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ATTRACTIVE POINT AND MEAN CONVERGENCE
THEOREMS FOR SEMIGROUPS OF MAPPINGS WITHOUT
CONTINUITY IN HILBERT SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. In this paper, using the theory of invariant means, we first prove an
attractive point and fixed point theorem for commutative semigroups of mappings
without continuity which generalizes theorems of Takahashi and Takeuchi [19]
and Atsushiba and Takahashi [1] in a Hilbert space. We also obtain a mean
convergence theorem of Baillon’s type [2] for the semigroups of mappings without
continuity. Using this result, we also prove their mean convergence theorems in
a Hilbert space.

1. INTRODUCTION

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C' be a nonempty subset
of H. Let T be a mapping of C into itself. Then we denote by F(T') the set of fized
points of T and by A(T) the set of attractive points [19] of T, i.e.,

(i) F(I)={z€C:Tz=2z};

(i) A(T)={z€ H:|Tx—z|]| < ||l — z||, Vz € C}.
We know from [19] that A(T") is closed and convex. This property is important.
A mapping T : C — C' is said to be nonexpansive if ||Tz — Ty|| < ||z — y|| for all
x,y € C. We know that if C' is a bounded, closed and convex subset of H and
T : C — C is nonexpansive, then F(T") is nonempty. Furthermore, from Baillon [2]
we know the first nonlinear mean convergence theorem in a Hilbert space: Let C
be a bounded, closed and convex subset of H and let T': C' — C' be nonexpansive.
Then for any x € C,

1 n—1
Spx = - kZ_OTkx

converges weakly to an element z € F(T); see also [21]. An important example
of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A
mapping F' is said to be firmly nonerpansive if

|Fz — Fy|* < (z —y, Fx — Fy)
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for all z,y € C; see, for instance, Browder [3] and Goebel and Kirk [5]. Recently,
Kocourek, Takahashi and Yao [8] defined a broad class of generalized hybrid map-
pings containing nonexpansive mappings, nonspreading mappings [9,10] and hybrid
mappings [18] in a Hilbert space. A mapping T : C — C is called generalized
hybrid [8] if there exist «, 5 € R such that

(L.1) al Tz = Tyl* + (1 - a)llz = Ty|* < BTz — y|* + (1 = Bz -yl

for all z,y € C; see also [12]. We call such a mapping an («, ()-generalized hy-
brid mapping. Kocourek, Takahashi and Yao [8] proved a fixed point theorem for
such mappings in a Hilbert space. Furthermore, they proved a nonlinear mean
convergence theorem of Baillon’s type [2] in a Hilbert space. In 2011, Takahashi
and Takeuchi [19] proved the following fixed point and mean convergence theorem
without convexity for generalized hybrid mappings in a Hilbert space.

Theorem 1.1. Let H be a real Hilbert space and let C' be a nonempty subset of
H. Let T be a generalized hybrid mapping from C into itself. Let {v,} and {b,} be
sequences defined by

v € C, Un+1 = Tvn, by= %Zzzl (%

for alln € N. If {v,} is bounded, then the following hold:

(1) A(T) is nonempty, closed and conve;
(2) {bn} converges weakly to ug € A(T), where ug = limy, 00 Pa(r)yvn and Py(r)
is the metric projection of H onto A(T).

Very recently, Atsushiba and Takahashi [1] defined the set of all common attrac-
tive points of a family of mappings of C into itself and then they proved an attractive
point and mean convergence theorem for commutative semigroups of nonexpansive
mappings in a Hilbert space.

In this paper, motivated by Takahashi and Takeuchi [19] and Atsushiba and
Takahashi [1], we prove an attractive point and fixed point theorem for commutative
semigroups of mappings without continuity which generalizes the attractive point
theorems of [19] and [1]. We also obtain a mean convergence theorem of Baillon’s
type [2] for the semigroups of mappings without continuity. Using this result, we
also prove mean convergence theorems of [19] and [1].

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || -||, respec-
tively. We denote the strong convergence and the weak convergence of {x,} to
x € H by x, — = and x,, — z, respectively. Let A be a nonempty subset of H. We
denote by ¢oA the closure of the convex hull of A. In a Hilbert space, it is known
that

2 2 2 2
(2.1) loz + (1 = a)y[|” = eflz]” + (1 = @) [[y]|" — a1 = a) [z - y]|
for all z,y € H and o € R. Furthermore, we have that

2 2 2 2
(2.2) 2(x —y,z—w) = [lo —wl" + lly = 21" = [z — 2" = |ly — w]|
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for all x,y, z,w € H; see [17]. From (2.2), we have that
(2.3) (= y) + (& —w),y —w) = & — w|? - |z - y|

for all z,y,w € H. Let C' be a nonempty subset of H. A mapping T : C — C is
quasi-nonezpansive if F(T) # () and

[Tz —yll < lz —yll, Veel, yeF(T).

