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A subset K of a metric space (X, d) is said to be convex (see [13]) if for every
x, y ∈ K, any point between x and y is also in K i.e. for each x and y in K, the
segment s[x, y] lies in K.

A subset K of a convex metric space (X, d) is said to be a convex set ([17]) if
W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. A set K is said to be p-starshaped
([9]) where p ∈ K, provided W (x, p, λ) ∈ K for all x ∈ K and λ ∈ [0, 1] i.e. the
segment

[p, x] = {W (x, p, λ) : 0 ≤ λ ≤ 1}
joining p to x is contained in K for all x ∈ K. K is said to be starshaped if it is
p-starshaped for some p ∈ K.

Clearly, each convex set is starshaped but not conversely.
A convex metric space (X, d) is said to satisfy Property (I) ([9]) if for all

x, y, q ∈ X and λ ∈ [0, 1],

d(W (x, q, λ),W (y, q, λ)) ≤ λd(x, y).

A normed linear space and each of its convex subsets are simple examples of
convex metric spaces with W given by

W (x, y, λ) = λx+ (1− λ)y

for x, y ∈ X and 0 ≤ λ ≤ 1. There are many convex metric spaces which are not
normed linear spaces (see [9,17]). Property (I) is always satisfied in a normed linear
space.

Example 1.1 ([7]). Consider a closed subset X of the unit ball S = {∥x∥ = 1}
in a Hilbert space H, such that X has diameter δ(X) ≤

√
2 and is geodesically

connected, i.e., the point

W (x, y, λ) =
λx+ (1− λ)y

∥λx+ (1− λ)y∥
lies inX whenever x, y ∈ X and λ ∈ [0, 1]. The metric space we obtain by measuring
distances in X through central angles, i.e., with the metric d[x, y] = cos−1(x, y) for
every x, y ∈ X, turns out be a convex metric space (whose convex sets are exactly
the goedesically connected subsets of X).

Example 1.2 ([12]). Let (X, ρ) be a closed ball of S2,r (S2,r is the 2-dimensional
spherical space of radius r) of radius ρ with

πr

4
< ρ <

πr

2
.

Then X is a strongly convex metric space. The elements of this spherical space are
all the ordered 3-tuples x = (x1, x2, x3) of real numbers with

x21 + x22 + x23 = r2.

Distance is defined for each pair of elements x, y to be the smallest non-negative
number xy such that

cos
(xy

r

)
=

x1y1 + x2y2 + x3y3
r2

.
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For a non-empty subset M of a metric space (X, d) and x ∈ X, an element y ∈ M
is said to be a best approximant to x or a best M-approximant to x if

d(x, y) = dist(x,M) = inf{d(x, y) : y ∈ M}.

The set of all such y ∈ M is denoted by PM (x).
For a convex subset M of a convex metric space (X, d), a mapping g : M → X

is said to be affine if for all x, y ∈ M ,

g(W (x, y, λ)) = W (gx, gy, λ), ∀ λ ∈ [0, 1].

The mapping g is said to be affine with respect to p ∈ M if

g(W (x, p, λ)) = W (gx, gp, λ)

for all x ∈ M and λ ∈ [0, 1].
Suppose (X, d) is a metric space, M a nonempty subset of X, and S, T be self

mappings of M . The mapping T is said to be
(i) S-contraction if there exists a k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(Sx, Sy);
(ii) S-nonexpansive if d(Tx, Ty) ≤ d(Sx, Sy) for all x, y ∈ M .
If S is the identity mapping, then T is called contraction, nonexpansive re-

spectively in (i) and (ii).
A point x ∈ M is a common fixed (coincidence) point of S and T if

x = Sx = Tx (Sx = Tx).

The set of fixed points (respectively, coincidence points) of S and T is denoted by
F (S, T ) (respectively, C(S, T )). In particular we write F (T ) = F (S, T ) when S is
the identity mapping, that is, F (T ) stands for the set of fixed points of the mapping
T .

The ordered pair (S, T ) of two self mappings of (X, d) is called a Banach op-
erator pair, if the set F (T ) of fixed points of a mapping T is S-invariant, i.e.,
S(F (T )) ⊂ F (T ).

