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for all x, y ∈ C; see, for instance, Browder [3] and Goebel and Kirk [5]. Recently,
Kocourek, Takahashi and Yao [8] defined a broad class of generalized hybrid map-
pings containing nonexpansive mappings, nonspreading mappings [9,10] and hybrid
mappings [18] in a Hilbert space. A mapping T : C → C is called generalized
hybrid [8] if there exist α, β ∈ R such that

(1.1) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C; see also [12]. We call such a mapping an (α, β)-generalized hy-
brid mapping. Kocourek, Takahashi and Yao [8] proved a fixed point theorem for
such mappings in a Hilbert space. Furthermore, they proved a nonlinear mean
convergence theorem of Baillon’s type [2] in a Hilbert space. In 2011, Takahashi
and Takeuchi [19] proved the following fixed point and mean convergence theorem
without convexity for generalized hybrid mappings in a Hilbert space.

Theorem 1.1. Let H be a real Hilbert space and let C be a nonempty subset of
H. Let T be a generalized hybrid mapping from C into itself. Let {vn} and {bn} be
sequences defined by

v1 ∈ C, vn+1 = Tvn, bn = 1
n

∑n
k=1 vk

for all n ∈ N. If {vn} is bounded, then the following hold:

(1) A(T ) is nonempty, closed and convex;
(2) {bn} converges weakly to u0 ∈ A(T ), where u0 = limn→∞ PA(T )vn and PA(T )

is the metric projection of H onto A(T ).

Very recently, Atsushiba and Takahashi [1] defined the set of all common attrac-
tive points of a family of mappings of C into itself and then they proved an attractive
point and mean convergence theorem for commutative semigroups of nonexpansive
mappings in a Hilbert space.

In this paper, motivated by Takahashi and Takeuchi [19] and Atsushiba and
Takahashi [1], we prove an attractive point and fixed point theorem for commutative
semigroups of mappings without continuity which generalizes the attractive point
theorems of [19] and [1]. We also obtain a mean convergence theorem of Baillon’s
type [2] for the semigroups of mappings without continuity. Using this result, we
also prove mean convergence theorems of [19] and [1].

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥, respec-
tively. We denote the strong convergence and the weak convergence of {xn} to
x ∈ H by xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H. We
denote by coA the closure of the convex hull of A. In a Hilbert space, it is known
that

(2.1) ∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2

for all x, y ∈ H and α ∈ R. Furthermore, we have that

(2.2) 2 ⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2
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for all x, y, z, w ∈ H; see [17]. From (2.2), we have that

(2.3) ⟨(x− y) + (x− w), y − w⟩ = ∥x− w∥2 − ∥x− y∥2

for all x, y, w ∈ H. Let C be a nonempty subset of H. A mapping T : C → C is
quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tx− y∥ ≤ ∥x− y∥, ∀x ∈ C, y ∈ F (T ).

An (α, β)-generalized hybrid mapping in Introduction is nonexpansive for α = 1
and β = 0. It is nonspreading [9, 10] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is hybrid [18] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous mappings. For
example, we can give the following example [6] of nonspreading mappings. Let H
be a real Hilbert space. Set E = {x ∈ H : ∥x∥ ≤ 1}, D = {x ∈ H : ∥x∥ ≤ 2} and
C = {x ∈ H : ∥x∥ ≤ 3}. Define a mapping S : C → C as follows:

Sx =

{
0, x ∈ D,

PEx, x /∈ D,

where PE is the metric projection of H onto E. Then the mapping S is a non-
spreading mapping which is not continuous. Putting x = u with u = Tu in (1.1),
we have that for any y ∈ C,

α∥u− Ty∥2 + (1− α)∥u− Ty∥2 ≤ β∥u− y∥2 + (1− β)∥u− y∥2

and hence

(2.4) ∥u− Ty∥ ≤ ∥u− y∥, ∀u ∈ F (T ), y ∈ C.

That is, a generalized hybrid mapping with a fixed point is quasi-nonexpansive. It
is well-known that the set F (T ) of fixed points of a quasi-nonexpansive mapping T
is closed and convex; see Itoh and Takahashi [7]. In fact, for proving that F (T ) is
closed, take a sequence {zn} ⊂ F (T ) with zn → z. Since C is weakly closed, we
have z ∈ C. Furthermore, from

∥z − Tz∥ ≤ ∥z − zn∥+ ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

z is a fixed point of T and so F (T ) is closed. Let us show that F (T ) is convex. For
x, y ∈ F (T ) and α ∈ [0, 1], put z = αx+ (1− α)y. Then, we have from (2.1) that

∥z − Tz∥2 = ∥αx+ (1− α)y − Tz∥2

= α∥x− Tz∥2 + (1− α)∥y − Tz∥2 − α(1− α)∥x− y∥2

≤ α∥x− z∥2 + (1− α)∥y − z∥2 − α(1− α)∥x− y∥2

= α(1− α)2∥x− y∥2 + (1− α)α2∥x− y∥2 − α(1− α)∥x− y∥2

= α(1− α)(1− α+ α− 1)∥x− y∥2

= 0.
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This implies Tz = z. So, F (T ) is convex. The following result proved by Takahashi
and Takeuchi [19] is also important.