An («, p)-generalized hybrid mapping in Introduction is nonexpansive for @ = 1
and 5 = 0. It is nonspreading [9,10] for « =2 and g =1, i.e.,

2| T — Ty|* < |Tx —yl* + | Ty — «|?, Va,yecC.
It is hybrid [18] for a = % and 3 = %, ie.,
3T — Tyl < o — yll? + | T2 — yl> + | Ty — 2, ¥,y € C.

In general, nonspreading and hybrid mappings are not continuous mappings. For
example, we can give the following example [6] of nonspreading mappings. Let H
be a real Hilbert space. Set E = {z € H : ||z|| <1}, D ={z € H : ||z| < 2} and
C ={z € H : ||z|| < 3}. Define a mapping S : C — C as follows:

0, €D,
Sz =
Pgpx, = ¢ D,

where Pg is the metric projection of H onto E. Then the mapping S is a non-
spreading mapping which is not continuous. Putting x = u with v = Tw in (1.1),
we have that for any y € C,

allu —Ty|* + (1 — a)llu— Ty|* < Bllu—yl* + (1 = B)lu —y|?
and hence
(2.4) |u =Tyl <[lu-yll, YueF(T), yeC.

That is, a generalized hybrid mapping with a fixed point is quasi-nonexpansive. It
is well-known that the set F'(T") of fixed points of a quasi-nonexpansive mapping 7’
is closed and convex; see Itoh and Takahashi [7]. In fact, for proving that F(T') is
closed, take a sequence {z,} C F(T) with z, — z. Since C is weakly closed, we
have z € C'. Furthermore, from

Iz = T2]l < Iz = 2ol + 120 — T2l < 2]z = 2a]l = O,

z is a fixed point of T and so F(T') is closed. Let us show that F'(T') is convex. For
xz,y € F(T) and a € [0,1], put 2z = ax + (1 — @)y. Then, we have from (2.1) that

2 = T2|]? = flaz + (1 — a)y — T=|?
— aflz = T|? + (1 = )lly = T2 — a(1 — @)z — y]?
<alle—2IP + (1 - a)lly — 2| — a1 - a)]la — y|?
— a(l— a)?e - y? + (1 — a)a?lle —y|* — a1 — a) |z — y]?
—a(l—a)(1-a+a- 1z y|?
=0.
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This implies Tz = z. So, F(T) is convex. The following result proved by Takahashi
and Takeuchi [19] is also important.

Lemma 2.1. Let H be a real Hilbert space, let C' be a nonempty subset of H and
let T be a mapping from C into H. Then A(T) is a closed and convexr subset of H.

Let [*° be the Banach space of bounded sequences with supremum norm. Let

u be an element of (I°°)* (the dual space of [°°). Then, we denote by u(f) the
value of p at f = (1,22, x3,...) € [°°. Sometimes, we denote by pu,(z,) the value
w(f). A linear functional p on [*° is called a mean if u(e) = ||p|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on I*° if pp(zp+1) = pin(xn).
We know that there exists a Banach limit on {*°. If y is a Banach limit on [°°, then
for f = (z1,29,23,...) € 1%,

liminf z,, < pp(zy,) < limsup z,.

n—o0 n—o0
In particular, if f = (x1,x2,23,...) € [*® and x,, — a € R, then we have u(f) =
tn(xy) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [15].

3. SEMITOPOLOGICAL SEMIGROUPS AND INVARIANT MEANS

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a € S the mappings s — a - s and s — s-a from S to
S are continuous. In the case when S is commutative, we denote st by s +t. Let
B(S) be the Banach space of all bounded real-valued functions on S with supremum
norm and let C'(S) be the subspace of B(S) of all bounded real-valued continuous
functions on S. Let p be an element of C'(S)* (the dual space of C(S)). We denote
by u(f) the value of p at f € C(S). Sometimes, we denote by u(f(t)) or e f(t)
the value p(f). For each s € S and f € C(S5), we define two functions I, f and rsf
as follows:

(lsf)(t> = f(st) and (rsf)<t) = f(t‘S)
for all t € S. An element p of C'(S)* is called a mean on C(S) if u(e) = ||p| = 1,
where e(s) = 1 for all s € S. We know that p € C(S)* is a mean on C(S) if and
only if

inf f(s) < u(f) <sup f(s), Vf € C(S).

seS ses

A mean p on C(S) is called left invariant if p(lsf) = p(f) for all f € C(S) and
s € S. Similarly, a mean p on C(S) is called right invariant if p(rsf) = p(f) for all
feC(S) and s € S. A left and right invariant invariant mean on C(S) is called an
invariant mean on C(S). If S = N, an invariant mean on C(S) = B(S) is a Banach
limit on {*°. The following theorem is in [15, Theorem 1.4.5].