The pair (S, T ) is said to be commuting on M if

STx = TSx, ∀ x ∈ M.

It is obvious that if a pair (S, T ) is commuting, then it must be a Banach operator
pair but not conversely.

In [10], Jr Gregus proved the following fixed point theorem in Banach spaces.

Theorem 1.3. Let C be a closed convex subset of a Banach space X and T a self
mapping of C satisfying

∥Tx− Ty∥ ≤ a∥x− y∥+ p∥Tx− x∥+ p∥Ty − y∥

for all x, y ∈ C, where 0 < a < 1, p ≥ 1 and a+2p = 1. Then T has a unique fixed
point.

Later, many results which are closely related to the theorem above have appeared
in the literature. In 2000, Ćirić [6] proved the following result which generalizes the
theorem above with another contractive condition.
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Theorem 1.4. Let C be a closed convex subset of a complete convex metric space
(X, d) and T : C → C a mapping satisfying, for all x, y ∈ C

d(Tx, Ty) ≤ amax{d(x, y), c[d(x, Ty) + d(y, Tx)]}+ bmax{d(x, Tx), d(y, Ty)}

where 0 < a < 1, a+ b = 1, 0 ≤ c ≤ 4−a
8−a . Then T has a unique fixed point.

The purpose of this paper is to prove common fixed point results for maps S
and T without the assumptions of linearity or affinity of either T or S and when
the underlying spaces are convex metric spaces. We prove some results on the
existence of common fixed points for noncommuting mappings with some contractive
conditions and as applications some results on best approximation are obtained.
The results proved in this paper generalize some previous results in the literature.

2. Main results

2.1. Common fixed point theorems with Ćirić type contraction mappings.
In this section we prove some common fixed point theorems for noncommuting Ćirić
type contraction mappings in convex metric spaces.

Theorem 2.1. Let M be a convex subset of a complete strongly convex metric space
(X, d), T , I self mappings of M and T (F (I)) ⊆ F (I). Assume that T and I satisfy

d(Tx, Ty) ≤ amax{d(Ix, Iy), c[d(Ix, Ty) + d(Iy, Tx)]}
+ bmax{d(Tx, Ix), d(Ty, Iy)}

for all x, y ∈ M , where 0 < a < 1, a+ b = 1, and 0 ≤ c ≤ 4−a
8−a . If I is nonexpansive

and F (I) is nonempty then there is a unique common fixed point of T and I.

Proof. First we show that F (I) is closed. Let x be a limit point of F (I). Then there
exists a sequence < xn > in F (I) such that < xn >→ x. Note that I is continuous
so

Ix = I(limxn) = lim Ixn = limxn = x,

we have x ∈ F (I) and hence F (I) is closed. Now we show that F (I) is convex.
Let x, y ∈ F (I), and 0 ≤ t ≤ 1. Then x, y ∈ M and so W (x, y, t) ∈ M since M is
convex. Since I is nonexpansive and X is a convex metric space we have

d(x, y) = d(Ix, Iy)

≤ d(Ix, IW (x, y, t)) + d(IW (x, y, t), Iy)

≤ d(x,W (x, y, t)) + d(W (x, y, t), y)

≤ (1− t)d(x, y) + td(x, y)

= d(x, y),

and since x, y ∈ F (I) we get

d(x, y) = d(Ix, IW (x, y, t))+d(IW (x, y, t), Iy) = d(x, IW (x, y, t))+d(IW (x, y, t), y),

and so IW (x, y, t) lies on the segment joining x and y. For complete strongly convex
metric spaces (X, d), each two distinct points x, y of X are joined by exactly one
segment s[x, y]. For strongly convex metric spaces (X, d), each two distinct points
x, y ∈ X and every λ ∈ [0, 1], there exists exactly one point z ∈ X such that
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z = W (x, y, λ) with d(x, z) = (1 − λ)d(x, y) and d(y, z) = λd(x, y) (so d(x, y) =
d(x, z) + d(z, y) i.e. z ∈ s[x, y]). Thus there exists a λ ∈ [0, 1] with

IW (x, y, t) = W (x, y, λ).