Lemma 2.1. Let H be a real Hilbert space, let C be a nonempty subset of H and
let T be a mapping from C into H. Then A(T ) is a closed and convex subset of H.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [15].

3. Semitopological semigroups and invariant means

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to
S are continuous. In the case when S is commutative, we denote st by s + t. Let
B(S) be the Banach space of all bounded real-valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real-valued continuous
functions on S. Let µ be an element of C(S)∗ (the dual space of C(S)). We denote
by µ(f) the value of µ at f ∈ C(S). Sometimes, we denote by µt(f(t)) or µtf(t)
the value µ(f). For each s ∈ S and f ∈ C(S), we define two functions lsf and rsf
as follows:

(lsf)(t) = f(st) and (rs f )(t) = f (ts)

for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ∥µ∥ = 1,
where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).

A mean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f) for all
f ∈ C(S) and s ∈ S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C(S). If S = N, an invariant mean on C(S) = B(S) is a Banach
limit on l∞. The following theorem is in [15, Theorem 1.4.5].

Theorem 3.1 ( [15]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element µ ∈ C(S)∗

such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and s ∈ S.

Let S be a semitopological semigroup. For any f ∈ C(S) and c ∈ R, we write

f(s) → c, as s → ∞R
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if for each ε > 0 there exists an ω ∈ S such that

|f(tw)− c| < ε, ∀t ∈ S.

We denote f(s) → c, as s → ∞R by

lim
s→∞R

f(s) = c, or lim
s

f (s) = c.

When S is commutative, we also denote s → ∞R by s → ∞.

Theorem 3.2 ( [15]). Let f ∈ C(S) and c ∈ R. If

f(s) → c, as s → ∞R,

then µ(f) = c for all right invariant mean µ on C(S).

Theorem 3.3 ( [15]). If f ∈ C(S) fulfills

f(ts) ≤ f(s), ∀t, s ∈ S,

then
f(t) → inf

w∈S
f(w), as t → ∞R.

Theorem 3.4 ( [15]). Let S be a commutative semitopological semigroup and let
f ∈ C(S). Then the following are equivalent:

(i) f(s) → c, as s → ∞;
(ii) supw inft f(t+ w) = infw supt f(t+ w) = c.

Let H be a Hilbert space and let C be a nonempty subset of H. Let S be a
semitopological semigroup and let S = {Ts : s ∈ S} be a family of mappings of C
into itself. Then S = {Ts : s ∈ S} is called a continuous representation of S as
mappings on C if Tst = TsTt for all s, t ∈ S and s 7→ Tsx is continuous for each
x ∈ C. We denote by F (S) the set of common fixed points of Ts, s ∈ S, i.e.,

F (S) = ∩{F (Ts) : s ∈ S}.
A continuous representation S = {Ts : s ∈ S} of S as mappings on C is called a
nonexpansive semigroup on C if each Ts, s ∈ S is nonexpansive, i.e.,

∥Tsx− Tsy∥ ≤ ∥x− y∥, ∀x, y ∈ C.

The following definition [13] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let u : S → H be a continuous function such that {u(s) : s ∈ S}
is bounded and let µ be a mean on C(S). Then there exists a unique point z0 ∈
co{u(s) : s ∈ S} such that

(3.1) µs⟨u(s), y⟩ = ⟨z0, y⟩, ∀y ∈ H.

In fact, since {u(s) : s ∈ S} is bounded and µ is a mean on C(S), we can define a
real-valued function g as follows:

g(y) = µs⟨u(s), y⟩, ∀y ∈ H.

We have that for any y, z ∈ H and α, β ∈ R,
g(αy + βz) = µs⟨u(s), αy + βz⟩

= αµs⟨u(s), y⟩+ βµs⟨u(s), z⟩
= αg(y) + βg(z).



1092 W. TAKAHASHI, N.-C. WONG, AND J.-C. YAO

Then g is a linear functional of H into R. Furthermore we have that for any y ∈ H,

|g(y)| = |µs⟨u(s), y⟩|
≤ ∥µs∥ sup

s
|⟨u(s), y⟩|

≤ ∥µs∥ sup
s

∥u(s)∥ ∥y∥

= (sup
s

|∥u(s)∥) ∥y∥.

