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2. Preliminaries: from the utility function to the inverse utility
function

We use simple concepts of nonsmooth analysis and variational analysis. Given
a multimap (or correspondence) F : X ⇒ Y between two sets, we identify F with
its graph gphF ⊂ X × Y given by gphF := {(x, y) : y ∈ F (x)}. The graph of the
inverse F−1 of F (given by F−1(y) := {x ∈ X : y ∈ F (x)}) is then identified with
F−1 := {(y, x) ∈ Y ×X : (x, y) ∈ F}. The closure (resp. interior) of a subset S of
a normed vector space X is denoted by cl(S) (resp. int(S)). If C is a subset of X
and if S is a subset of C we denote by intCS the interior of S relatively to C, i.e.,
the set of x ∈ S such that there exists r > 0 for which B(x, r) ∩ C ⊂ S, B(x, r)
being the open ball with center x and radius r in X.

In the sequel, we represent the set of goods by a closed convex cone X+ of
a reflexive Banach space X. That means that we do not exclude the case of a
continuum of goods. However, the reader looking for simplicity may suppose X+ is
the nonnegative orthant of Rn. The set of prices is the subset

Y+ := {y ∈ X∗ : ∀x ∈ X+, y(x) ≥ 0} := (−X+)
0

of the (topological) dual Y := X∗ of X. Whereas it is classical to assume that all
goods have a positive price, occasionally we accept that some goods (such as air)
have a null price and even that some goods have a negative price (such as waste,
polluted materials). We normalize the prices by assuming that the income of the
consumer is 1. Then, the budget set for a price p ∈ Y+ is the set

B(p) := {x ∈ X+ : p.x ≤ 1},

where p.x := ⟨p, x⟩ := p(x) is the value of p at x. We assume that the preferences of
the consumer are defined by a function u : X+ → R := R called an utility function,
x ∈ X+ being preferred to x′ ∈ X+ if, and only if u(x) > u(x′). The preferences
of the modern consumer are determined by the nuisance function w := −u the
consumer wishes to minimize under his/her budget constraint (as chemical products,
fat, sugar are prevalent in food). This function occurs in a symmetric presentation
of the duality of the consumer theory. The indirect utility function v is defined by

(2.1) v(p) := sup{u(x) : x ∈ B(p)} p ∈ Y.

If u is not defined over X it may be convenient to extend u to X by setting
u(x) := −∞ for x ∈ X\X+, so that v(p) is the supremum of u on X. One has
a characterization of the sublevel sets of v as

(2.2) [v ≤ r] = {p ∈ Y : px ≤ 1 ⇒ u(x) ≤ r} = {p ∈ Y : [u > r] ⊂ [p > 1]}.

It follows that v is quasiconvex, i.e. that its sublevel sets are convex: given r ∈ R,
p0, p1 ∈ [v ≤ r] and t ∈ [0, 1], for p := (1−t)p0+tp1 one has [u > r] ⊂ [p0 > 1]∩[p1 >
1] ⊂ [p > 1], so that p ∈ [v ≤ r]. In fact, v is evenly quasiconvex in the sense that
for all r ∈ R its sublevel set [v ≤ r] is the intersection over x ∈ U(r) := [u > r] of
the family Yx of open half-spaces Yx := {p : p.x > 1}. When we consider that prices
must belong to Y+, we use the fact that Y+ is itself evenly convex as the intersection
of the half-spaces Yx,r := {p : p.x > −r} for x ∈ X+, r ∈ P :=]0,+∞[.
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3. Semicontinuity properties of the inverse utility function

In general, v is not lower semicontinuous (l.s.c., in brief). The following criterion
offers a sufficient lower semicontinuity condition.

Lemma 3.1. If u is continuous along rays, or, more generally, if u is lower radially
l.s.c. in the sense that for all x ∈ X+ one has u(x) ≤ lim inft→1− u(tx), then v is
l.s.c. on Y+ endowed either with its weak∗ topology or with its strong topology.

The assumption means that for all x ∈ X+ the consumer will be almost as satisfied
in buying a slightly less quantity tx rather than x: in other terms, the consumer is
supposed to be non capricious. Note that for a function u which is nondecreasing
along rays, u is lower radially l.s.c. if and only if it is l.s.c. along rays.

Proof. Given p ∈ Y+, r ∈ R and a sequence (or a net) (pn) → p for the weak∗

topology such that v(pn) ≤ r for all n, let us show that v(p) ≤ r. If, on the
contrary, v(p) > r, there exists some x ∈ B(p) := [p ≤ 1] ∩X+ such that u(x) > r.
Suppose first that p(x) = 0. Then we have pn(x) ≤ 1 for n large enough, hence
v(pn) ≥ u(x) > r, a contradiction. Thus p(x) > 0. Let tn := pn(x)/p(x), so that
(tn) → 1. Let us show that N := {n ∈ N : tn ≤ 1} is empty. For n ∈ N one has
pn(x) = tnp(x) ≤ 1 hence x ∈ B(pn) and v(pn) ≥ u(x) > r, a contradiction with
our assumption. Thus tn > 1 for all n ∈ N and (t−1

n ) → 1−. Now, since pn(t
−1
n x) =

p(x) ≤ 1, we have u(t−1
n x) ≤ v(pn) ≤ r. Then u(x) ≤ r by our assumption and

again we reach a contradiction. �
When v is convex, the preceding lemma ensures that v is continuous on the

interior of its domain whenever u is lower radially l.s.c.; without convexity, such a
conclusion can be reached on the interior of Y+ by combining the preceding lemma
with the next proposition.