We claim that λ = t. Since

d(IW (x, y, t), x) = d(W (x, y, λ), x) = (1− λ)d(x, y)

and

d(IW (x, y, t), y) = d(W (x, y, λ), y) = λd(x, y),

λd(x, y) = d(IW (x, y, t), y) ≥ d(x, y)− d(x, IW (x, y, t))

which implies

(1− λ)d(x, y) = d(x, IW (x, y, t)) = d(Ix, IW (x, y, t))

≤ d(x,W (x, y, t)) = (1− t)d(x, y).

This implies that λ ≥ t. Similarly, we can prove that λd(x, y) ≤ td(x, y), λ ≤ t.
Therefore λ = t i.e. IW (x, y, t) = W (x, y, t) and so W (x, y, t) ∈ F (I). Hence F (I)
is convex. Further for x, y ∈ F (I), we have

d(Tx, Ty) ≤ amax{d(Ix, Iy), c[d(Ix, Ty) + d(Iy, Tx)]}
+bmax{d(Tx, Ix), d(Ty, Iy)}

= amax{d(x, y), c[d(x, Ty) + d(y, Tx)]}
+bmax{d(Tx, x), d(Ty, y)},

so it follows from Theorem 1.4 (with C = F (I)) that T has a unique fixed point y
in F (I) and consequently M ∩ F (T ) ∩ F (I) is a singleton. �

Theorem 2.2. Let M be a subset of a complete convex metric space (X, d), and
S, T are self mappings of M . Suppose that F (S) is nonempty, closed and convex
and T (F (S)) ⊆ F (S). If T satisfies

d(Tx, Ty) ≤ amax{d(Sx, Sy), c[d(Sx, Ty) + d(Sy, Tx)]}
+bmax{d(Tx, Sx), d(Ty, Sy)}

for all x, y ∈ M , where 0 < a < 1, a + b = 1, and 0 ≤ c ≤ 4−a
8−a , then there is a

common fixed point of T and S.

Proof. For x, y ∈ F (S), we have

d(Tx, Ty) ≤ amax{d(Sx, Sy), c[d(Sx, Ty) + d(Sy, Tx)]}
+bmax{d(Tx, Sx), d(Ty, Sy)}

= amax{d(x, y), c[d(x, Ty) + d(y, Tx)]}
+bmax{d(Tx, x), d(Ty, y)}.

From Theorem 1.4, (with C = F (S)) we deduce that T has a unique fixed point z
in F (S) and consequently M ∩ F (T ) ∩ F (S) is a singleton. �
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2.2. Common fixed point theorems and invariant approximation. In this
section we prove the existence of some common fixed points of best approximations
for noncommuting Ćirić type contraction mappings.

We begin the section with the following result.

Proposition 2.3. If C is a convex subset of a convex metric space (X, d) and x ∈ X
then PC(x) is closed and convex.

Proof. Let y, z ∈ PC(x) and λ ∈ [0, 1]. Note

d(x,W (y, z, λ)) ≤ λd(x, y) + (1− λ)d(x, z)

= λdist(x,C) + (1− λ)dist(x,C)

= dist(x,C)

≤ d(x,W (y, z, λ)) as W (y, z, λ) ∈ C.

Therefore, d(x,W (y, z, λ)) = dist(x,C) and so W (y, z, λ) ∈ PC(x). Thus PC(x) is
convex and it is easy to see its closed. �

The following result extends the corresponding theorems of [4], [5] and [14].

Theorem 2.4. Let C be a convex subset of a complete strongly convex metric space
(X, d), and S, T : X → X be mappings such that u ∈ F (S) ∩ F (T ) for some u ∈ X
and T (∂C ∩ C) ⊆ C. Suppose that D = PC(u) and F (S) are nonempty, S is
nonexpansive on D, T (F (S) ∩D) ⊆ F (S) ∩D and T satisfies

d(Tx, Ty) ≤
{

d(Sx, Su)
M(x, y)

,
,

if y = u
if y ∈ D

(∗)

where

M(x, y) = amax{d(Sx, Sy), c[dist(Sx, Ty) + dist(Sy, Tx)]}+
bmax{dist(Sx, Tx), dist(Sy, Ty)},

for all x, y ∈ C, 0 < a < 1, a + b = 1, and 0 ≤ c ≤ 4−a
8−a . Then there is a common

fixed point of T and S in PC(u).