Put K = sups ∥u(s)∥. We have that

|g(y)| ≤ K∥y∥, ∀y ∈ H.

Then g is bounded. By the Riesz theorem, there exists z0 ∈ H such that

(3.2) g(y) = ⟨z0, y⟩, ∀y ∈ H.

It is obvious that such z0 ∈ H is unique. Furthermore we have z0 ∈ co{u(s) : s ∈ S}.
In fact, if z0 /∈ co{u(s) : s ∈ S}, then there exists y0 ∈ H from the separation
theorem such that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{u(s) : s ∈ S}

}
.

Using the property of a mean, we have that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{u(s) : s ∈ S}

}
≤ inf{⟨u(s), y0⟩ : s ∈ S}
≤ µs⟨u(s), y0⟩
= ⟨z0, y0⟩.

This is a contradiction. Thus we have z0 ∈ co{u(s) : s ∈ S}. We call such z0
the mean vector of u for µ. In particular, if S = {Ts : s ∈ S} is a continuous
representation of S as mappings on C such that {Tsx : s ∈ S} is bounded for some
x ∈ C and u(s) = Tsx for all s ∈ S, then there exists z0 ∈ H such tat

µs⟨Tsx, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

We denote such z0 by Tµx.
Motivated by Takahashi and Takeuchi [19], Atsushiba and Takahashi [1] defined

the set A(S) of all common attractive points of a family S = {Ts : s ∈ S} of
mappings of C into itself, i.e.,

A(S) = ∩{A(Ts) : s ∈ S}.

A net {µα} of means on C(S) is said to be asymptotically invariant if for each
f ∈ C(S) and s ∈ S,

µα(f)− µα(lsf) → 0 and µα(f )− µα(rs f ) → 0.

See [4] and [15] for more details.
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4. Mean vector and attractive point theorems

In this section, we first prove an important result for mean vectors in a Hilbert
space. This result will be used in Section 5. Furthermore, using mean vectors,
we prove attractive point and fixed point theorems for commutative semigroups of
mappings without continuity in a Hilbert space.

Theorem 4.1. Let S be a semitopological semigroup and let C(S) be the Banach
space of all bounded real-valued continuous functions on S with supremum norm.
Let D be a nonempty, closed and convex subset of a Hilbert space H. Let u : S → H
be a continuous function such that {u(s) : s ∈ S} ⊂ D is bounded and let µ be a
mean on C(S). If g : D → R is defined by

g(z) = µs∥u(s)− z∥2, ∀z ∈ D,

then g is continuous and there exists a unique z0 ∈ D such that

g(z0) = min{g(z) : z ∈ D}.

Furthermore, such z0 is the mean vector of {u(s) : s ∈ S} for µ.

Proof. For a bounded set {u(s)} ⊂ D and a mean µ on C(S), we know from [16]
that a function g : D → R defined by

g(z) = µs∥u(s)− z∥2, ∀z ∈ D

is continuous. We also know from (3.1) that there exists the mean vector z0 of
{u(s)} for µ, that is, there exists z0 ∈ co{u(s) : s ∈ S} such that

µs⟨u(s), y⟩ = ⟨z0, y⟩, ∀y ∈ H.

Since D is closed and convex and {u(s)} ⊂ D, we have z0 ∈ D. Furthermore we
have that for any z ∈ D,

g(z)− g(z0) = µs∥u(s)− z∥2 − µs∥u(s)− z0∥2

= µs(∥u(s)− z∥2 − ∥u(s)− z0∥2)
= µs

(
∥u(s)∥2− 2⟨u(s), z⟩+∥z∥2− (∥u(s)∥2− 2⟨u(s), z0⟩+∥z0∥2)

)
= µs(−2⟨u(s), z⟩+ ∥z∥2 + 2⟨u(s), z0⟩ − ∥z0∥2)
= −2⟨z0, z⟩+ ∥z∥2 + 2⟨z0, z0⟩ − ∥z0∥2

= −2⟨z0, z⟩+ ∥z∥2 + ∥z0∥2

= ∥z − z0∥2.

Then we have that

g(z) = g(z0) + ∥z − z0∥2, ∀z ∈ D.

This implies that z0 is a unique point in D such that

g(z0) = min{g(z) : z ∈ D}.

This completes the proof. �

Using mean vectors, we can also prove an attractive point and fixed point theorem
for commutative semigroups of mappings without continuity in a Hilbert space.
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Theorem 4.2. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself. Let {Tsx : s ∈ S}
be bounded for some x ∈ C and let µ be a mean on C(S). Suppose that

(4.1) µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀y ∈ C, t ∈ S.

