efficient solutions of (UCMP) in the following theorem.

Theorem 3.1. Let V; C R™ be a convex compact set in R? and g; : R" xR — R is
a convex-concave function for each j =1,2,...,m, and x € F'. Then, the following
statements are equivalent:

(i) Np(z) = U > 1509, (-,v;) (%) holds.
()R X V; =1
> oieq 1395 (Z,05)=0
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For all convex-concave functions fi, fo,...,fi : R x RP — R, and for

all nonempty compact convexr subsets Uy,Us,...,U; of RP, T is a weakly
efficient solution of (RCMP):

Minimize (max fi(z,uy), ..., max fl(x,ul)>
u €U

w1 €Uy
subject to max gj(z,v;) <0, j=1,...,m,
v EV;
if and only if there exist A1, ..., \; > 0, all non zero, (u1,...,u) € nglui,

fiy-eyfim >0, and (T1,...,0m) € 7", V; such that
o 0€ X0 NOfilw) (@) + X 1509, (9;) (%),
o \i fi(T,u;) = maxy, ey, Nifi(T,ui), foralli=1,...,1, and
o [;gi(Z,05) =0, forallj=1,...,m.
For all convex-concave functions fi, fo,..., fi : R" x RP — R, and for all

nonempty compact convexr subsets Uy, Usa, ..., U; of RP, if T is an efficient
solution of (RCMP):

Minimize <max fi(z,u1), ..., max fl(x,ul)>
u €Uy

u1 €U
subject to max g;(z,v;) <0, j=1,...,m,
vj€V;
then there erxist Ai,...,\; > 0, all non zero, (u1,...,1;) € ngluz-,

fi1; .. fun = 0, and (01, ..., 0m) € U7V} such that
o 0€ Sl NOi(- @) (®) + STy 109, (- T5)(7),

o \ifi(®, 1) = maxy, ey, Nifi(T,ui), for alli=1,...,1, and

e [ijg;(Z,0;) =0, forallj=1,...,m.
For all convex-concave functions fi, fo,...,fi : R® x RP — R, and for
all nonempty compact convexr subsets Uy,Us, ..., U; of RP, T is a properly

efficient solution of (RCMP):

u1 €Uy
subject to max g;j(z,v;) <0, j=1,...,m,
'UjGVj

Minimize (max fi(z,uy),. .., max fi(x, ul)>
u €U

if and only if there exist A1, ...,\ >0, (4y,...,%) € Hé:lb{i, T P T
0, and (01,...,0m) € H7,V; such that

o fi(Z,u;) = maxy, ey, fi(T,u;), foralli=1,...,1, and
® [ij9i(Z,0;) =0, forallj=1,...,m.
For all convex functions f1, fo,...,fi : R® = R, = is a weakly efficient

solution of (RCMP):
{ Minimize (fi(x),..., fi(z))

subject to max g;(x,v;) <0, j=1,...,m,
v; €V

if and only if there exist \1,..., N > 0, all non zero, fi1, ..., fm > 0, and
(015, 0m) € IIJL)V; such that
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o 0€ X0 Nofi(@) + XL, 109, v;)(2), and
o [1;9;(%,0;) =0, forallj=1,....,m

(vi) For all convex functions fi, fa,..., fi : R = R, if T is an efficient solution
of (RCMP):
Minimize (f1(x),..., fi(z))
subject to max gj(z,v5) <0, j=1,...,m,
Vi€V

then there exist Ai,...,N\; > 0, all non zero, fi1,...,fim > 0, and
(U1,...,0m) € IJL,V; such that

-06211A8ﬁv»+271ma%<*x@,mm
o 1;gi(Z,0;) =0, forall j =1,.
(vii) For all convex functions fi, fa,.. .,fl ]R” — R, T is a properly efficient
solution of (RCMP):

{ Minimize (fi(z),..., fi(x))

subject to max g;(z,v;) <0, j=1,...,m,
v; €V

if and only if there exist \y,..., N\ >0, fi1,...,Jim >0, and (01, ...,0n) €
H;”:le such that
© 0€ 3y Mdfi(T) + 351 ;095 (7)), and
o [i;gi(Z,0;) =0, forallj=1,...,m
(viii) For all convex function f:R™ — R, T is a minimum solution of (P):

Minimize f(z)
subject to max g;(z,v;) <0, j=1,...,m,
v EVj
if and only if there exist fi1,...,[m > 0, and (U1,...,0y) € Y, V5 such
that
e 0€0f(z)+ 371, 1;0g;(+,v;)(2), and
o [i;gi(Z,0;) =0, forallj=1,...,m