Proposition 3.2. If u is weakly upper semicontinuous (u.s.c.) on X+, then v is
u.s.c. on the interior of Y+.

Proof. Let p ∈ intY+ and let r > 0 be such that p + rBY ⊂ Y+, where BY is the
closed unit ball of Y. First (for the sake of completeness, the fact being well known),
let us show that C := Cp := {x ∈ X+ : p.x = 1} is a weakly compact base of X+.
Clearly, C is closed, convex and generates X+ in the sense that X+ = R+C since
for all x ∈ X+\{0} we have p.x > 0 (as p ∈ intY+), hence x = tw for t := p.x and
w := x/t ∈ C. For all y ∈ Y, setting s := ∥y∥ , q := rs−1y, we have p − q ∈ Y+,
hence, for all b ∈ C we get (p− q).b ≥ 0 and

y.b = r−1sq.b ≤ r−1sp.b = r−1s.

The uniform boundedness theorem ensures that C is bounded, hence weakly com-
pact, X being reflexive.

Now let r ∈ R and let (pn) → p in Y (for the norm topology) be such that
v(pn) ≥ r for all n. For all r′ < r, by definition of v, one can find xn ∈ X+ such
that u(xn) > r′ and pn.xn ≤ 1. Let bn ∈ C and tn ∈ R+ be such that xn := tnbn.
Taking subsequences, we may assume that (bn) weakly converges to some b ∈ C.
Then (pn.bn) → p.b = 1 and tnpn.bn ≤ 1, so that (tn) is bounded. Taking a
further subsequence if necessary, we may assume that (xn) weakly converges to
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some x ∈ X+ and our upper semicontinuity assumption ensures that u(x) ≥ r′.
Since p.x ≤ limn pn.xn ≤ 1, we get v(p) ≥ u(x) ≥ r′. Since r′ is arbitrarily close to
r, we obtain v(p) ≥ r and v is u.s.c. at p. �

The following characterization of inverse utility functions contains a slight sup-
plement (assertion (b)) to [10] and [23, Thm 2.2] already detected in the comments
of [23, Thm 2.2]. It sheds some light on the property considered in assertion (a)
by showing it is not so exceptional. We present a simple proof for the convenience
of the reader. Here bd(C) denotes the boundary of a subset C and v denotes the
lower semicontinuous hull of the function v. It is given by v(p) = lim infq→p v(q).
We say that v is nonincreasing (or antitone) if v(p) ≤ v(q) when p, q ∈ Y+ satisfy
p− q ∈ Y+. If −u is nonincreasing, we say that u is nondecreasing (or homotone).

Proposition 3.3. For a function v : Y+ → R, the following assertions are equiva-
lent:

(a) v is nonincreasing, evenly quasiconvex and for all p ∈ bd(Y+) one has v(p) ≤
inf0<s<1 v(sp);

(b) v is nonincreasing, evenly quasiconvex and for all p ∈ Y+ one has v(p) ≤
inf0<s<1 v(sp);

(c) v is the inverse utility function of some utility function u : X+ → R.
Moreover, one can take for u the function vC given by

vC(x) := inf{v(p) : p ∈ B−1(x)}.

In fact, vC is the greatest utility function u whose inverse utility function is v :
for all x ∈ X+ and all p ∈ B−1(x) we have v(p) = sup{u(x′) : x′ ∈ B(p)} ≥ u(x),
whence vC(x) ≥ u(x).

Proof. The implication (b)⇒(a) is obvious.
(c)⇒(b) Given an utility function u and its inverse utility function v, we already

observed that v is evenly quasiconvex; it is clearly nonincreasing since for p, q ∈ Y+
satisfying q ∈ Y++p we have B(q) ⊂ B(p). For all s ∈]0, 1[, p ∈ Y+ and all x ∈ B(p)
we can find a neighborhood V of p such that sq.x < 1 for all q ∈ V. It follows that
v(sq) ≥ u(x) for all q ∈ V , hence v(sp) ≥ infq∈V v(sq) ≥ u(x). Taking the infimum
on s ∈]0, 1[, we obtain infs∈]0,1[ v(sp) ≥ u(x) and infs∈]0,1[ v(sp) ≥ sup{u(x) : x ∈
B(p)} = v(p).

(a)⇒(c) Let us prove that v is the indirect utility function associated with u :=
vC , i.e. that

∀p ∈ Y+ v(p) = sup{vC(x) : x ∈ B(p)}.
Fixing p ∈ Y+, for all x ∈ B(p) we have p ∈ B−1(x), hence vC(x) ≤ v(p) so that
sup{vC(x) : x ∈ B(p)} ≤ v(p). Let us show that for all r < v(p) we can find
xr ∈ B(p) such that r ≤ vC(xr). It suffices to find some xr ∈ X, t > 0 such that

(3.1) ∀q ∈ S(r) := [v ≤ r] q.xr > t ≥ p.xr.