Then A(S) is nonempty. In addition, if C is closed and convex, then F (S) is
nonempty.

Proof. Since {Tsx} is bounded, we have from (3.1) that there exists a unique point
z0 ∈ co{Tsx : s ∈ S} such that

(4.2) µs⟨Tsx, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

Using this z0, we have from (2.3), (4.2) and (4.1) that for any v ∈ C and t ∈ S,

⟨(z0 − v) + (z0 − Ttv), v − Ttv⟩ = µs⟨(Tsx− v) + (Tsx− Ttv), v − Ttv⟩
= µs(∥Tsx− Ttv∥2 − ∥Tsx− v∥2)
= µs∥Tsx− Ttv∥2 − µs∥Tsx− v∥2(4.3)

≤ 0.

Using (2.3) again, we have that

⟨(z0 − v) + (z0 − Ttv), v − Ttv⟩ = ∥z0 − Ttv∥2 − ∥z0 − v∥2.
We have from (4.3) that for all v ∈ C and t ∈ S,

∥z0 − Ttv∥2 − ∥z0 − v∥2 ≤ 0

and hence ∥z0 − Ttv∥ ≤ ∥z0 − v∥. Therefore we have z0 ∈ A(S). Moreover, if C is
closed and convex, we have from {Tsx} ⊂ C that

z0 ∈ co{Tsx : s ∈ S} ⊂ C.

Since z0 ∈ A(S) and z0 ⊂ C, we have that

∥Ttz0 − z0∥ ≤ ∥z0 − z0∥ = 0, ∀t ∈ S

and hence z0 ∈ F (S). This completes the proof. �
Using Theorem 4.2, we can prove an attractive point theorem for generalized

hybrid mappings obtained by Takahashi and Takeuchi [19] in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a generalized hybrid mapping of C into itself. Suppose that there exists an
element z ∈ C such that {Tnz} is bounded. Then A(T ) is nonempty. In addition,
if C is closed and convex, then F (T ) is nonempty.

Proof. Since T is generalized hybrid, there exist α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We have that for any y ∈ C and n ∈ N ∪ {0},
α∥Tn+1z − Ty∥2+(1− α)∥Tnz − Ty∥2

≤ β∥Tn+1z − y∥2 + (1− β)∥Tnz − y∥2
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for any y ∈ C. Since {Tnz} is bounded, we can apply a Banach limit µ to both
sides of the inequality. Then we have

µn(α∥Tn+1z − Ty∥2+(1− α)∥Tnz − Ty∥2)
≤ µn(β∥Tn+1z − y∥2 + (1− β)∥Tnz − y∥2).

So we obtain

αµn∥Tn+1z − Ty∥2+(1− α)µn∥Tnz − Ty∥2

≤ βµn∥Tn+1z − y∥2 + (1− β)µn∥Tnz − y∥2

and hence

αµn∥Tnz − Ty∥2+(1− α)µn∥Tnz − Ty∥2

≤ βµn∥Tnz − y∥2 + (1− β)µn∥Tnz − y∥2.

This implies

µn∥Tnz − Ty∥2 ≤ µn∥Tnz − y∥2

for all y ∈ C. If S = N ∪ {0}, we have from Theorem 4.2 that A(T ) is nonempty.
Moreover, if C is closed and convex, then we have from Theorem 4.2 that F (T ) is
nonempty. This completes the proof. �

Using Theorem 4.2, we have the attractive point theorem for commutative semi-
groups of nonexpansive mappings in a Hilbert space which was proved by Atsushiba
and Takakashi [1].

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a nonexpansive semigroup on C such that {Tsz : s ∈ S} is bounded for some
z ∈ C. Then A(S) is nonempty. In addition, if C is closed and convex, then F (S)
is nonempty.

Proof. Since S = {Ts : s ∈ S} is a nonexpansive semigroup on C, we have that

∥Tt+sx− Tty∥2 ≤ ∥Tsx− y∥2

for all x, y ∈ C and s, t ∈ S. Since {Tsz} is bounded, we can apply an invariant
mean µ to both sides of the inequality. Then we have that for any y ∈ C and t ∈ S,

µs∥Tt+sz − Tty∥2 ≤ µs∥Tsz − y∥2

and hence

µs∥Tsz − Tty∥2 ≤ µs∥Tsz − y∥2.

We have from Theorem 4.2 that A(S) is nonempty. Moreover, if C is closed and
convex, then we have from Theorem 4.2 that F (S) is nonempty. This completes
the proof. �
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5. Nonlinear ergodic theorems

In this section, we prove a mean convergence theorem for commutative semigroups
of mappings without continuity in a Hilbert space. Before proving it, we need the
following lemmas. We first prove the following result by using ideas of [11] and [20].