Proof. At first, we show [(i)=-(ii)]. Assume (i), and let f1, fo,..., fi : R" x RP - R
be convex-concave functions, and let Uy, Us, ..., U; be nonempty compact convex
subsets in R?. By using Gordan’s alternative theorem in [12], Z is a weakly efficient

solution of (RCMP):

Minimize <max filz,uy), ..., max fl(a:,ul)>
uleul

u1 €Uy
subject to max g;(z,v;) <0, j=1,...,m
v EV;

if and only if there exists A1,...,\; > 0, all non zero, such that for all x € F,

!
Z/\ maxflxuz SZ maxfl:cul)

u; €U, u €U;
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Equivalently,

l
068(2)\ meaxfz( uz)+6F> (Iggj{ZAfz Uz) )+NF({Z')a

where U = H,-:le'- By using Proposition 2.3,

l

u€eU(z)

where

l
> Xifi(@, ) rgggz)\ fi(Z,u; }

U) = {a ceU
=1

From this and condition (i), we have

0e U Z)\ afz uz j U Z/LJng('ﬁvj)(j)a
wEU(T) 1= (MU)ERTXH;":le Jj=1
> kig5(Z,05)=0

that is, there exist u € U(z) and (i, v) € RY x II7",V; such that

© 0€ 3y Ndfi( ) (@) + Ly 11509, 07)(), and
° > i1 Ryg;(,v5) = 0.
From the above, we can check easily that \;fi(Z, 4;) = maxy,cy, \ifi(Z,u;) for all
i=1,...,l,and fijg;(z,v;) =0forall j=1,...,m
Proof of [(i)=-(iv)] is similar to [(i)=-(ii)], and omitted. Also, proofs of [(ii)=
(v)=(viil)], [(il)=-(iii)=>(vi)=(viil)], and [(iv)=-(vii)=-(viii)], are clear and omitted.
Finally, we show [(viil))=(i)]. If y € Np(Z), then (—y,z) < (—y,z) for each
z e F. Let f( ) = (—y,z). From the assumption (viii), there exist fi1,. .., fim > 0,
and (v1,...,0p) € IITL)V; such that

°0¢€ 8f( )+ Zj:l 1;09; (-, v;)(2),
o [i;gi(z,v;) =0, forall j =1,2,...,m
Since 0f(Z) = {—y}, we have

y €Y 109;(-,0;)(Z).
j=1
Also >, f1jg;(Z,0;) = 0 is clear, then we have

m
y € U > 1509, (-,v;) ().
(0) ERT XTI, V; j=1
271 1595 (Z,05)=0

This completes the proof. O

Remark 3.2. The interesting feature of the Karush-Kuhn-Tucker system for robust
optimization problem, which was appeared in (ii)-(viii) of Theorem 3.1, is that the
number of Lagrangian multipliers coincides with the number of constraint functions.
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Now we give examples illustrating that Theorem 3.1 is very useful for properly
and weakly robust efficient solutions for (RCMP).

Example 3.3. Let g; : RxR — R defined by g1 (x,v1) = vi(|z|—1), and V1 = [0, 1].
Then we can check that F' = [—1,1] and

(—o00,0] if z=-1,
Ne@@)= |J wog(o)@ =< {0} if e(-1,1),
(1,0)ERY XV [O, —|—OO) if =1,

pg1(Z,v)=0

and then condition (i) of Theorem 3.1 holds. Therefore, for all multivalued convex-
concave functions, properly and weakly robust efficient solutions of (RCMP) can be
characterized. For example, let f1, fo : R x R — R defined by fi(x,u1) = u1(2+z),
fo(x,uz) = ua(2 — x), and Uy = Uy = [0,1]. A feasible solution z of (RCMP) is
a weakly efficient solution of (RCMP) if and only if there exist A1, Ao > 0, all non
zero, (u1,u2) € Uy X Us, f11 > 0, and v7 € V; such that

e 0€ MOfi(-,u1)(®) + A20f2(+, u2)(Z) + 1091 (+, 11)(Z),

o )\ fi(Z,u;) = maxy,cy; \ifi(Z,u;), for all i = 1,2, and

e [1191(Z,v1) = 0.
We can check these conditions always hold when (Ai,Ag,/i1) = (1,1,0) and
(uy,u2,v1) = (1,1,1), for instance. This shows that every feasible solution of
(RCMP) is a weakly efficient solution of (RCMP).
Example 3.4. Let g1 : R Xx R — R defined by ¢1(z,y) = { 2:@2, ; E 8:
Vi = [0,1]. Then, we can check that F' = (—00,0], Ng(0) = [0, 00), but