In fact, since S(r) + Y+ ⊂ S(r), v being nonincreasing, relation (3.1) implies xr ∈
X+, so that xr := xr/t ∈ B(p) and [v ≤ r] ⊂ Y+\B−1(xr) or, equivalently, v(q) > r
for all q ∈ B−1(xr), hence vC(xr) ≥ r. Since (3.1) is satisfied with t := 0, xr := 0
when S(r) is empty, we may suppose that S(r) is nonempty. Let us first consider
the case r < v(p). Then, we can find an open ball U := B(p, ρ) centered at p such
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that r < v(q) for all q ∈ U, so that U ∩ S(r) = ∅. The Hahn-Banach separation
theorem then yields xr ∈ X\{0} and t′ ∈ R satisfying q.xr ≥ t′ > p′.xr for all
p′ ∈ U and all q ∈ S(r) which is convex. Then, as noted above, xr ∈ X+ and
t := t′ − p.xr ≥ sup{(p′ − p).xr : p′ ∈ U} = ρ ∥xr∥ > 0 and (3.1) holds. Now, let
us consider the case r ∈ [v(p), v(p)). Since p /∈ S(r) and S(r) is evenly convex, we
can find xr ∈ X\{0} and t ∈ R satisfying (3.1). Again, we have xr ∈ X+, hence
p.xr ≥ 0. If p ∈ intY+, since xr is non null, this inequality is strict, so that t > 0.
When p ∈ bd(Y+) := Y+\intY+, condition (a) ensures that

v(2p) ≤ inf
s∈]0,1[

v(2sp) ≤ v(p) ≤ r.

Then 2p ∈ S(r) and (3.1) entails the inequality 2p.xr > p.xr and t ≥ p.xr > 0. �

Note that the passage from v to vC is similar to the passage from an utility
function u to the associated indirect utility function v since −vC(x) = sup{−v(p) :
p.x ≤ 1} for all x ∈ X+.

Corollary 3.4. If v : Y+ → R is nonincreasing, quasiconvex and lower semicon-
tinuous, then v is the inverse utility function of vC . In such a case, vC is lower
semicontinous on the interior of X+. If moreover v is continuous along rays, then
vC is upper semicontinuous.

Proof. Since v is quasiconvex and lower semicontinuous, it is evenly quasiconvex.
Since v = v and v is nonincreasing, the inequality v(p) ≤ inf0<s<1 v(sp) holds.

Since the nuisance function −vC is given by −vC(x) := sup{−v(p) : p ∈ B−1(x)}
and since −v is upper semicontinuous and quasiconcave, hence weakly upper semi-
continuous, Proposition 3.2 shows that −vC is upper semicontinuous on the interior
of X+.

If v is continuous along rays, Lemma 3.1 ensures that −vC is l.s.c., and then vC

is u.s.c.. �

It will be convenient to introduce a piece of terminology. A function u : X+ → R
will be called a Diewert function if for all x ∈ X+ one has

u(x) = vC(x) := inf{v(p) : p ∈ B−1(x)}

where B and v are defined as above: B−1(x) := {p ∈ Y+ : p.x ≤ 1}, v(p) :=
sup{u(x) : x ∈ B(p)}. For any utility function u the function vC is a Diewert
function since v is the inverse utility function associated with vC . Characterizations
of Diewert functions have been given in [10] and [23] (see also [25]) while a first
sufficient condition appeared in [16]. Changing signs in the passages from u to v
and from v to vC , we deduce from Proposition 3.3 the following characterization.

Proposition 3.5. A function u on X+ is a Diewert function if, and only if it
is nondecreasing, evenly quasiconcave (i.e. −u is evenly quasiconvex) and for all
x ∈ X+ one has u(x) ≥ sups∈]0,1[ lim supw→x u(sw).

Proposition 3.6. The passage from an utility function to its inverse utility function
is a bijection between the set of Diewert functions on X+ onto the set of functions
on Y+ whose opposites are Diewert functions. This passage preserves suprema.
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4. The demand map and normal cones

Let us turn to a study of the demand correspondence D(·). For a price p ∈ Y+
the demand set D(p) is defined by

D(p) := {x ∈ X+ : u(x) = v(p)} = {x ∈ X+ : u(x) ≥ u(x′) ∀x′ ∈ B(p)} p ∈ Y+.

Let us first give a criterion ensuring the nonemptiness of D(p).

Proposition 4.1. Suppose u is weakly u.s.c. on X+. Then, for every p ∈ intY+,
the demand set D(p) is nonempty and weakly compact.

If p ∈ Y+\intY+ and if one has v(p) > lim supx∈B(p),∥x∥→∞ u(x) then D(p) is
nonempty.

Proof. For p ∈ intY+ we have seen in the proof of Proposition 3.2 that the base

Cp := {x ∈ X+ : p.x = 1}
of X+ is weakly compact. Thus the budget set B(p) = [0, 1]Cp is weakly compact
too, so that the Weierstrass theorem ensures that u attains its maximum on B(p):
D(p) is nonempty. Since u is weakly u.s.c., D(p) is weakly closed. Since D(p) is
contained in the weakly compact set B(p), it is weakly compact.

Now, let p ∈ Y+\intY+ and let s < v(p), s > lim supx∈B(p),∥x∥→∞ u(x). Then

K := {x ∈ B(p) : u(x) ≥ s} is bounded and nonempty. Since u is weakly u.s.c.
K is weakly compact and again the Weierstrass theorem ensures that u attains
its maximum on K. Since supu(B(p)) = supu(K), u attains its maximum on
B(p). �

One says that the non satiety condition is satisfied if for any (x, p) ∈ X+ × Y+
such that p.x < 1 there exists some x′ ∈ X+ such that u(x′) > u(x) and p.x′ ≤
1. That means that for any such pair (x, p) one has u(x) < v(p). The following
characterization is obvious.

Lemma 4.2. The non satiety condition is satisfied if, and only if for all p ∈ Y+,
one has D(p) ⊂ H(p) := {x ∈ X : p.x = 1}.

Note that such a property is satisfied whenever u has no local maximizer on X+,
in particular when u is (strictly) increasing along rays.

