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On the other hand, asymptotic versions of some classical fixed point theorems
have been considered recently in, e.g., [1, 3, 7, 9, 11,12].

In this paper, by providing a new approach, we prove more general asymptotic
versions of Theorem 1.1 with weaker conditions. As a corollary, we replace the
continuity of ϕ by upper semicontinuity from the right and remove the monotonicity
condition in Theorem 1.1. Moreover, in the continuation of Edelstein’ theorem, we
present several modifications in the assumptions, in Bailey’s point of view.

2. Asymptotic contractions of Browder’s type

In this section, we give generalizations of Theorem 1.1. In preparation for our
results, we first establish the following lemma.

Lemma 2.1. Let M be a complete metric space, ϕ : R+ → R+ an upper semicon-
tinuous function from the right satisfying ϕ(t) < t for all t > 0 and T : M → M
with a bounded orbit, say O(x), such that, for each y ∈ O(x),

(2.1) lim sup
n→∞

sup
k∈N

{d(Tny, Tn+ky)− ϕ(diam(O(y)))} ≤ 0.

Then, there exists v ∈ M such that limn→∞ Tn(x) = v. If, in addition, T is contin-
uous at v, then v is a fixed point of T .

Remark 2.2. Because O(y, T ky)) = O(y), it is easy to see that condition (2.1) is
weaker than (1.1).

Proof. Note that

0 ≤ diam(O(Tm+1x)) ≤ diam(O(Tmx)), ∀m ∈ N.
So, D := limm→∞ diam(O(Tmx)) exists. If we show that D = 0, then we have
proved that {Tn(x)} is Cauchy sequence.

Note that there exists a strictly increasing sequence {ni} and a sequence {ki} of
natural numbers, for which

(2.2) lim
i→∞

d(Tnix, Tni+kix) = D.

Because ϕ a is an upper semicontinuous function from the right, given ε > 0,
there exists m0 ∈ N such that

(2.3) ϕ(diam(O(Tm0x))) < ϕ(D) +
ε

2
.

For y0 := Tm0x, we have

(2.4) d(Tny0, T
n+ky0) ≤ ϕ(diam(O(y0))) + rn(y0), ∀n, k ∈ N,

where,

rn(y0) = sup{d(Tny0, T
n+ky0)− ϕ(diam(O(y0))) : k ∈ N},

and by (2.1), lim supn→∞ rn(y0) ≤ 0. So, we can determine an integer no such that

(2.5) rn(y0) ≤
ε

2
, ∀n ≥ n0.

Hence, from (2.3), (2.4) and (2.5), we obtain

d(Tn+m0x, Tn+k+m0x) = d(Tny0, T
n+ky0)
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≤ ϕ(diam(O(y0))) + rn(y0)

< ϕ(D) +
ε

2
+ rn(y0)

≤ ϕ(D) + ε

for all n ≥ n0 and k ∈ N. That is,

d(Tnx, Tn+kx) ≤ ϕ(D) + ε, ∀n ≥ n0 +m0 and ∀k ∈ N.

Then, by (2.2), we get D ≤ ϕ(D)+ε. Because ε is an arbitrary positive real number,
we have D ≤ ϕ(D), which implies that D = 0 (since ϕ(t) < t for all t > 0). Hence,
{Tn(x)} is Cauchy sequence. Since M is complete, limn→∞ Tn(x) = v ∈ M. �

Now, we are ready to get our main results of this section.

Theorem 2.3. Let M be a complete metric space, ϕ : R+ → R+ an upper semicon-
tinuous function from the right satisfying ϕ(t) < t for all t > 0 and ϕn : R+ → R+

a sequence of functions converging pointwise to ϕ. Let T : M → M be a mapping
with a bounded orbit, say O(x), such that for each y ∈ O(x) there exists n(y) ∈ N
such that for all n ≥ n(y) and z ∈ O(y),

(2.6) d(Tny, Tnz) ≤ ϕn(diam(O(y))).

Then, there exists v ∈ M such that limn→∞ Tn(x) = v. If, in addition, T is contin-
uous at v, then v is a fixed point of T .

Proof. It suffices to show that condition (2.1) of Lemma 2.1 holds. For y ∈ O(x)
and n ≥ n(y), we have, using (2.6),

sup{d(Tny, Tn+ky)− ϕ(diam(O(y))) : k ∈ N}
= sup

z∈O(y)
{d(Tny, Tnz)− ϕ(diam(O(y)))}

≤ ϕn(diam(O(y)))− ϕ(diam(O(y))).

Now, because ϕn converges pointwise to ϕ, the above inequality implies (2.1). �

Theorem 2.4. Let M be a complete metric space, ϕ : R+ → R+ an upper semicon-
tinuous function from the right satisfying ϕ(t) < t for all t > 0 and ϕn : R+ → R+ a
sequence of functions converging pointwise to ϕ. Suppose T : M → M has bounded
orbits and for each x ∈ M there exists n(x) ∈ N such that for all n ≥ n(x) and
y ∈ M ,

(2.7) d(Tnx, Tny) ≤ ϕn(diam(O(x, y))).