Theorem 3.1 ( [15]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there erxists an element p € C(S)*
such that p(e) = ||u|| =1 and p(rsf) = p(f) for all f € C(S) and s € S.

Let S be a semitopological semigroup. For any f € C(S) and ¢ € R, we write

f(s) »¢, as s—oop
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if for each € > 0 there exists an w € S such that
|f(tw) —c| <&, Vtes.
We denote f(s) — ¢, as s = oor by

lim f(s)=¢, or lim f(s)=c.
S—00R s

When S is commutative, we also denote s — ocop by s — oo.

Theorem 3.2 ( [15]). Let f € C(S) and c € R. If
f(s) = ¢, as s— oop,
then u(f) = ¢ for all right invariant mean p on C(S).

Theorem 3.3 ( [15]). If f € C(S) fulfills
f(ts) < f(s), Vt,seS,

then

f(t)%;régf(w), as 1 — oop.

Theorem 3.4 ( [15]). Let S be a commutative semitopological semigroup and let
f€C(S). Then the following are equivalent:

(i) f(s) = ¢, as s — o00;

(ii) sup,, inf; f(t + w) = inf,, sup, f(t + w) = c.

Let H be a Hilbert space and let C' be a nonempty subset of H. Let S be a
semitopological semigroup and let S = {T : s € S} be a family of mappings of C
into itself. Then & = {Ts : s € S} is called a continuous representation of S as
mappings on C if Ty = TT; for all s,t € S and s — Tsx is continuous for each
x € C. We denote by F(S) the set of common fixed points of Ts, s € S, i.e.,

F(S)=n{F(Ts): s € S}.
A continuous representation S = {Ts : s € S} of S as mappings on C is called a
nonezxpansive semigroup on C' if each Ty, s € S is nonexpansive, i.e.,
[Tsx = Toyl| < [lo —yll, Vz,yel.

The following definition [13] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let u : S — H be a continuous function such that {u(s) : s € S}
is bounded and let p be a mean on C(S). Then there exists a unique point zy €
co{u(s) : s € S} such that
(3.1) ps(u(s),y) = (z0,y), Vy € H.

In fact, since {u(s) : s € S} is bounded and p is a mean on C(S), we can define a
real-valued function g as follows:

9(y) = ps(uls),y), Vy € H.
We have that for any y,z € H and o, 8 € R,
g9(ay + Bz) = ps(u(s), ay + B2)
= aps(u(s),y) + Bus(u(s), 2)
= ag(y) + By (2).
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Then g is a linear functional of H into R. Furthermore we have that for any y € H,
l9(W)| = |ps(u(s), y)|
< flusll sup [{u(s), )l
< llusll sup ()]l llyl

= (sup|[[u(s)I}) llyl

Put K = sup, ||u(s)||. We have that
lg(y)| < K|yll, VYye H.

Then g is bounded. By the Riesz theorem, there exists zg € H such that

(3.2) 9(y) = (20,¥), Vy€ H.

It is obvious that such zy € H is unique. Furthermore we have zy € co{u(s) : s € S}.
In fact, if zp ¢ co{u(s) : s € S}, then there exists yo € H from the separation
theorem such that

(20,y0) < inf {(z,y0) : z € co{u(s) : s € S}}.
Using the property of a mean, we have that
(z0,y0) < inf {(z,y0) : z € co{u(s) : s € S}}
<inf{(u(s),yo) : s € S}
< ps(u(s), yo)
= <z07y0>'

This is a contradiction. Thus we have zy € co{u(s) : s € S}. We call such z
the mean vector of u for p. In particular, if S = {Ts : s € S} is a continuous
representation of S as mappings on C such that {Tsz : s € S} is bounded for some
x € C and u(s) = Tsx for all s € S, then there exists zop € H such tat

MS<TS$7y> - <207y>7 vy € H.

We denote such zy by T),x.

Motivated by Takahashi and Takeuchi [19], Atsushiba and Takahashi [1] defined
the set A(S) of all common attractive points of a family S = {Ts : s € S} of
mappings of C into itself, i.e.,

A(S) = N{A(Ty) : s € SY.