Lemma 5.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let S
be a commutative semitopological semigroup with identity and let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself such that A(S) ̸= ∅.
Then, there exists the metric projection P of H onto A(S). Furthermore, for any
x ∈ C, lims PTsx exists in A(S), where lims PTsx = q means lims ∥PTsx− q∥ = 0.

Proof. We have that A(S) is closed and convex. So, there exists the metric projec-
tion P of H onto A(S). For an invariant mean µ on C(S), there exists q ∈ A(S)
such that

µt⟨PTtx, y⟩ = ⟨q, y⟩, ∀y ∈ H.

Then we have that for any s ∈ S,

µt⟨PTt+sx, y⟩ = µt⟨PTtx, y⟩ = ⟨q, y⟩, ∀y ∈ H.

Thus we have that

(5.1) q ∈ co{PTt+sx : t ∈ S}, ∀s ∈ S.

From the property of the metric projection P , we know that

(5.2) 0 ≤ ⟨v − Pv, Pv − u⟩, ∀v ∈ H, u ∈ A(S).
We have from (5.2) and (2.2) that

0 ≤ 2⟨v − Pv, Pv − u⟩
= ∥v − u∥2 + ∥Pv − Pv∥2 − ∥v − Pv∥2 − ∥Pv − u∥2

= ∥v − u∥2 − ∥v − Pv∥2 − ∥Pv − u∥2.
Hence we have that

(5.3) ∥Pv − u∥2 ≤ ∥v − u∥2 − ∥v − Pv∥2, ∀v ∈ H, u ∈ A(S).
Since ∥Tsz − u∥2 ≤ ∥z − u∥2 for all s ∈ S, u ∈ A(S) and z ∈ C, it follows that

(5.4) ∥Tt+sx− PTt+sx∥2 ≤ ∥Tt+sx− PTsx∥2 ≤ ∥Tsx− PTsx∥2.
Hence we have from (5.4) and Theorem 3.3 that

(5.5) ∥Tsx− PTsx∥2 → inf
w∈S

∥Twx− PTwx∥2, as s → ∞.

Putting u = PTsx and v = Tt+sx in (5.3), we have that

∥PTt+sx− PTsx∥2 ≤ ∥Tt+sx− PTsx∥2 − ∥Tt+sx− PTt+sx∥2

≤ ∥Tsx− PTsx∥2 − ∥Tt+sx− PTt+sx∥2

≤ ∥Tsx− PTsx∥2 − inf
w∈S

∥Twx− PTwx∥2.

Using (5.1), we have that

∥q − PTsx∥2 ≤ ∥Tsx− PTsx∥2 − inf
w∈S

∥Twx− PTwx∥2, ∀s ∈ S.
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Thus we have from (5.5) that

∥PTsx− q∥ → 0, as s → ∞.

Therefore {PTsx} converges strongly to q ∈ A(S). This completes the proof. �

Using the idea of [14], we have the following result.

Lemma 5.2. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself. Suppose that
{Tsx : s ∈ S} is bounded for some x ∈ C and

µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀y ∈ C, t ∈ S

for some invariant mean µ on C(S). Then ∩sco{Tt+sx : t ∈ S} ∩ A(S) consists of
one point z0. Furthermore, z0 = lims PA(S)Tsx, where PA(S) is the metric projection
of H onto A(S). In addition, if C is closed and convex, then ∩sco{Tt+sx : t ∈
S} ∩ F (S) consists of one point z0.

Proof. From Theorem 4.1, a unique point z0 ∈ H such that

µs∥Tsx− z0∥2 = min{µs∥Tsx− y∥2 : y ∈ H}
is the mean vector of {Tsx : s ∈ S} for the invariant mean µ, that is, a unique point
z0 ∈ H such that

µs⟨Tsx, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

As in the proof of Theorem 4.2, we have z0 ∈ A(S). Furthermore, we have that

µs∥Tsx− z0∥2 = min{µs∥Tsx− y∥2 : y ∈ A(S)}.
Let us show that z0 ∈ ∩sco{Tt+sx : t ∈ S}. If not, there exists some s0 ∈ S such
that z0 /∈ co{Tt+s0x : t ∈ S}. By the separation theorem, there exists y0 ∈ H such
that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{Tt+s0x : t ∈ S}

}
.

Using the property of an invariant mean, we have that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{Tt+s0x : t ∈ S}

}
≤ inf{⟨Tt+s0x, y0⟩ : t ∈ S}
≤ µt⟨Tt+s0x, y0⟩
= µt⟨Ttx, y0⟩
= ⟨z0, y0⟩.