Let us introduce, for x ∈ X+, the set of qualified prices at x and the set of proper
prices at x by

Q(x) := {p ∈ Y+ : p.x ≤ 1, v(q) ≥ v(p) ∀q ∈ B−1(x)}
P (x) := {p ∈ Y+ : p.x = 1, v(q) ≥ v(p) ∀q ∈ B−1(x)},

so that P (x) = Q(x) ∩H−1(x), where H−1(x) := {y ∈ Y : y.x = 1}. These sets of
prices are sets of sensitive prices: passing from a price p ∈ Q(x) to another price
q, the maximum utility the consumer can get while buying the basket of goods x
cannot decrease. Thus, the sets P (x) and Q(x) can be interpreted as the sets of
worst prices in terms of satisfaction of the consumer wanting to buy a combination
x of goods or another combination for which the budget constraint is satisfied.
Changing u into −u, or v into −v, we see that the nature of Q(·) is similar to the
one of D(·).
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Proposition 4.3. For all (x, p) ∈ X+ × Y+ one has x ∈ D(p) ⇒ p ∈ Q(x). If the
non satiety condition is satisfied, then one has x ∈ D(p) ⇒ p ∈ P (x).

Proof. Let x ∈ D(p). Then, for all q ∈ B−1(x), one has v(q) ≥ u(x) = v(p), hence
p ∈ Q(x). Moreover, the preceding lemma shows that p.x = 1 when the non satiety
condition is satisfied. �

The reverse implication holds when u is a Diewert function since then the roles
of u and −v are symmetric.

Proposition 4.4. If u is a Diewert function, then for all (x, p) ∈ X+ × Y+ the
equivalence p ∈ Q(x) ⇔ x ∈ D(p) holds. If moreover the non satiety condition is
satisfied, P is the inverse multimap of D.

This result shows that for a Diewert utility function the demand correspondence
is determined by the inverse utility function v.

Proof. Let x ∈ X+\D(p). Then there exists x′ ∈ B(p) satisfying u(x′) > u(x)
and we have v(p) ≥ u(x′) > u(x). Thus, when u is a Diewert function, we can
find q ∈ B−1(x) such that u(x′) > v(q). Then, we get v(p) ≥ u(x′) > v(q) and
p /∈ Q(x). �

In order to give an interpretation of P (x) in terms of normal cones, let us recall
that the normal cone N(C, p) in the sense of convex analysis to a subset C of Y at
p ∈ cl(C) is the set

(4.1) N(C, p) = {x ∈ X : ∀q ∈ C ⟨x, q − p⟩ ≤ 0}.
When C is convex, it is also the polar cone

(T (C, p))0 := {x ∈ X : ∀y ∈ T (C, p) ⟨x, y⟩ ≤ 0}
of the tangent cone T (C, p) := cl(R+(C − p)) to C at p. For a subset C of Y and
p ∈ Y , one defines the strict normal cone to C at p by

N<(C, p) := {z ∈ X : q(z) < p(z) ∀q ∈ C\{p}}
and a similar definition can be given for a subset of X. A first use of this notion
describes Q(x).

Proposition 4.5. Let x ∈ D(p) for some p ∈ Y+. Setting [u > u(x)] := {x′ ∈ X+ :
u(x′) > u(x)}, one has

−p ∈ N<([u > u(x)], x).

Proof. For all x′ ∈ X+ one has u(x′) ≤ u(x) whenever x′ satisfies p.x′ ≤ 1. Equiv-
alently, for x′ ∈ X+ one has p.x′ > 1 whenever x′ satisfies u(x′) > u(x). Since
p.x ≤ 1, we see that −p.(x′ − x) < 0. �

In order to describe D(p), let us introduce for p ∈ Y+ the strict sublevel set of v
by

S<(p) := [v < v(p)] := {q ∈ Y+ : v(q) < v(p)}.
Now, for x ∈ X+, p ∈ B−1(x), one has p ∈ Q(x) if, and only if S<(p) ⊂ {q ∈ Y+ :
q(x) > 1}. Thus, for x ∈ X+, p ∈ Y+,

(4.2) x ∈ (−N<(S<(p), p)) ∩H(p) ⇒ p ∈ Q(x) ⇒ x ∈ −N<(S<(p), p)
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or, for x ∈ X+, p ∈ Y+

(4.3) p ∈ P (x) ⇔ x ∈ (−N<(S<(p), p)) ∩H(p).

Thus, when u is a Diewert function and the non satiety condition is satisfied one
has

(4.4) D(p) = (−N<(S<(p), p)) ∩H(p).

Let us note the following observation bearing on a comparison with the normal
cone to the sublevel set of v.

Lemma 4.6. (a) When the sublevel set S(p) := [v ≤ v(p)] is contained in the
closure of S<(p), one has N<(S<(p), p) ⊂ N(S(p), p).

(b) In particular, when the interior intY+S(p) of S(p) relatively to Y+ is nonempty
and contained in the closure of S<(p), one has N<(S<(p), p) ⊂ N(S(p), p).

(c) When S<(p) is contained in intS(p) or when S<(p) ⊂ intY+S(p) and X+ is
pointed, one has N(S(p), p) ⊂ N<(S<(p), p) ∪ {0}.

(d) When S<(p) ⊂ intS(p) ⊂ cl(S<(p)) and S<(p) is nonempty one has
N(S(p), p) = N<(S<(p), p) ∪ {0}.