A net {uq} of means on C(S) is said to be asymptotically invariant if for each
fecC(S)andse S,

ta(f) = pa(lsf) =0 and  pa(f) — palrsf) — 0.
See [4] and [15] for more details.
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4. MEAN VECTOR AND ATTRACTIVE POINT THEOREMS

In this section, we first prove an important result for mean vectors in a Hilbert
space. This result will be used in Section 5. Furthermore, using mean vectors,
we prove attractive point and fixed point theorems for commutative semigroups of
mappings without continuity in a Hilbert space.

Theorem 4.1. Let S be a semitopological semigroup and let C(S) be the Banach
space of all bounded real-valued continuous functions on S with supremum norm.
Let D be a nonempty, closed and convex subset of a Hilbert space H. Letwu : S — H
be a continuous function such that {u(s) : s € S} C D is bounded and let y be a
mean on C(S). If g: D — R is defined by

9(2) = psllu(s) = 2|*, VvzeD,
then g is continuous and there exists a unique zg € D such that
g(z0) = min{g(z) : z € D}.
Furthermore, such zy is the mean vector of {u(s) : s € S} for .

Proof. For a bounded set {u(s)} C D and a mean p on C(S), we know from [16]
that a function g : D — R defined by

9(2) = psllu(s) = 2|*, VzeD

is continuous. We also know from (3.1) that there exists the mean vector zp of
{u(s)} for p, that is, there exists zg € co{u(s) : s € S} such that

ps(u(s),y) = (20,y), Vye€ H.

Since D is closed and convex and {u(s)} C D, we have zp € D. Furthermore we
have that for any z € D,

9(2) = g(20) = psllu(s) — 2[1> — pslluls) — 20|
= ps(llu(s) = 2[1> = [Ju(s) — z0l)
= ps ([u(s)[? = 2(u(s), 2)+ 1211 = (lu(s) ]I = 2{u(s), z0) +]|20]|*))
= ps(=2(u(s), 2) + [|2[I* + 2(u(s), z0) — l|20]l)
= —2(z0, 2) + ||2]|* + 2(20, 20) — [|20]?
= —2(z0,2) + [|z]* + || 20]?
2

- —

= ||z — 2ol|".
Then we have that
9(2) = g(20) + Iz — 2|, VzeD.
This implies that 2y is a unique point in D such that
9(z0) = min{g(z) : z € D}.
This completes the proof. O

Using mean vectors, we can also prove an attractive point and fixed point theorem
for commutative semigroups of mappings without continuity in a Hilbert space.
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Theorem 4.2. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself. Let {Tsx :s € S}
be bounded for some x € C and let p be a mean on C(S). Suppose that

(4.1) ps|| Tz — Toy|)? < sl Tox — yl|2, Wy €C, teS.

Then A(S) is nonempty. In addition, if C is closed and convex, then F(S) is
nonempty.

Proof. Since {Tsxz} is bounded, we have from (3.1) that there exists a unique point
zp € co{Tsx : s € S} such that

(4.2) ps(Tsw,y) = (20,y), Vy € H.
Using this zp, we have from (2.3), (4.2) and (4.1) that for any v € C and t € S,
((z0 —v) + (20 — T1v),v — Tyw) = ps((Tsx — v) + (Tsz — Tyv),v — Tyv)
= (|| Tsa = Tyol|* — | Tz — %)
(4.3) :MSHTsx_TtUHQ_MSHTst_'UHZ
<0.
Using (2.3) again, we have that
((z0 = v) + (20 = Tyw),v = Tw) = |20 — Tool* — 120 — v]*.
We have from (4.3) that for all v € C and t € S,
Iz0 = Tyoll* = |20 — vl < 0

and hence ||zg — Tyv|| < ||z0 — v||. Therefore we have zp € A(S). Moreover, if C'is
closed and convex, we have from {Tsz} C C that

2o €co{Tsx:se€ S} CC.
Since zp € A(S) and 29 C C, we have that
| Tiz0 — z0l| < ||]zo0 — 20]| =0, VteS
and hence zp € F'(S). This completes the proof. O

Using Theorem 4.2, we can prove an attractive point theorem for generalized
hybrid mappings obtained by Takahashi and Takeuchi [19] in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C' be a nonempty subset of H and let
T be a generalized hybrid mapping of C into itself. Suppose that there exists an
element z € C such that {T"z} is bounded. Then A(T) is nonempty. In addition,
if C is closed and convex, then F(T) is nonempty.