U 0, 0)(0) = {0}.

u>0, vieV,
1g1(0,01)=0

and

In this case, condition (i) of Theorem 3.1 does not hold when z = 0. So, it follows
from Theorem 3.1 that we can give objective functions such that properly and
weakly robust efficient solutions of (RCMP) can not be characterized by the Karush-
Kuhn-Tucker systems. For example, let fi, fo : R — R defined by fi(z) = wjz,
fo(x) = ugw, and Uy = Uz = [1,2]. Then z = 0 is a weakly robust efficient
solution of (RCMP) but the following formula has no solutions: A; > 0, Ay > 0,
()\1, )\2) #* (0, 0), 1 >0,and 0 € )\18.]01(‘, ﬂl)(i‘) + )\28f2(', fbg)(f) + ﬂlagl(‘, 171)(@).

4. CLOSEDNESS CONSTRAINT QUALIFICATION FOR ROBUST OPTIMALITY
CONDITIONS

In this last section, we give sufficient conditions for (i) of Theorem 3.1. Consider
the following closedness constraint qualification:

m *
U epi <Z 1ig; (-, vj)> is closed.
(0)ERTXTTIL, Vi j=1

The closedness constraint qualification is found in [7], which is the robust version
of the one in [5].
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To the purpose, we introduce the following lemma, which is the robust version of
an alternative theorem and can be obtained from Theorem 2.4 and Proportion 2.3
in [7].

Lemma 4.1 (Robust Theorem of the Alternative). Let f : R" — R be a convex
function, let g; : R® x R? — R be a convex-concave function, and let V; be a
nonempty convex and closed subset of RY for each j = 1,2,...,m. Suppose that
F={xeR"|gj(xz,v;) <0, forallj=1,...,m and vj € V;} is not empty. Then
exact one of the following two statements holds:

(i) Jz € R" s.t. f(x) <0, gj(z,vj) <0, Yo €Vy, Vj=1,...,m,

(ii) (0,0) € epif* +cl U epi <Z ngj(',vj)> '
(mW)ERT YT, V; j=1

Proposition 4.2. Under the same assumptions as Theorem 3.1, the above closed-
ness constraint qualification implies (i) of Theorem 3.1.

Proof. For any y € Np(z), we define f : R® — R by f(z) = (—y,x — Z). Since
0 < (—y,z —Z) = f(z) for any = € F, by using Lemma 4.1 and the closedness
condition, we have

(0,0) € epif* + U epi <Z 1395 (- Uj)) :
()RR, vy =1

Notice that epif* = {(-y, (=y,%) +8) |8 >0}, and epi(} 7L, pjg;(-,v5))* =

Uesof(w, (w, Z) + € — 3700 1j9;(T,v5)) | w € 0c(3o7L; pygs(-v;))(2)} by Slng

Proposition 1.1. Thus, there exist v; € Vj, p; > 0 (j = 1,...,m), € > 0,

Oe(327%1 11595 (-, v))(Z), and B > 0 such that

0=—-y+w and 0= (—y,7)+ 8+ (w,T) Zu]g]xvj

This shows y € 0c(3272; 1j9i(-,v;))(Z) and 0 = B + € — 23:1 1i9;(Z,v;). Since
B>0,e>0and — 37" 11;9;(7,v5) > 0, we have

m

B=e=> pig;(z,v;) =0.

This completes the proof. Il

Remark 4.3. Under the same assumptions as Theorem 3.1, the Slater type strict
feasibility condition for (UCMP), that is, there exists 29 € R™ such that g;(xo,v;) <
0 for any j = 1,2,...,m and v; € V;, implies the closedness condition, see [7], but
it is clear that the reverse implication is not true.

Also, the closedness condition implies (i) of Theorem 3.1, but the reverse impli-
cation is also not true. Indeed, let g; be the same in Example 3.4 and £ = —1, then
(i) of Theorem 3.1 holds, but the closedness condition fails.

When the Slater type condition or the closedness are not satisfied, solutions
of (RCMP) can not be characterized at some feasible points and some objective
functions, as seen in Example 3.4.
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