Proof. Assertion (a) follows from a passage to the limit. Assertion (b) is a con-
sequence of the fact that when the interior intY+S(p) of S(p) relatively to Y+ is
nonempty and contained in the closure of S<(p), one has S(p) ⊂ cl(intY+S(p)) ⊂
cl(S<(p)). Let us prove assertion (c). Let x ∈ N(S(p), p)\{0}. By assumption,
for every q ∈ S<(p), we have q ∈ intS(p), hence, for q′ ∈ Y close to q we have
q′ ∈ S(p) and (q′−p).x ≤ 0. Since x is non null, the Hahn-Banach Theorem ensures
that there exists some y ∈ Y such that y.x > 0. Then, for t > 0 small enough
we have (q + ty − p).x ≤ 0, hence (q − p).x < 0 and x ∈ N<(S<(p), p). When
S<(p) ⊂ intY+S(p) and X+ is pointed, the Hahn-Banach Theorem ensures that one
can pick y ∈ Y+ such that y.x > 0 since x /∈ −X+. Then, for t > 0 small enough,
we still have (q + ty − p).x ≤ 0.

Assertion (d) is the conjunction of assertions (b) and (c). �
Remark. (a) In fact, the inclusion N(S(p), p) ⊂ N<(S<(p), p)∪{0} holds whenever
S<(p) is contained in the algebraic interior

S(p)i := {q ∈ Y : ∀y ∈ Y ∃ε > 0 : q + [0, ε]y ⊂ S(p)}
of S(p). To see that, given x ∈ N(S(p), p)\{0} and q ∈ S<(p), we pick y ∈ Y such
that y.x = 1 and ε > 0 such that q + [0, ε]y ⊂ S(p); then we have (q − p).x + ε =
(q + εy − p).x ≤ 0, hence (q − p).x < 0.

(b) Let us note that the inclusion S<(p) ⊂ intS(p) (resp. S<(p) ⊂ S(p)i) is
satisfied if v is u.s.c. (resp. radially u.s.c. i.e. if its restriction to line segments is
u.s.c.). �

The next definition is obtained as a splitting of a notion introduced in [14] under
the name of geometric pseudoconvexity. It can be given for a function defined on a
general topological space.

Definition 4.7. A real-valued function f is said to be quasi-solid (resp. fully quasi-
solid) if, for every r > inf f (resp. r ∈ R), the interior of the sublevel set [f ≤ r] is
contained in the strict sublevel set [f < r].
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A real-valued function f is said to be flatfree (resp. fully flatfree) if for every
r > inf f (resp. r ∈ R) the sublevel set [f ≤ r] is contained in the closure of the
strict sublevel set [f < r].

Note that f is flatfree if, and only if all local minimizers of f are global minimizers;
it is fully flatfree if f has no local minimizer. Similarly, f is quasi-solid if, and
only if its local maximizers are global minimizers; it is fully quasi-solid if, and
only if f has no local maximizer. When f is finitely valued with inf f = −∞
and sup f = +∞, f is flatfree if, and only if, −f is quasi-solid. These properties
which can be studied for any function on any topological space can be viewed as
generalized convexity properties. Any convex function f is flatfree; it is also the
case if f is semi-strictly quasiconvex in the sense that f is quasiconvex and that for
every x0, x1 such that f(x1) < f(x0) and every t ∈]0, 1[ one has f(xt) < f(x0) for
xt := (1− t)x0+ tx1. We also observe that a semi-strictly quasiconvex function f is
also quasi-solid: given r > inf f and x0 ∈ int[f ≤ r], picking x1 ∈ [f < r], we have
xt := (1 − t)x0 + tx1 ∈ [f ≤ r] for some t < 0 and since x0 = (1 − s)xt + sx1 for
s := −t(1 − t)−1 ∈]0, 1[, when f(x1) < f(xt) we get f(x0) < f(xt) ≤ r, and when
f(xt) ≤ f(x1) we have f(x0) ≤ max(f(xt), f(x1)) < r. If f is quasi-solid and if the
sublevel sets of f are strictly convex in the sense of the next definition, then f is
strictly quasiconvex: given distinct points x0, x1, setting r := max(f(x0), f(x1)),
for all t ∈]0, 1[ one has xt ∈ int[f ≤ r] ⊂ [f < r]. Conversely, if f is strictly
quasiconvex and upper semicontinuous, then, for every r > inf f the sublevel set
[f ≤ r] is strictly convex: given distinct x0, x1 ∈ [f ≤ r], for t ∈]0, 1[ we have
f(xt) < max(f(x0), f(x1)) ≤ r and, since f is upper semicontinuous, we have
xt ∈ int[f ≤ r].

Proposition 4.8. If v is decreasing along rays, then v is flatfree, quasi-solid and
for all p ∈ Y+ one has (−N(S(p), p))∩H(p) ⊂ DC(p) ⊂ −N(S(p), p), where DC is
the demand correspondence associated with the utility function vC . If moreover the
non satiety condition is satisfied by vC one has

(4.5) DC(p) = (−N(S(p), p)) ∩H(p).

In particular, if u is a Diewert function, if the non satiety condition is satisfied,
and if for q near p the set D(q) is nonempty, then one has

(4.6) D(p) = (−N(S(p), p)) ∩H(p).

Proof. If v is decreasing along rays, taking a sequence (tn) → 1 with tn > 1 for all
n, one has tnp ∈ S<(p) for all n, so that p ∈ cl(S<(p)) and v is flatfree.