Proof. Let d(u,C) = 0. Then u ∈ D∩F (S)∩F (T ) (note u ∈ D since d(u, u) = 0 =
d(u,C)).

Let d(u,C) ̸= 0. Let x ∈ D = PC(u). For any λ ∈ (0, 1), we have

d(W (u, x, λ), u) ≤ λd(u, u) + (1− λ)d(x, u) = (1− λ)d(x, u) < dist(u,C).

This implies that W (y, u, λ) /∈ M for any λ, 0 < λ < 1. Therefore the open line
segment {W (u, x, λ) : 0 < λ < 1} and the set C are disjoint. Thus x is not in the
interior of C and so x ∈ ∂C ∩ C. Since T (∂C ∩ C) ⊂ C, Tx must be in C. Also
since S is nonexpansive on D, u ∈ F (T ) ∩ F (S), and from inequality (*), we have

d(Tx, u) = d(Tx, Tu) ≤ d(Sx, Su) ≤ d(x, u) = dist(u,C).

This implies that Tx ∈ PC(u). Consequently, PC(u) is T -invariant, S-invariant,
closed and convex. Hence the result follows from Theorem 2.1 (with M = D). �
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Let G◦ denote the class of closed convex subsets containing a point x◦ of a convex
metric space (X, d). For M ∈ G◦ and p ∈ X, let

Mp = {x ∈ M : d(x, x◦) ≤ 2d(p, x◦)},
let

PM (p) = {x ∈ M : d(p, x) = dist(p,M)}
be the set of best approximants to p in M , and

CS
M (p) = {x ∈ M : Sx ∈ PM (p)}.

Note PM (p) ⊆ Mp since if x ∈ PM (p) then

d(x, x0) ≤ d(x, p) + d(p, x0) = dist(p,M) + d(p, x0) ≤ 2d(p, x0).

The next theorem extend and generalize the corresponding results of [5] and [14].

Theorem 2.5. Let S and T be self mappings of a complete strongly convex metric
space (X, d), u ∈ F (S)∩F (T ) and M ∈ G◦ such that T (Mu) ⊆ S(M) ⊆ M . Suppose
that cl(S(Mu)) is compact, and T, S satisfy d(Tx, u) ≤ d(Sx, u), d(Sx, u) ≤ d(x, u)
for all x ∈ Mu. Then

i) PM (u) is nonempty, closed and convex,
ii) T (PM (u)) ⊆ S(PM (u)) ⊆ PM (u), if d(Sx, Su) = d(x, u) for all x ∈ CS

M (u),
and

iii) there is a common fixed point of T and S in PM (u), if S is nonexpansive
on PM (u), F (S) is nonempty, T (F (S) ∩ PM (u)) ⊆ F (S) ∩ PM (u) and T
satisfies

d(Tx, Ty) ≤ amax{d(Sx, Sy), c[dist(Sx, Ty) + dist(Sy, Tx)]}+
bmax{dist(Sx, Tx), dist(Sy, Ty)}

for all x, y ∈ PM (u), 0 < a < 1, a+ b = 1, and 0 ≤ c ≤ 4−a
8−a .

Proof. If u ∈ M then the result is clear. So assume that u /∈ M . If x ∈ M\Mu,
then

d(x, x◦) > 2d(u, x◦)

and so
d(u, x) ≥ d(x, x◦)− d(u, x◦) > d(u, x◦) ≥ dist(u,M).

Thus
α = dist(u,Mu) = dist(u,M) ≤ d(u, x◦).

Since cl(S(Mu)) is compact, and the distance function is continuous, there exists
z ∈ cl(S(Mu)) such that

β = dist(u, cl(S(Mu))) = d(u, z).

Hence

α = dist(u,Mu) ≤ dist(u, cl(S(Mu))) as T (Mu) ⊆ S(M) ⊆ M ⇒ clS(Mu) ⊆ M

= β

≤ dist(u, S(Mu))

≤ d(u, Sx)

≤ d(u, x)
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for all x ∈ Mu. Therefore α ≤ β ≤ dist(u,Mu) = dist(u,M) = α so α = β =
dist(u,M), i.e.

dist(u,M) = dist(u, cl(S(Mu))) = d(u, z),

i.e. z ∈ PM (u) and so PM (u) is nonempty. The closedness and convexity of PM (u)
follows from that of M . This proves (i).