Proof. Since T is generalized hybrid, there exist «, 8 € R such that
a|Tz = Ty|* + (1 - a)llz — Ty|* < BTz — y[* + (1 - B)l|l= — y[I?
for all x,y € C. We have that for any y € C and n € NU {0},
a| Tz = Ty +(1 — ) [Tz - Ty|?
<BIT™ e =yl + (1= B T2 — ol
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for any y € C. Since {T"z} is bounded, we can apply a Banach limit p to both
sides of the inequality. Then we have

pn(@l|T" 2 = Ty[P+(1 = @)||T"z — Ty|?)
< pn(BIIT" 2 =yl + (1= BTz — y[?).
So we obtain
|| T2 = Ty P+ (1 — @) | T2 — Ty|?
< Bl Tz = y)? + (1 = B)pa| T2 =y
and hence
pin|| T2 = Ty|*+(1 — a)un||T"2 — Ty||?
< Bpnll Tz =yl + (1 = B | T2 — yI*.
This implies
pnl| T2 = Tyl < pn| Tz = y|?

for all y € C. If S = NU {0}, we have from Theorem 4.2 that A(T") is nonempty.
Moreover, if C' is closed and convex, then we have from Theorem 4.2 that F(T) is
nonempty. This completes the proof. O

Using Theorem 4.2, we have the attractive point theorem for commutative semi-
groups of nonexpansive mappings in a Hilbert space which was proved by Atsushiba
and Takakashi [1].

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a nonexpansive semigroup on C such that {Tsz : s € S} is bounded for some
z € C. Then A(S) is nonempty. In addition, if C is closed and convez, then F(S)
18 nonempty.

Proof. Since § = {Ts : s € S} is a nonexpansive semigroup on C, we have that
| Tersz — Toyl® < || Tsa = yl|?

for all z,y € C and s,t € S. Since {Tsz} is bounded, we can apply an invariant
mean g to both sides of the inequality. Then we have that for any y € C' and t € S,

psl| Tqs2 — TtyH2 < ps||Tsz — y”Q
and hence
sl Tsz — Tt@/”2 < || Tsz — 3/“2

We have from Theorem 4.2 that A(S) is nonempty. Moreover, if C' is closed and
convex, then we have from Theorem 4.2 that F'(S) is nonempty. This completes
the proof. O
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5. NONLINEAR ERGODIC THEOREMS

In this section, we prove a mean convergence theorem for commutative semigroups
of mappings without continuity in a Hilbert space. Before proving it, we need the
following lemmas. We first prove the following result by using ideas of [11] and [20].

Lemma 5.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let S
be a commutative semitopological semigroup with identity and let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself such that A(S) # (.
Then, there exists the metric projection P of H onto A(S). Furthermore, for any
x € C, limg PTsx exists in A(S), where limg PTsx = q¢ means limg | PTsx — ¢|| = 0.

Proof. We have that A(S) is closed and convex. So, there exists the metric projec-
tion P of H onto A(S). For an invariant mean p on C(S), there exists ¢ € A(S)
such that

p(PTiz,y) = (q,y), Yy € H.
Then we have that for any s € S,
/.Lt<PTt+533,y> = Mt<PTt$7y> = <Q7y>7 vy € H.
Thus we have that

(5.1) qeco{PTisx:te S}, VselbS.
From the property of the metric projection P, we know that
(5.2) 0<(v—Pv,Pv—u), YveH, uecA(S).

We have from (5.2) and (2.2) that
0 <2(v— Pv,Pv—u)
= llv = ul* + [[Pv = Pv|* = o = Pol® = ||Pv — u|
= llv—ull* = o = Pol* — | Pv — ul|*.

Hence we have that

(5.3) |Pv—ul]® < ||v—ul|? = ||v—Pv||?, YveH, uec AS).

Since ||Tsz — ul|? < ||z — u||? for all s € S, u € A(S) and z € C, it follows that
(5.4) |Tirsx — PTyysx|® < ||Tipsx — PTsz||* < ||Tsx — PTsx|?.

Hence we have from (5.4) and Theorem 3.3 that

(5.5) | Tsx — PTsx|* — inf, |Twz — PTyz|?, as s — oo.

Putting u = PTsx and v = Ty4 52 in (5.3), we have that
|PTysx — PTgz||* < | Typsz — PTox|? = || T sz — PTygs||?
< |Tya — PTua|? = | Trssw — PTi o2
< ||Tsz — PT,z|?* — inf | Tz — PT,z||?.

Using (5.1), we have that
g — PTyx||?* < ||Tsx — PT,z|? — inf | T2 — PT,z|?, Vse€S.
we
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Thus we have from (5.5) that
|PTsz —q|| — 0, ass— oo.