This is a contradiction. Thus we have that z0 ∈ ∩sco{Tt+sx : t ∈ S}. Next we
show that ∩sco{Tt+sx : s ∈ S} ∩ A(S) consists of one point z0. Assume that
z1 ∈ ∩sco{Tt+sx : t ∈ S} ∩A(S). Since z1 ∈ A(S), we have that

∥Tt+sx− z1∥2 ≤ ∥Tsx− z1∥2, ∀s, t ∈ S.

Then lims ∥Tsx − z1∥2 exists. In general, since lims ∥Tsx − z∥2 exists for every
z ∈ A(S), we define a function g : A(S) → R as follows:

g(z) = lim
s

∥Tsx− z∥2, ∀z ∈ A(S).
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Since

∥z0 − z1∥2 = ∥Tsx− z1∥2 − ∥Tsx− z0∥2 − 2⟨z0 − z1, Tsx− z0⟩
for every s ∈ S, we have

∥z0 − z1∥2 + 2 lim
s
⟨z0 − z1, Tsx− z0⟩ = lim

s
∥Tsx− z1∥2 − lim

s
∥Tsx− z0∥2

≥ 0.

Let ϵ > 0. Then we have

2 lim
s
⟨z0 − z1, Tsx− z0⟩ > −∥z0 − z1∥2 − ϵ.

Hence there exists s0 ∈ S such that

2⟨z0 − z1, Ts+s0x− z0⟩ > −∥z0 − z1∥2 − ϵ

for every s ∈ S. Since z1 ∈ ∩sco{Tt+sx : t ∈ S}, we have

2⟨z0 − z1, z1 − z0⟩ ≥ −∥z0 − z1∥2 − ϵ.

This inequality implies that ∥z0−z1∥2 ≤ ϵ. Since ϵ > 0 is arbitrary, we have z0 = z1.
Therefore

{z0} = ∩sco{Tt+sx : s ∈ S} ∩A(S).
We next show that z0 = lims PA(S)Tsx. Since

∥Tt+sx− z∥ ≤ ∥Tsx− z∥, ∀s, t ∈ S, z ∈ A(S),
we have from Lemma 5.1 that {PA(S)Tsx} converges strongly to some u ∈ A(S).
Since PA(S)Tsx ∈ A(S) for all s ∈ S, we have

∥PA(S)Tsx− Tt+sx∥ ≤ ∥PA(S)Tsx− Tsx∥
for all s, t ∈ S. Furthermore, we have from the property of PA(S) that

∥PA(S)Tsx− Tsx∥ ≤ ∥z − Tsx∥

for all z ∈ A(S). Thus

∥PA(S)Tsx− Tt+sx∥2 ≤ ∥PA(S)Tsx− Tsx∥2 ≤ ∥z − Tsx∥2

for all s, t ∈ S and z ∈ A(S). Then we have that

g(PA(S)Tsx) = lim
t

∥PA(S)Tsx− Tt+sx∥2

≤ ∥PA(T )Tsx− Tsx∥2

≤ ∥z − Tsx∥2.

Since g is continuous and PA(S)Tsx → u ∈ A(S), we have that

g(u) ≤ lim
s

∥z − Tsx∥2 = g(z), ∀z ∈ A(S).

Since z0 is a unique minimizer of g in A(S), we have u = z0. Therefore

z0 = lim
s

PA(S)Tsx.

Moreover, if C is closed and convex, then we know that

z0 ∈ ∩sco{Tt+sx : t ∈ S} ∩ F (S).
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Since ∩sco{Tt+sx : s ∈ S} ∩A(S) consists of one point z0, we have

∩sco{Tt+sx : s ∈ S} ∩ F (S) = {z0}.
This completes the proof. �
Lemma 5.3. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself. Suppose that
{Tsx : s ∈ S} is bounded for some x ∈ C and

(5.6) µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀y ∈ C, t ∈ S

for all invariant means µ on C(S). Let {µα} be a net of means on C(S) such that
for each f ∈ C(S) and s ∈ S, µα(f)− µα(lsf) → 0. If a subnet {Tµαβ

x} of {Tµαx}
converges weakly to a point u ∈ H, then u ∈ A(S). In addition, if C is closed and
convex, then u ∈ F (S).

Proof. Since {µα} is a net of means on C(S), it has a cluster point µ in the weak∗

topology. We show that µ is an invariant mean on C(S). In fact, since the set

{λ ∈ C(S)∗ : λ(e) = ∥λ∥ = 1}
is closed in the weak∗ topology, it follows that µ is a mean on C(S). Furthermore,
for any ε > 0, f ∈ C(S) and s ∈ S, there exists α0 such that

|µα(f)− µα(lsf)| ≤
ε

3
, ∀α ≥ α0.