Then, there exists v ∈ M such that limn→∞ Tn(x) = v, for each x ∈ M . If, in
addition, T is continuous at v, then v is a unique fixed point of T .

Proof. Because (2.7) implies (2.6), it follows from Theorem 2.3 that limn→∞ Tn(x)
exists , for each x ∈ M . Assume that, for x, y ∈ M , Tnx → v and Tny → u. Then,
by (2.7),

d(u, v) = lim
n→∞

d(Tnx, Tny) = lim
n→∞

d(Tn(Tmx), Tn(Tmy))

≤ lim
n→∞

ϕn(diam(O(Tmx, Tmy))) = ϕ(diam(O(Tmx, Tmy))), ∀m ∈ N.
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But, it is easy to verify that diam(O(Tmx, Tmy)) ↓ d(u, v), as m → ∞. Hence, by
the upper semicontinuity of ϕ from the right, we obtain

d(u, v) ≤ lim sup
m→∞

ϕ(diam(O(Tmx, Tmy))) ≤ ϕ(d(u, v)).

Therefore, d(u, v) = 0. That is, for each x ∈ M , {Tnx} converges to a fixed element
v ∈ M . �

Compared to Walter’s result, Theorem 2.4 has the merit of holding under a
more general asymptotic contractive condition. Also, the continuity condition of
ϕ : R+ → R+ is replaced by upper semicontinuity from the right.

In the following, we give an example illustrating that Theorem 2.4 is an essential
generalization of Walter’s result.

Example 2.5. Let M = R+ with the usual metric and let {ℓn} be an arbitrary
sequence in the segment (0, 1). Now, define T, ϕ : R+ → R+ by

T (x) = ϕ(x) = [x]− ℓ[x], for x ≥ 1,

and T (x) = ϕ(x) = 0, for 0 ≤ x < 1. Then, it is easy to verify that T and ϕ satisfy
the hypotheses in Theorem 2.4. That is,

(i) ϕ(t) < t for all t > 0;
(ii) ϕ is an upper semicontinuous function;
(iii) T has bounded orbits and limn→∞ Tn(x) = 0, for each x ∈ R+;
(iv) |Tnx− Tny| ≤ ϕ(diam(O(x, y))), for all x, y ∈ R+.
But, ϕ is not a continuous function and Walter’s theorem (Theorem 1.1) can not

be applied here.

3. Asymptotic contractions of Edelstein’s type

We recall that a mapping T from a metric space M into itself is called weakly
asymptotically nonexpansive (see [3]) if it satisfies the condition

lim sup
n→∞

d(Tnx, Tny) ≤ d(x, y), for each x, y ∈ M.

It is worth mentioning that Tingley [13] has constructed an example of a bounded
closed convex C in Hilbert space and a continuous but fixed point free T : C → C
which satisfies limn∥Tnx− Tny∥ = 0.

At first, we present two lemmas which are essential to prove the main results of
this section.

Lemma 3.1. Let (M,d) be a metric space and T : M → M a weakly asymptoti-
cally nonexpansive mapping. Then, for all x, y ∈ M , the limit limn→∞ d(Tnx, Tny)
exists.

Proof. Let x, y ∈ M . Because T is weakly asymptotically nonexpansive, we have

lim sup
n→∞

d(Tnx, Tny) = lim sup
n→∞

d(Tn+mx, Tn+my)

≤ d(Tmx, Tmy), for all m ≥ 0.

Consequently,
lim sup
n→∞

d(Tnx, Tny) ≤ lim inf
m→∞

d(Tmx, Tmy).
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This completes the proof. �

Lemma 3.2. Let (M,d) be a metric space, x ∈ M and T : M → M a map-
ping for which ω(O(x)) ̸= ∅, where ω(O(x)) = {y ∈ M : limk d(T

nkx, y) =
0, for some nk → ∞}. Suppose T is weakly asymptotically nonexpansive on O(x)
and TN is continuous on ω(O(x)), the cluster points of O(x), for some integer
N ≥ 1. Then,

d(T kNp, T (k+1)Np) = d(q, TNq), ∀p, q ∈ ω(O(x)) and ∀k ≥ 0.

Proof. Because T : O(x) → O(x) is weakly asymptotically nonexpansive, it follows
from Lemma 3.1 that the limit

α := lim
n→∞

d(Tnx, Tn+Nx)

exists. Hence, by continuity of TN on ω(O(x)), we have

α = d(q, TNq), ∀q ∈ ω(O(x)).