Therefore { PTsz} converges strongly to ¢ € A(S). This completes the proof. O
Using the idea of [14], we have the following result.

Lemma 5.2. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself. Suppose that
{Tsz : s € S} is bounded for some x € C' and

psl| Tow — Tyl|* < pol|Tex — yl?, VyeC, tes

for some invariant mean p on C(S). Then Nsco{Ti4sx : t € S} N A(S) consists of
one point zg. Furthermore, zo = lims Py(s)Tsx, where Py(s) is the metric projection
of H onto A(S). In addition, if C is closed and convex, then Ngco{Tiysx : t €
S} N F(S) consists of one point z.

Proof. From Theorem 4.1, a unique point zg € H such that
ps|| s — zol|* = min{p||Tex — y||* - y € H}
is the mean vector of {Tsx : s € S} for the invariant mean p, that is, a unique point
zg € H such that
ps{Tsz,y) = (20,y), Vy € H.
As in the proof of Theorem 4.2, we have zp € A(S). Furthermore, we have that
psl| Tsa — z0]|* = min{ps | Tox — y[|* - y € A(S)}.

Let us show that zg € Nsco{Tiysz : t € S}. If not, there exists some sy € S such
that 2o ¢ co{T}+s,x : t € S}. By the separation theorem, there exists yo € H such
that

(z0,90) < inf {(z,y0) : 2 € Co{Ty4s,x : t € S}}.
Using the property of an invariant mean, we have that
(20,90) <inf {(z,y0) : 2 € Co{Ty4sow : t € S}}
< inf{(T4s,x,y0) : t € S}
< pt(Tits0%, Yo)
= ut(Tiz, yo)
= (20, %0)-

This is a contradiction. Thus we have that zp € Ngco{Ti+sx : t € S}. Next we
show that Nsco{Ti1sx : s € S} N A(S) consists of one point zp. Assume that
z1 € Nsco{Ti4sx : t € S} N A(S). Since z; € A(S), we have that

| Tirsz — z1|* < |Tow — 21|, Vs, t€S.

Then limg ||Tsz — 21||? exists. In general, since lim, ||Tsz — z||? exists for every
z € A(S), we define a function g : A(S) — R as follows:

g(z) = lim || Tsx — z||?, Vz € A(S).
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Since
l|z0 — z1H2 = [|Tsz — z1H2 — || Tsz — ,on2 —2(zp — 21, Tsx — 2p)
for every s € S, we have
|20 — 21H2 + 2lim(zg — 21, Tsx — zp) = lim || Tsx — 21H2 —lim || Tsx — zo||2
S S S
> 0.
Let € > 0. Then we have
21im(zg — 21, Tsx — 20) > —||20 — 21]|* — €.
S
Hence there exists sg € S such that
2(z0 — 21, Tayso® — 20) > —[lz0 — 21]|> — €
for every s € S. Since 21 € Ngco{Ti4+sx : t € S}, we have
2(2’0 — Z1,%1 — Z[)) Z —HZO — 21H2 — €.
This inequality implies that ||2o—21||* < e. Since € > 0 is arbitrary, we have zg = z1.
Therefore
{z0} = Nsco{Ti4sx : s € S} NA(S).
We next show that zp = limg PA(S)TSm. Since
| Tirsx — 2| < || Tsz — z||, Vs,teS, ze€ A(S),

we have from Lemma 5.1 that {P4(s)Tsz} converges strongly to some u € A(S).
Since Pys)Tsx € A(S) for all s € S, we have

| Pacs)Tsw — Tiysw|| < ||PasyTse — Tsa||
for all s, € S. Furthermore, we have from the property of P,s) that
[1Pas)Tsx — Tox|| < ||z — Tyz|
for all z € A(S). Thus
|1Pags)Tsz — Topsz|* < |Pacs)Tsw — Tox||* < ||z — Tow|?
for all s,t € S and z € A(S). Then we have that
9(Pacs)Tsw) = lim || Pas) Tsz — Tyys|?
< ||ParyTox — Tox||?
< ||z — Tsz||%.
Since g is continuous and Pys)Tsr — u € A(S), we have that
g(u) <lim ||z — Toz|®> = g(2), Vz e A(S).
S
Since zg is a unique minimizer of g in A(S), we have u = z9. Therefore
20 = lim PA(S)TSx.
S
Moreover, if C'is closed and convex, then we know that

zp € Ngco{Ty1sx : t € S} N F(S).
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Since Nsco{Ti4sz : s € S} N A(S) consists of one point zp, we have
Nsco{T+szr: s € S}NF(S) = {z20}.
This completes the proof. O

Lemma 5.3. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself. Suppose that
{Tsx : s € S} is bounded for some x € C and

(5.6) ps| Tsz — Tyyl|* < ps| Tsw —yl®, VyeC, teS

for all invariant means p on C(S). Let {ua} be a net of means on C(S) such that
for each f € C(S) and s € S, pua(f) — pa(lsf) = 0. If a subnet {T, aﬁx} of {Ty,x}
converges weakly to a point w € H, then u € A(S). In addition, if C is closed and
convez, then u € F(S).