Since µ is a cluster point of {µα}, we can choose β ≥ α0 such that

|µβ(f)− µ(f)| ≤ ε

3
and |µβ(ls f )− µ(ls f )| ≤

ε

3
.

Hence we have

|µ(f)− µ(lsf)| ≤ |µ(f)− µβ(f)|
+ |µβ(f)− µβ(lsf)|+ |µβ(lsf)− µ(lsf)|

≤ ε

3
+

ε

3
+

ε

3
= ε.

Since ε > 0 is arbitrary, we have

µ(f) = µ(lsf), ∀f ∈ C(S), s ∈ S.

Suppose that a subnet {Tµαβ
x} of {Tµαx} converges weakly to some u ∈ H. If λ is a

cluster point of {µαβ
} in the weak∗ topology, then λ is a cluster point of {µα}, too.

Then λ is an invariant mean on C(S). Without loss of generality, we may assume
that µαβ

⇀ λ in the weak∗ topology. Furthermore, we have from Tµαβ
x ⇀ u that

λs⟨Tsx, y⟩ = lim
β

(µαβ
)s⟨Tsx, y⟩ = lim

β
⟨Tµαβ

x, y⟩ = ⟨u, y⟩, ∀y ∈ H.

On the other hand, we have from (2.2) that for y ∈ C and s, t ∈ S,

2⟨Tsx− Tty, y − Tty⟩ − ∥Tty − y∥2 = ∥Tsx− Tty∥2 − ∥Tsx− y∥2.
Applying µαβ

to both sides of the inequality, we have that

2(µαβ
)s⟨Tsx− Tty,y − Tty⟩ − ∥Tty − y∥2
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= (µαβ
)s∥Tsx− Tty∥2 − (µαβ

)s∥Tsx− y∥2.

Since µαβ
⇀ λ, we have that

2λs⟨Tsx− Tty, y − Tty⟩ − ∥Tty − y∥2 = λs∥Tsx− Tty∥2 − λs∥Tsx− y∥2.

We have from (5.6) that

2⟨u− Tty, y − Tty⟩ − ∥Tty − y∥2 = λs∥Tsx− Tty∥2 − λs∥Tsx− y∥2 ≤ 0.

Since 2⟨u− Tty, y − Tty⟩ − ∥Tty − y∥2 = ∥u− Tty∥2 − ∥u− y∥2, we have that

(5.7) ∥u− Tty∥2 ≤ ∥u− y∥2, y ∈ C, t ∈ S.

This implies that u ∈ A(Tt). Therefore u ∈ A(S).
In particular, if C is closed and convex, then we have that u is an element of C.

Putting y = u in (5.7), we have Ttu = u. Therefore u ∈ F (S) = ∩{F (Tt) : t ∈ S}.
This completes the proof. �

Now we can prove the following mean convergence theorem for commutative
families of mappings without continuity in a Hilbert space.

Theorem 5.4. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S}
be a continuous representation of S as mappings of C into itself such that A(S) ̸= ∅.
Suppose that

(5.8) µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀x, y ∈ C, t ∈ S

for all invariant means µ on C(S). Let {µα} be a net of means on C(S) such that
for each f ∈ C(S) and s ∈ S, µα(f)−µα(lsf) → 0. Then, {Tµαx} converges weakly
to a point u ∈ A(S), where u = lims PA(S)Tsx. In addition, if C is closed and
convex, then u ∈ F (S), where u = lims PF (S)Tsx.

Proof. Since A(S) ̸= ∅, we have that {Tsx : s ∈ S} is bounded for all x ∈ C. Fix
x ∈ C. We have from (5.8) that for any invariant mean µ on C(S),

µs∥Tsx− Tty∥2 ≤ µs∥Tsx− y∥2, ∀y ∈ C t ∈ S.

We also know from Lemma 5.2 that ∩tco{Tt+sx : s ∈ S} ∩ A(S) consists of one
point z0 and z0 = lims PA(S)Tsx, where PA(S) is the metric projection of H onto
A(S). To prove Tαx ⇀ z0 ∈ A(S), it is sufficient to show that if a subnet {Tαβ

x}
of {Tαx} converges weakly to a point v ∈ H, then v ∈ A(S) and

v ∈ ∩tco{Tt+sx : s ∈ S}.