To prove (ii) let z ∈ PM (u). Then since u ∈ F (S), z ∈ PM (u) ⊆ Mu and
d(Sx, u) ≤ d(x, u) for x ∈ Mu we have

d(Sz, u) ≤ d(z, u) = dist(u,M).

This implies that Sz ∈ PM (u) and so S(PM (u)) ⊆ PM (u). Let y ∈ T (PM (u)).
Since T (Mu) ⊆ S(M) and PM (u) ⊆ Mu (easy to check), there exists z ∈ PM (u)
and x1 ∈ M such that y = Tz = Sx1. Further we have (note d(Tw, u) ≤ d(Sw, u)
and d(Sw, u) ≤ d(w, u) for w ∈ Mu)

d(Sx1, u) = d(Tz, u) ≤ d(Sz, u) ≤ d(z, u) = dist(u,M).

Thus Sx1 ∈ PM (u) and x1 ∈ CS
M (u). Also, as Sx1 ∈ M and dist(u,M) ≤ d(Sx1, u),

it follows that dist(u,M) = d(Sx1, u). Since d(Sx1, Su) = d(x1, u) and u ∈ F (S)
we have

d(x1, u) = d(Sx1, u) = dist(u,M),

x1 ∈ PM (u) and y = Sx1 ∈ S(PM (u)). Hence T (PM (u)) ⊆ S(PM (u)) and so (ii)
holds.

Proceeding as in Theorem 2.1 we can prove the convexity and closedness of F (S).
Hence the conclusion (iii) follows from Theorem 2.1 (with M = PM (u)). �

2.3. Common fixed point theorem with generalized contraction map-
pings. In this section we prove a common fixed point theorem for noncommuting
generalized contraction mappings.

We begin the section with the following result of Al-Thagafi and Shahzad [1]
which will be used in the sequel.

Lemma 2.6 ( [1, Lemma 3.1]). Let C be a nonempty subset of a metric space (X, d)
and T : C → C. If clT (C) ⊆ C, clT (C) is complete and

d(Tx, Ty) ≤ kmax{d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), d(Ty, x)},
for all x, y ∈ C and some k ∈ [0, 1), then F (T ) is a singleton.

Lemma 2.7. Let C be a nonempty subset of a metric space (X, d), T, f, g self
mappings of C, cl T (F (f) ∩ F (g)) ⊆ F (f) ∩ F (g). Suppose that cl (T (C)) is
complete and T, f, g satisfy for all x, y ∈ C and some 0 ≤ k < 1

d(Tx, Ty) ≤ kmax{d(fx, gy), d(Tx, fx), d(Ty, gy), d(Tx, gy), d(Ty, fx)}.
If F (f) ∩ F (g) is nonempty and cl T (F (f) ∩ F (g)) ⊆ F (f) ∩ F (g), then there is a
common fixed point of T, f and g.

Proof. Now cl T (F (f) ∩ F (g)), being a closed subset of the complete set cl T (C),
is complete. Further for all x, y ∈ F (f) ∩ F (g), we have

d(Tx, Ty) ≤ kmax{d(fx, gy), d(Tx, fx), d(Ty, gy), d(Tx, gy), d(Ty, fx)}
= kmax{d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), d(Ty, x)}
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Hence T is a generalized contraction on F (f) ∩ F (g) and

cl T (F (f) ∩ F (g)) ⊆ F (f) ∩ F (g).

So by Lemma 2.6, T has a unique fixed point z in F (f) ∩ F (g) and consequently
F (T ) ∩ F (f) ∩ F (g) is a singleton. �

Remark 2.8. i) If f = g, then Theorem 3.2 of Al-Thagafi and Shahzad [1] is a
particular case of Lemma 2.7.

ii) Lemma 2.7 also generalizes Lemma 2.10 of Hussain [11].

The following result extends the corresponding results of [1, 4, 5, 11] and [14].