Proof. Since {uq} is a net of means on C(S), it has a cluster point y in the weak*
topology. We show that p is an invariant mean on C(S). In fact, since the set

{Ae(9) - Ale) =M =1}

is closed in the weak* topology, it follows that u is a mean on C(S). Furthermore,
for any € > 0, f € C(S) and s € 5, there exists ag such that

mdn—mengg,v@z%.

Since p is a cluster point of {14}, we can choose 8 > «y such that

us(f) = u(NI < 5 and ug(lef) = p(hh)] < 5.
Hence we have

\1(f) = (s )] < |p(f) = ma(f)]
+ pa(f) — up(ls ) + [up(ls f) — p(ls f)]

cS.fLc_.
-3 3 3 7

Since € > 0 is arbitrary, we have

ﬂ(f)zu(lsf>v VfEC(S), ses.

Suppose that a subnet {7, QB.Z‘} of {T},,x} converges weakly to some u € H. If Xis a

cluster point of {fia,} in the weak™ topology, then A is a cluster point of {x4}, too.
Then A is an invariant mean on C(S). Without loss of generality, we may assume
that pa, — A in the weak™ topology. Furthermore, we have from 7, g = U that

s(Tsw,y) = 1ién (tag)s(Tsw,y) = lién (Thoyz,y) = (u,y), VyeH.
On the other hand, we have from (2.2) that for y € C' and s,t € S,
2(Tsx — Tyy,y — Ty) — | Ty — ylI” = || Tsx — Tyl” — | Tz — ||
Applying fia, to both sides of the inequality, we have that

2(1tay)s(Tsx — Tyyy — Toy) — | Ty — y?
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= (ptag)s| Tsw — Teyll* = (ptas) sl Tox — y|*.
Since fq; — A, we have that
2Xs(Tsa — Ty, y — Tuy) — | Ty — ylI* = Nl T — Toy|* — As| T — g%
We have from (5.6) that
2(u — Try,y — Try) — Ty — yl* = A|| Tsw — Toy|)> = As|| Tow — y||* < 0.
Since 2(u — Tyy,y — Tyy) — |Tvy — y||?> = ||u — Tyy||? — ||u — y||?, we have that
(5.7) lu = Tiy* < lu—yl?, yeC tes.

This implies that u € A(T}). Therefore u € A(S).

In particular, if C' is closed and convex, then we have that u is an element of C.
Putting y = w in (5.7), we have Tyu = u. Therefore u € F(S) = N{F(T}) : t € S}.
This completes the proof. Il

Now we can prove the following mean convergence theorem for commutative
families of mappings without continuity in a Hilbert space.

Theorem 5.4. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
S be a commutative semitopological semigroup with identity. Let S = {Ts : s € S}
be a continuous representation of S as mappings of C into itself such that A(S) # 0.
Suppose that

(5.8) ps|| Tsz — Tyl < ps|| Toz — y||?, Vz,yeC, te s

for all invariant means p on C(S). Let {ua} be a net of means on C(S) such that
for each f € C(S) and s € S, pa(f) — pa(lsf) = 0. Then, {T,, x} converges weakly
to a point u € A(S), where u = limg Pys)Tsx. In addition, if C is closed and
conver, then u € F(S), where u = lims Pp(s)Tsw.

Proof. Since A(S) # (), we have that {Tsz : s € S} is bounded for all z € C. Fix
x € C. We have from (5.8) that for any invariant mean p on C(S5),

ps|| Tsw — TtyH2 < ps||Tsw — yH2a VyeCtelS.