From Lemma 5.3, we have that v ∈ A(S). Since {Tµαβ
x} ⇀ v, we also know that

λs⟨Tsx, y⟩ = ⟨v, y⟩, ∀y ∈ H

for some invariant mean λ on C(S). Then v ∈ ∩tco{Tt+sx : s ∈ S}. Therefore
{Tµαx} converges weakly to z0 of A(S). Moreover, if C is closed and convex, then
z0 ∈ C and hence z0 ∈ F (S). Therefore {Tµαx} converges weakly to z0 ∈ F (S). To
show z0 = lims PF (S)Tsx, we may follow the proof of Lemma 5.1. This completes
the proof. �
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Using Theorem 5.4, we can prove the following mean convergence theorem ob-
tained by Takahashi and Takeuchi [19].

Theorem 5.5. Let H be a Hilbert space, let C be a nonempty subset of H and let T
be a generalized hybrid mapping of C into itself such that A(T ) is nonempty. Then
for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T
nx. In addition, if

C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ), where z0 =
limn→∞ PF (T )T

nx.

Proof. Since T : C → C is generalized hybrid, there exist α, β ∈ R such that

(5.9) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Since A(T ) is nonempty, {Tnx} is bounded for any x ∈ C. We
know from the proof of Theorem 4.3 that for any Banach limits µ on l∞,

µn∥Tnx− Ty∥2 ≤ µn∥Tnx− y∥2, ∀y ∈ C.

Let S = {0} ∪ N. For any f = (x0, x1, x2, . . . ) ∈ B(S), define

µn(f) =
1

n

n−1∑
k=0

xk, ∀n ∈ N.

Then {µn : n ∈ N} is an asymptotically invariant sequence of means on B(S);
see [15, p.78]. Furthermore, we have that for any x ∈ E and n ∈ N,

Tµnx =
1

n

n−1∑
k=0

T kx.

Therefore, we have the desired result from Theorem 5.4. �
Using Theorem 5.4, we have a mean convergence theorem for commutative semi-

groups of nonexpansive mappings in a Hilbert space which was proved by Atsushiba
and Takakashi [1].

Theorem 5.6. Let H be a Hilbert space and let C be a nonempty subset of H. Let S
be a commutative semitopological semigroup with identity. Let S = {Ts : s ∈ S} be a
nonexpansive semigroup on C such that such that A(S) is nonempty. Let {µα} be a
net of means on C(S) such that for each f ∈ C(S) and s ∈ S, µα(f)−µα(lsf) → 0.
Then, {Tαx} converges weakly to a point u ∈ A(S), where u = lims PA(S)Tsx. In
addition, if C is closed and convex, then u ∈ F (S), where u = lims PF (S)Tsx.

Proof. Since S = {Ts : s ∈ S} is a nonexpansive semigroup on C, we have that

∥Tt+sx− Tty∥2 ≤ ∥Tsx− y∥2

for all x, y ∈ C and s, t ∈ S. Since {Tsz} is bounded, we can apply an invariant
mean µ to both sides of the inequality. Then we have that for any y ∈ C and t ∈ S,

µs∥Tt+sz − Tty∥2 ≤ µs∥Tsz − y∥2
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and hence
µs∥Tsz − Tty∥2 ≤ µs∥Tsz − y∥2.

Therefore, we have the desired result from Theorem 5.4. �
Let H be a Hilbert space and let C be a nonempty subset of H. Let S = R+ =

{t ∈ R : 0 ≤ t < ∞}. Then a family S = {S(t) : t ∈ R+} of mappings of C into itself
is called a one-parameter nonexpansive semigroup on C if S satisfies the following:

(1) S(t+ s)x = S(t)S(s)x, ∀x ∈ C, t, s ∈ R+;
(2) S(0)x = x, ∀x ∈ C;
(3) for each x ∈ C, the mapping t 7→ S(t)x from R+ into C is continuous;
(2) for each t ∈ R+, S(t) is nonexpansive.

Using Theorem 5.6, we have the following nonlinear ergodic theorem.

Theorem 5.7. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S = {S(t) : t ∈ R+} be a one-parameter nonexpansive semigroup on C such that
A(S) ̸= ∅. Then for any x ∈ C,

Sλx =
1

λ

∫ λ

0
S(t)xdt

converges weakly to z0 ∈ A(S) as λ → ∞, where z0 = limt→∞ PA(S)S(t)x. In
addition, if C is closed and convex, then z0 = limt→∞ PF (S)S(t)x.

Proof. Let S = R+. For any f ∈ C(R+), define

µλ(f) =
1

λ

∫ λ

0
f(t)dt, ∀λ ∈ (0,∞).

Then {µλ : λ ∈ (0,∞)} is an asymptotically invariant net of means on C(R+);
see [15, p.80]. Furthermore, we have that for any x ∈ E and λ ∈ (0,∞),

Tµλ
x =

1

λ

∫ λ

0
S(t)xdt.

Therefore, we have the desired result from Theorem 5.6. �
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