On the other hand, it follows by continuity that T kNp ∈ ω(O(x)), for all p ∈ ω(O(x))
and k ≥ 1. Therefore, the desired result follows. �

Lemma 3.3. Let (M,d) be a metric space, x ∈ M and T : M → M a mapping
for which ω(O(x)) ̸= ∅. Suppose, for some integer N ≥ 1, TN is continuous on
ω(O(x)) and TN : ω(O(x)) → ω(O(x)) satisfies condition (1.2). If T is weakly
asymptotically nonexpansive on O(x), then ω(O(x)) = {v} for which v is a fixed
point of TN .

Proof. Taking S = TN , we have, from Lemma 3.2, that

d(Skp, S(k+1)p) = d(q, Sq), ∀p, q ∈ ω(O(x)) and ∀k ≥ 0.

In particular,

d(Skp, S(k+1)p) = d(p, Sp), ∀p ∈ ω(O(x)) and ∀k ≥ 0.

Hence, because S satisfies condition (1.2), it follows that

TNp = Sp = p, ∀p ∈ ω(O(x)).

We show that ω(O(x)) is singleton. Suppose, for contradiction, that p, q ∈ ω(O(x))
and p ̸= q. Then, because Sp = p and Sq = q, we get

d(p, q) = lim inf
n→∞

d(Snp, Snq) < d(p, q),

a contradiction. Therefore ω(O(x)) is a singleton, say ω(O(x)) = {v}, and TNv =
v. �

Lemma 3.4. Let (M,d) be a metric space, x ∈ M and T : M → M a mapping
for which ω(O(x)) ̸= ∅. Suppose, for some integer N ≥ 1, TN is continuous on
ω(O(x)) and the restriction of TN to X = ∪N

k=0T
k(ω(O(x))) satisfies condition

(1.2). If T is weakly asymptotically nonexpansive on O(x), then ω(O(x)) = {v} for
which Tv = v.
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Proof. By Lemma 3.3, it follows that ω(O(x)) = {v} and TNv = v. Hence, X =
{v, Tv, T 2v, . . . , TN−1v} and T (X) ⊆ X. Suppose, for contradiction, that Tv ̸= v.
Then, by letting

0 < δ = min{d(T iv, T jv) : 0 ≤ i, j ≤ N − 1 and T iv ̸= T jv},
we can find 0 ≤ k < l ≤ N − 1 for which δ = d(T kv, T lv). Then, it is easy to see
that

d(T kv, T lv) = δ ≤ d(Tn(T kv), Tn(T lv)), ∀n ∈ N.
Thus,

d(T kv, T lv) ≤ lim inf
n→∞

d(TnN (T kv), TnN (T lv)) < d(T kv, T lv),

a contradiction. Therefore Tv = v. �
As a direct consequence of Lemma 3.4, we get the following theorem which is the

main result of this section.

Theorem 3.5. Let (M,d) be a metric space, x ∈ M and T : M → M a mapping for
which ω(O(x)) ̸= ∅. Suppose some iterate of T is continuous and satisfies condition
(1.2). If T is weakly asymptotically nonexpansive on O(x), then ω(O(x)) = {v} for
which v is a fixed point of an iterate of T .

Corollary 3.6. Let (M,d) be a metric space and T : M → M a mapping satisfying

0 < d(x, y) =⇒ lim sup
n→∞

d(Tnx, Tny) < d(x, y). (3.1)

Let, for some x ∈ M , ω(O(x)) ̸= ∅ and suppose TN is continuous on ω(O(x)), for
some integer N ≥ 1. Then, T has a unique fixed point v and limn→∞ Tnx = v.

Proof. By Lemma 3.4, T has a fixed point v ∈ ω(O(x)). Now, for any real number
ε > 0, there exist m0 ∈ N such that d(Tm0x, v) < ε. Hence, by (3.1), we obtain

lim sup
n→∞

d(Tnx, v) = lim sup
n→∞

d(Tn(Tm0x), v) ≤ d(Tm0x, v) < ε.

Because ε > 0 is arbitrary, it follows that limn→∞ Tnx = v. It suffices to prove the
uniqueness. Suppose that Tu = u and u ̸= v. Then,

d(u, v) = lim sup
n→∞

d(Tnu, Tnv) < d(p, q),

a contradiction. Therefore, T has a unique fixed point. �
Example 3.7. Let T : c0 → c0 be the left shift operator defined by

T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).

One can easily see that T satisfies (3.1), but, it is not contractive.

Corollary 3.8. Let (M,d) be a compact metric space and T : M → M a mapping
satisfying (3.1). If TN is continuous, for some integer N ≥ 1, then T has a unique
fixed point v in M . Moreover, for each x ∈ M , the sequence of Picard iterates,
{Tnx}, converges in norm to v.

Remark 3.9. Even in a complete M , one can find a map without fixed points, for
which limn→∞ d(Tnx, Tny) = 0, for any x, y in M : Let M = [0,∞) with the usual
metric and Tx = ln(1 + ex).
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