Now, let r > inf v and let p ∈ int[v ≤ r]. One cannot have v(p) = r because
otherwise, for t ∈]0, 1[ close enough to 1 one would have v(tp) > v(p) and tp ∈ S(p)
by continuity of r 7→ rp, a contradiction. Thus v is quasi-solid. The announced
inclusions stem from Lemma 4.6.

If the non satiety condition is satisfied, if u is a Diewert function and if for
t > 1 there exist some xt ∈ D(tp) one has v(tp) < v(p): otherwise one would have
u(xt) = v(tp) ≥ v(p) and tp.xt = 1 by the non satiety condition, hence p.xt < 1,
so that one could find some x′t ∈ B(p) with u(x′t) > u(xt) ≥ v(p), a contradiction.
Thus r 7→ v(rp) is decreasing on a neighborhood of 1 and the preceding assertion
applies. �
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Corollary 4.9. If u is increasing along rays, and if for q near p the set D(q) is
nonempty, then v is decreasing along rays and equality (4.6) holds.

Proof. It suffices to observe that the assumptions imply the non satiety condition
and ensure that r 7→ v(rp) is decreasing on a neighborhood of 1; in fact, given s < t
close to 1, picking xt ∈ D(tp) one has sp.xt < 1, so that v(sp) > u(xt) = v(tp). �

Another assumption involving the following definition will ensure the inclusion
N(S(p), p) ⊂ N<(S<(p), p)∪{0} and even the relation N(S(p), p) = N<(S(p), p)∪
{0}, hence the equality

D(p) = (−N(S(p), p)) ∩H(p)

when u is a Diewert function and the non satiety condition holds. This definition
is classical for the unit ball of a normed vector space.

Definition 4.10. A subset C of a n.v.s. Y with nonempty interior intC is said to
be strictly convex at y ∈ C if it is convex and if for all w ∈ C\{y} there exists some
t ∈]0, 1[ such that (1 − t)w + ty ∈ intC. It is strictly convex if it is strictly convex
at each point of C.

Note that if C is strictly convex, then, for all t ∈]0, 1[ and distinct points w, y in
C one has (1− t)w+ ty ∈ intC. Moreover, for any distinct points w, y in C one can
find r > 0 such that B((1− t)w+ ty, 2rt) ⊂ C for all t ∈]0, 1/2[. Thus, C is strictly
convex if, and only if it is strictly rotund in the sense that any of its boundary points
is an extremal point. Recall that b ∈ C is an extremal point of a convex set C if one
cannot find t ∈]0, 1[, w, y ∈ C such that b = (1− t)w + ty. That notion is classical.
The following proposition clarifies the relationships of strict convexity with strict
normality in the sense that N(C, y)\{0} = N<(C, y).

Proposition 4.11. Let C be a convex subset of a n.v.s. Y with nonempty interior.
Then C is strictly convex at y ∈ C\intC if, and only if for all w ∈ C\{y}, y∗ ∈
N(C, y)\{0} one has ⟨y∗, w − y⟩ < 0, if, and only if

N(C, y)\{0} = N<(C, y) := {y∗ ∈ Y ∗ : ∀w ∈ C\{y} y∗(w) < y∗(y)}.

Proof. Suppose C is strictly convex at y ∈ C. Given w ∈ C\{y}, y∗ ∈ N(C, y)\{0}
one has z := (1 − t)w + ty ∈ intC for all t ∈]0, 1[, hence ⟨y∗, z′ − y⟩ ≤ 0 for all z′

near z. Since y∗ ̸= 0, one must have ⟨y∗, z − y⟩ < 0, hence ⟨y∗, w − y⟩ < 0.
Conversely, suppose C is not strictly convex at y ∈ C: there exists some w ∈

C\{y} such that ]w, y[∩intC = ∅, where ]w, y[:= {(1 − t)w + ty : t ∈]0, 1[}. The
geometric Hahn-Banach Theorem yields some y∗ ∈ Y ∗\{0}, r ∈ R such that

∀y ∈ intC, ∀z ∈]w, y[ ⟨y∗, v⟩ < r ≤ ⟨y∗, z⟩.

Since w, y belong to the intersection of the closures of intC and ]w, y[, one gets
⟨y∗, w⟩ = r = ⟨y∗, y⟩, hence ⟨y∗, w − y⟩ = 0 and, since C ⊂ cl(intC), we have
⟨y∗, v⟩ ≤ r for all v ∈ C, hence y∗ ∈ N(C, y)\N<(C, y). �

Example. The Poincaré half-space C := R× R+ has a nonempty interior but is
not strictly convex. For y := 0 one has N(C, y) = {0} × R− and N<(C, y) = ∅.
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5. Uniqueness results

Uniqueness results can be deduced from the preceding results. Here we say that
a convex subset C of Y is smooth at p if the normal cone to C at p is generated by
a single element.

Proposition 5.1. Suppose S(p) := [v ≤ v(p)] is smooth at p, the non satiety
condition holds and S(p) ⊂ cl(S<(p)). Then D(p) is either empty or a singleton.

Proof. Suppose S(p) is smooth at p and let z ∈ X be such that N(S(p), p) = R+z.
Let x1, x2 ∈ D(p), so that p ∈ P (x1) and p ∈ P (x2). Since the non satiety condition
holds and S(p) ⊂ cl(S<(p)), relation (4.3), Lemma 4.6 and Proposition 4.3 yield
some λ1, λ2 ∈ R+ such that xi = −λiz for i = 1, 2. Since xi ∈ H(p), we get
1 = p.xi = −λip.z, so that λ1 = λ2 and x1 = x2. �
Corollary 5.2. The same conclusion holds when v is differentiable at p with v′(p) ̸=
0 and the non satiety condition is satisfied.