We also know from Lemma 5.2 that N;co{T4sz : s € S} N A(S) consists of one
point 29 and zp = lims Py(s)Tsw, where Py(s) is the metric projection of H onto
A(S). To prove Tpx — 29 € A(S), it is sufficient to show that if a subnet {7, 7}
of {T,z} converges weakly to a point v € H, then v € A(S) and

NS ﬁt@{Tst 1S E S}
From Lemma 5.3, we have that v € A(S). Since {7 aﬁx} — v, we also know that
)\5<T3$,y> = <v,y>,Vy €H

for some invariant mean A on C(S). Then v € Nco{T;1sx : s € S}. Therefore
{T,,x} converges weakly to zg of A(S). Moreover, if C' is closed and convex, then
zp € C and hence zg € F(S). Therefore {T},,x} converges weakly to zy € F/(S). To
show zg = lims Pp(s)Tsz, we may follow the proof of Lemma 5.1. This completes
the proof. O
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Using Theorem 5.4, we can prove the following mean convergence theorem ob-
tained by Takahashi and Takeuchi [19].

Theorem 5.5. Let H be a Hilbert space, let C be a nonempty subset of H and let T
be a generalized hybrid mapping of C into itself such that A(T) is nonempty. Then

for any x € C,
1n—1
Spr = — TFz

converges weakly to zo € A(T), where zyp = lim, 0 PyrT"z. In addition, if
C is closed and convex, then {Spz} converges weakly to zg € F(T), where zg =

Proof. Since T : C' — C' is generalized hybrid, there exist «, 8 € R such that
(5.9  alTe—Ty|* + (1 - a)lla - Tyl* < BTz — y|I* + (1 = )]z -yl

for all z,y € C. Since A(T) is nonempty, {T"x} is bounded for any = € C. We
know from the proof of Theorem 4.3 that for any Banach limits p on [*°,

pnll Tz = Ty||> < pa|| Tz — y|I?, vy € C.
Let S = {0} UN. For any f = (zg,z1,22,...) € B(S), define

n—1

1
n(f) == ap, VYneN.
tn(f) nkzoka n e

Then {u, : n € N} is an asymptotically invariant sequence of means on B(S);
see [15, p.78]. Furthermore, we have that for any € E and n € N,

1 n—1
k
Ty, x = - Z T"x.
k=0
Therefore, we have the desired result from Theorem 5.4. Il

Using Theorem 5.4, we have a mean convergence theorem for commutative semi-
groups of nonexpansive mappings in a Hilbert space which was proved by Atsushiba
and Takakashi [1].

Theorem 5.6. Let H be a Hilbert space and let C be a nonempty subset of H. Let S
be a commutative semitopological semigroup with identity. Let S = {Ts:s € S} be a
nonexpansive semigroup on C such that such that A(S) is nonempty. Let {uq} be a
net of means on C(S) such that for each f € C(S) ands € S, pa(f) —pa(lsf) — 0.
Then, {Tax} converges weakly to a point u € A(S), where u = limg PysyTsz. In
addition, if C is closed and convez, then u € F(S), where u = limg Pp(s)Ts.

Proof. Since § = {Ts : s € S} is a nonexpansive semigroup on C, we have that
| Ter sz — Toyl® < || Tsa = yl|?

for all z,y € C and s,t € S. Since {Tsz} is bounded, we can apply an invariant
mean g to both sides of the inequality. Then we have that for any y € C' and t € S,

psl Tersz = Ty |* < sl Tz — |
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and hence
pslToz = Tey||* < ps|| Toz — .
Therefore, we have the desired result from Theorem 5.4. O

Let H be a Hilbert space and let C' be a nonempty subset of H. Let S = RT =
{t e R:0<t< oo} Thenafamily S ={S(t):t € R"} of mappings of C into itself
is called a one-parameter nonexpansive semigroup on C' if S satisfies the following;:

(1) S(t+s)x=S(t)S(s)xr, VxreC, t,se Rt

(2) S(0)xr ==z, VzeCl;

(3) for each x € C, the mapping ¢t — S(t)z from RT into C' is continuous;
(2) for each t € R™, S(t) is nonexpansive.

Using Theorem 5.6, we have the following nonlinear ergodic theorem.

Theorem 5.7. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S ={S(t) : t € R"} be a one-parameter nonexpansive semigroup on C such that
A(S) £ 0. Then for any z € C,

1 A
St = / S(t)zdt
A Jo

converges weakly to zy € A(S) as X — oo, where zo = limy_y00 Py(s)S(t)z. In
addition, if C is closed and convez, then zo = limy o Pp(s)S(t)x.

Proof. Let S =R*. For any f € C(R"), define

/f dt, Ve (0,00).

Then {uy : A € (0,00)} is an asymptotically invariant net of means on C(R™);
see [15, p.80]. Furthermore, we have that for any x € E and A € (0, 00),

1 A
Ty = / S(t)zdt.
AJo
Therefore, we have the desired result from Theorem 5.6. [l
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