Theorem 2.9. Let C be a nonempty subset of a convex metric space (X, d) with
Property (I), and T, g and h be self mappings of C. Suppose that F (g) ∩ F (h)
is nonempty, and cl T (F (g) ∩ F (h)) ⊆ F (g) ∩ F (h), cl (T (C)) is compact, T is
continuous and satisfies

d(Tx, Ty) ≤ max{d(hx, gy), dist(hx, [q, Tx]), dist(gy, [q, Ty]),
dist(hx, [q, Ty]), dist(gy, [q, Tx])}(2.1)

for all x, y ∈ C, some q ∈ F (g) ∩ F (h). Further, if C and F (g) ∩ F (h) are q-
starshaped, then T, g and h have a common fixed point.

Proof. For each n ∈ N, define Tn : C → C by

Tn(x) = W (Tx, q, kn), for each x ∈ C,

where ⟨kn⟩ is a sequence in (0, 1) such that kn → 1; note each Tn is a self mapping
since C is q-starshaped. Since

cl T (F (g) ∩ F (h)) ⊆ F (g) ∩ F (h)

and F (g) ∩ F (h) is q-starshaped, and q ∈ F (g) ∩ F (h) we have

Tn(F (g) ∩ F (h)) ⊆ F (g) ∩ F (h)

for each n. We now claim that

cl(Tn(F (g) ∩ F (h))) ⊆ F (g) ∩ F (h)

for each n. To see this let y ∈ cl(Tn(F (g) ∩ F (h))). Then there exists a sequence
{ym} in Tn(F (g)∩F (h)) with ym → y. We must show y ∈ F (g)∩F (h). Note ym =
Tn(xm) = W (Txm, q, kn) for xm ∈ F (g)∩F (h). The compactness of clT (C) implies
there is a subsequence {Txmi} with Txmi → z. Note T (xmi) ∈ T (F (g) ∩ F (h)) so
z ∈ cl(T (F (g)∩F (h))) ⊆ F (g)∩F (h). Also ymi = W (Txmi , q, kn) together with the
continuity of W yields y = W (z, q, kn). Finally z, q ∈ F (g)∩F (h) and F (g)∩F (h)
is q-starshaped guarantees that y ∈ F (g) ∩ F (h). Thus our claim is proved. Note

d(Tnx, Tny) = d(W (Tx, q, kn),W (Ty, q, kn))

≤ knd(Tx, Ty)

≤ knmax{d(hx, gy), dist(hx, [q, Tx]), dist(gy, [q, Ty]),
dist(hx, [q, Ty]), dist(gy, [q, Tx])}

≤ knmax{d(hx, gy), d(hx, Tnx), d(gy, Tny), d(hx, Tny), d(gy, Tnx)}
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for all x, y ∈ C. As cl (T (C)) is compact, cl (Tn(C)) is compact for each n and
hence complete. Now by Lemma 2.7, there exists xn ∈ C such that xn is common
fixed point of g, h and Tn for each n. The compactness of cl(T (C)) implies there
exists a subsequence {Txni} of {Txn} such that Txni → z ∈ cl T (C). Since {Txn}
is a sequence in T (F (g) ∩ F (h)), then z ∈ cl T (F (g) ∩ F (h)) ⊆ F (g) ∩ F (h). Now,
as kni → 1, we have

xni = Tnixni = W (Txni , q, kni) = W (z, q, 1) → z,

(note d(z,W (z, q, 1)) ≤ d(z, z)) and since T is continuous, we have Tz = z and
hence F (T ) ∩ F (g) ∩ F (h) ̸= ∅. �
Remark 2.10. Notice (2.1) could be replaced by the less restrictive condition

d(Tx, Ty) ≤ max{d(dx, gy), d(hx, Tnx), d(gy, Tny), d(hx, Tny), d(gy, Tnx)}
where q is as in the statement of Theorem 2.9 and Tn is as in the proof of Theorem
2.9.

Remark 2.11. We note that the assumption of linearity or affinity for the map f
is necessary in almost all known results in the literature about common fixed points
of mappings T , f under the conditions of commuting and noncommuting, weakly
commuting, R-subweakly commuting, compatibility and Banach operator pair, but
the results in this paper are independent of these. Moreover, the results in this
paper improve the results of Chandok and Narang [5].
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