Proof. Suppose v is differentiable at p with v′(p) ̸= 0 and the non satiety condition is
satisfied. Let x ∈ D(p). Let d0 ∈ Y be such that v′(p).d0 < 0. Then, for t > 0 small
enough we have v(p+ td0) < v(p), hence, by relation (4.3), (p+ td0 − p).(−x) < 0
or d0.x > 0. Now, for any d ∈ Y such that v′(p).d ≤ 0 and every n ∈ N\{0} we have
v′(p)(d + (1/n)d0) < 0, hence (d + (1/n)d0).x > 0. Thus, taking limits, d.x ≥ 0.
The Farkas Lemma ensures that x = −λv′(p) for some λ ∈ R+. Since x ∈ H(p),
we get 1 = p.x = −λv′(p).p, so that v′(p).p ̸= 0, x = v′(p)/(v′(p).p) and D(p) is a
singleton. �

A different result is as follows.

Proposition 5.3. If the indirect utility function v is quasi-solid and if its sublevel
sets with heights r > inf v are strictly convex, then the multimap Q(·) is single-valued
on [u > inf v].

If the nuisance function w := −u is quasi-solid and if its sublevel sets with heights
s > inf w are strictly convex, then the demand multimap D(·) is single-valued on
[v < supu].

If the nuisance function w is fully quasi-solid and if its sublevel sets are strictly
convex, then D(·) is single-valued.

Proof. Suppose that for some x ∈ [u > inf v] the set Q(x) contains two different
points p0, p1. Let r := inf v(B−1(x)) = v(p0) = v(p1) ≥ u(x) > inf v and let
p := (1/2)(p0 + p1). Since [v ≤ r] is strictly convex, we have p ∈ int[v ≤ r]. Now,
v being quasi-solid, we get p ∈ [v < r]. Since p.x = (1/2)(p0.x + p1.x) ≤ 1, i.e.
p ∈ B−1(x), we get a contradiction with the relation r := inf v(B−1(x)).

Given p ∈ [v < supu], suppose D(p) contains two different points, x0, x1. Then,
for i = 0, 1, r := u(xi) = supu(B(p)) = v(p) < supu. Then, for x := (1/2)(x0+x1),
we have x ∈ int[w ≤ −r] ⊂ [w < −r] and u(x) > r. Since x ∈ B(p), we get a
contradiction with r := v(p) := supu(B(p)).

The proof of the last assertion is similar, the restriction−r > inf w being dropped.
�

Let us give a criterion in order that v be quasi-solid.
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Proposition 5.4. If the non satiety condition is satisfied, the indirect utility func-
tion v is quasi-solid whenever the demand correspondence has nonempty values.

In particular, if u is weakly u.s.c. on X+ and if the non satiety condition is
satisfied, then v is quasi-solid.

Proof. Let r > inf v and let p0 ∈ int[v ≤ r]. Let ρ > 0 be such that the ball
B(p0, ρ) with center p0 and radius ρ is contained in [v ≤ r], hence in Y+, and let
x0 ∈ D(p0). Then we have p0.x0 = 1, hence x0 ̸= 0 and we can pick q ∈ B(0, ρ) such
that q.x0 < 0. Then, for p := p0 + q, we have p.x0 < 1. The non satiety condition
yields some x ∈ B(p) such that u(x) > u(x0). Since we have p ∈ [v ≤ r], we get
r ≥ v(p) ≥ u(x) > u(x0) = v(p0) : p0 ∈ [v < r]. �

Now let us give a criterion in order that v be flatfree.

Proposition 5.5. If the non satiety condition is satisfied, if the interior of Y+ is
nonempty and if u is upper semicontinuous for the weak topology, then the indirect
utility function v is flatfree.

Proof. It suffices to prove that for all p ∈ Y+, t > 1, q0 ∈ intY+, q := q0 + tp, one
has v(q) < v(p) since q can be chosen as close to p as required. Suppose, on the
contrary, that v(q) ≥ v(p). Then, for all n ≥ 1 there exists some xn ∈ B(q) such
that u(xn) > v(p)− 1/n. Since q0.xn ≤ q.xn ≤ 1, the sequence (xn) is contained in
the weakly compact set B(q0) (see the proof of Lemma 3.2). A subsequence of (xn)
has a weak limit x. Since u is u.s.c. for the weak topology, we have u(x) ≥ v(p).
Now tp.x ≤ q.x ≤ 1, so that p.x < 1. Thus, we get a contradiction with the non
satiety condition. �

6. Closure properties of the demand map

The following example shows that the demand corespondence is not lower semi-
continuous in general. However, we shall be able to give closure and upper semi-
continuity results.
Example. Let u : R2 → R be the utility function given by u(x1, x2) = min(2x1 +
1
2x2, x1 + x2,

1
2x1 + 2x2). It is a continuous concave function. One has x := (3, 5) ∈

D(18 ,
1
8). For ε ∈ (0, 13) one has D(18 − 3ε, 18 +5ε) = {(5, 3)}, so that one cannot find

some xε ∈ D(18 − 3ε, 18 + 5ε) converging to x.
The following closure property is a variant of [13, Prop. 3.12], [14, Prop. 2].

Proposition 6.1. Suppose f : X → R is quasiconvex, lower semicontinuous and
fully flatfree (resp. flatfree). Then the multimap Nf defined by Nf (x) := N([f ≤
f(x)], x) is closed at any x ∈ X (resp. at any x ∈ X such that f(x) > inf f).

Proof. Let (xn) → x, (x∗n) → x∗ with x∗n ∈ Nf (xn) for all n ∈ N. Given x′ ∈ [f <
f(x)], we have f(x′) < f(xn) for n large enough since f is lower semicontinuous at
x. Thus ⟨x∗n, x′ − xn⟩ ≤ 0. Taking limits, we get ⟨x∗, x′ − x⟩ ≤ 0. Since [f ≤ f(x)] is
contained in the closure of [f < f(x)], we get x∗ ∈ Nf (x). �

The preceding proof shows that this closure property is even valid when X is
endowed with the strong convergence and X∗ with the weak∗ convergence or when
X is endowed with the weak convergence and X∗ with the strong convergence. But
then the result is a sequential property, not a topological property.
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Corollary 6.2. Suppose v is lower semicontinuous and flatfree. Then, the corre-
spondence P is sequentially closed at any p ∈ Y+ such that v(p) > inf v and such
that S(p) is strictly convex. If moreover u is a Diewert function and if the non
satiety assumption is satisfied, then D is sequentially closed at any such p.

Again, in this statement we can assume Y is endowed with the strong convergence
and X with the weak convergence, or the reverse.

Proof. Let (xn) → x, (pn) → p ∈ [v > inf v] be such that pn ∈ P (xn) for all n.
Since pn.xn = 1 for all n, we have p.x = 1 and x ∈ X+, p ∈ Y+. Relation (4.3)
ensures that −xn ∈ N<(S<(pn), pn). Since v is l.s.c., we have v(pn) > inf v for n
large enough. Moreover, since v is flatfree, we have N<(S<(pn), pn) ⊂ N(S(pn), pn).
The proposition entails that −x ∈ N(S(p), p). Now, S(p) being strictly convex at
p, we get −x ∈ N<(S<(p), p) ∪ {0} and in fact −x ∈ N<(S<(p), p) since p.x = 1.
Therefore, by relation (4.3), we conclude that p ∈ P (x).

If u is a Diewert function and if the non satiety assumption is satisfied, whenever
(xn) → x, (pn) → p ∈ [v > inf v] are such that xn ∈ D(pn) for all n, we have
pn ∈ P (xn) for all n and the preceding argument can be used, so that p ∈ P (x) and
x ∈ D(p). �

The following result is related to the preceding closure property but is different.

Proposition 6.3. Suppose u is upper semicontinuous and radially lower semicon-
tinuous. Then the demand multimap D(·) is closed when X is endowed with the
strong convergence and X∗ with the weak∗ convergence. If moreover D(·) is single-
valued and u is upper semicontinuous for the weak topology, then D(·) is continuous
on intY+.

Proof. Let (pi)i∈I → p for the weak∗ convergence, (xi)i∈I → x with xi ∈ D(pi)
for all i ∈ I. Given x′ ∈ X+ such that p.x′ < 1, we have pi.x

′ ≤ 1 for i large
enough, hence u(x′) ≤ v(pi) = u(xi). Since u is upper semicontinuous at x, we
get u(x′) ≤ u(x). Now, for all x′ ∈ B(p) and all t ∈]0, 1[ we have p.tx′ < 1, hence
u(tx′) ≤ u(x) by what precedes. Since u(x′) ≤ lim inft→1 u(tx

′), we get u(x′) ≤ u(x)
for all x′ ∈ B(p), which means that x ∈ D(p) : D(·) is closed. �

A simple variant is as follows.

Proposition 6.4. Suppose u is upper semicontinuous and v is lower semicontinu-
ous. Then the demand multimap D(·) is closed for the strong convergences on X∗

and X.

Proof. Let (pn) → p and let (xn) → x with xn ∈ D(pn) for all n ∈ N. Then, by our
assumptions, we have p.x ≤ 1 and

u(x) ≥ lim sup
n

u(xn) = lim sup
n

v(pn) ≥ lim inf
n

v(pn) ≥ v(p),

so that x ∈ D(p). �

Proposition 6.5. The demand correspondence is compact at any p ∈ intY+ in the
sense that any sequence (xn) satisfying xn ∈ D(pn) for all n and some sequence
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(pn) → p has a weakly converging subsequence. If u is weakly upper semicontinu-
ous and v is lower semicontinuous, then D is upper semicontinuous for the strong
topology on X∗ and the weak topology on X.

If moreover D is single-valued around p, then D is continuous at p when X is
endowed with the weak topology and X∗ is endowed with the strong topology.

Proof. Let p ∈ intY+ and let r ∈]0, 1[, q := rp. Then q + Y+ is a neighborhood of
p since p = q + (1− r)p ∈ q + intY+. The first part of the proof of Proposition 3.2
shows that Cq := {x ∈ X+ : q.x = 1} is a weakly compact base of X+, so that
B(q) := [0, 1]Cq is sequentially weakly compact. Given a sequence (pn) → p, for n
large enough we have pn ∈ q + Y+, so that B(pn) ⊂ B(q). Given xn ∈ D(pn), the
sequence (xn) has a weakly converging subsequence (xk(n)). Assuming u is weakly
u.s.c. and v is l.s.c., a chain of inequalities similar to the one of the preceding
proposition shows that the limit x of (xk(n)) belongs to D(p).

Suppose now that D is single-valued around p. Let (pn) → p and let D(pn) =
{xn} for n large enough. By what precedes, every subsequence of (xn) has a fur-
ther subsequence which weakly converges to the unique element x of D(p). Thus
(D(pn)) → D(p) and D is continuous at p. �
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