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968 H. WANG AND Y. SONG

Note that, if E is a Hilbert space, then the accretive mapping is also called mono-
tone.

An operator A is said to be m-accretive if it is accretive and R(I + rA) (: the
range of (I + rA)) is E for all r > 0 and A is said to satisfy the range condition if

D(A) ⊂ R(I + rA), ∀r > 0,

where I is the identity mapping of E and D(A) denotes the closure of the domain
of A.

In fact, theory of monotone operator theory is very important in nonlinear anal-
ysis and is connected with theory of differential equations. It is well known (see
[23]) that many physically significant problems can be modeled by the initial-value
problems of the form {

x′(t) +Ax(t) = 0,
x(0) = x0,

where A is an accretive operator in an appropriate Banach space. Typical examples
where such evolution equations occur can be found in the heat and wave equations
or Schrodinger equations.

Let Jr is the resolvent of A, Jr = (I + rA)−1, ∀r > 0. The convergence of the
iteration for the resolvent Jr has been studied by many mathematical workers to
find zeros of accretive operators. For example, Bruck [1] introduced an iteration
process and proved the convergence of the process to a zero of a maximal monotone
operator in the setting of Hilbert spaces. Reich [14] extended this result to uni-
formly smooth Banach spaces provided that the operator is m-accretive. In 2000,
Kamimura-Takahashi [10, Theorem 6], in uniformly convex Banach space whose
norm is Fréchet differentiable or which satisfies Opial’s condition, obtained several
weakly convergent theorems of the following iteration for an m-accretive operator
A: for x1 ∈ K,

xn+1 = αnxn + (1− αn)Jrnxn. (1.2)

Recently, still in the framework of uniformly convex Banach space whose norm is
Fréchet differentiable or which satisfies Opial’s condition, for an m-accretive oper-
ator A, Benavides-Acedoand-Xu [5, Theorem 3.7,3.8] obtained that the weak con-
vergence of the iteration scheme (1.2) to some zero of A. Other investigation for
zeros of accretive operators can be found in [2, 4, 6, 8, 7, 12, 13, 15, 16, 17, 18, 21].

Motivated by Benavides-Acedoand-Xu [5] and Kamimura-Takahashi [10], for
generical accretive operator A, we will research the weak and strong convergence
of Mann type iterative scheme (1.2). Firstly, either in a reflexive Banach space E
which satisfies the Opial’s condition or in a uniformly convex Banach space E which
has Fréchet differentiable norm (or its dual E∗ has the Kadec-Klee property), the
weak convergence of {xn} to some p ∈ A−10 is showed as n → ∞. Secondly, We
also obtain that {xn} strongly converges to some p ∈ A−10 in Banach space E if
some compact condition is arrived.
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2. Preliminaries

Throughout this paper, we shall denote denote F (T ) = {x ∈ E;Tx = x}. When

{xn} is a sequence in E, then xn → x (respectively xn ⇀ x, xn
∗
⇀ x) will denote

strong (respectively weak, weak∗) convergence of the sequence {xn} to x. Let A :
D(A) ⊂ E → 2E be an accretive operator and A−10 = {x ∈ D(A); 0 ∈ Ax}. We use
Jr and Ar to denote the resolvent and Yosida’s approximation of A, respectively.
Namely,

Jr = (I + rA)−1 and Ar =
I − Jr

r
, r > 0.

For Jr and Ar, the following is well known (see, [20, pp.129-144]):

(i) Arx ∈ AJrx for all x ∈ R(I + rA);
(ii) ∥Arx∥ ≤ |Ax| = inf{∥y∥; y ∈ Ax} for all x ∈ D(A) ∩R(I + rA);
(iii) Jr : R(I + rA) → D(A) is nonexpansive (i.e. ∥Jrx− Jry∥ ≤ ∥x− y∥ for all

x, y ∈ R(I + rA));
(iv) A−10 = F (Jr) = {x ∈ D(Jr); Jrx = x};
(v) (The Resolvent Identity) For r > 0 and t > 0 and x ∈ E,

Jrx = Jt

( t

r
x+

(
1− t

r

)
Jrx

)
. (2.1)

The norm of a Banach space E is said Fréchet differentiable if, for any x ∈ S(E),
the unit sphere of E, the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists uniformly for y ∈ S(E). The modulus of convexity of E is defined by

δE(ε) = inf
{
1− ∥x+ y∥

2
; ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε

}
for each ε ∈ [0, 2]. A Banach space E is said to be uniformly convex if δE(ε) > 0
for all ε ∈ (0, 2]. If E is uniformly convex, then

∥λx+ (1− λ)y∥ ≤ r
[
1− 2λ(1− λ)δE

( ε

R

)]
(2.2)

for every x, y ∈ E with ∥x∥ ≤ r, ∥y∥ ≤ r, 0 < ε < r ≤ R and ∥x − y∥ ≥ ε and
λ ∈ [0, 1] (see, for example, [20, pp.93-98]). In a uniform convex Banach space, Reich
[14] proved the following result which also can be found in Tan-Xu [22, Lemma 4,
Theorem 1].

Lemma 2.1 (Reich [14, Proposition]). Let C be a closed convex subset of a uniform
convex Banach space E, and let {Tn;n ≥ 1} be a sequence of nonexpansive self-

mappings of C with F =
∞∩
n=1

F (Tn) ̸= ∅. If x1 ∈ C and xn+1 = Tnxn for n ≥ 1,

then for all f1, f2 ∈ F and t ∈ (0, 1),

(i) lim
n→∞

∥txn − (1− t)f1 − f2∥ exists;

(ii) If the norm of E is also Fréchet differentiable, then lim
n→∞

⟨xn, j(f1 − f2)⟩
exists.
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A Banach space E satisfies Opial’s condition if for any sequence {xn} in E,
xn ⇀ x (n → ∞) implies

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥, ∀y ∈ E with x ̸= y.

A Banach space E has the Kadec-Klee property if every sequence {xn} in E,
xn ⇀ x and ∥xn∥ → ∥x∥ together imply xn → x. We know that the dual of
a reflexive Banach space with a Fréchet differentiable norm has the Kadec-Klee
property (see [9]). But there exists a uniformly convex Banach space which have
neither a Fréchet differentiable norm nor the Opial property but its dual has the
Kadec-Klee property [9, Example 3.1].

In the sequel, we also need the following lemmas.

Lemma 2.2 (Browder [3]). Let C be a nonempty bounded closed convex subset of
a uniformly convex Banach space E. Suppose T : C → E is nonexpansive. Then
the mapping I − T is demiclosed at zero, i.e.

xn ⇀ x, xn − Txn → 0 implies x = Tx.

Lemma 2.3 ([9, Lemma 3.2]). Let E be a uniformly convex Banach space such
that its dual E∗ has the Kadec-Klee property. Suppose {xn}is a bounded sequence
in E and f1, f2 ∈ ωw(xn), where ωw(xn) denotes the weak limit set of {xn}. If
lim
n→∞

∥txn + (1− t)f1 − f2∥ exists for all t ∈ [0, 1], then f1 = f2.

Lemma 2.4 (T. Suzuki [19, Lemma 2]). Let {xn} and {yn} be two bounded se-
quences in a Banach space E and βn ∈ [0, 1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1.

Suppose xn+1 = βnxn + (1− βn)yn for all integers n ≥ 1 and

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Then lim
n→∞

∥xn − yn∥ = 0.

3. Weakly convergence theorems

Theorem 3.1. Let E be a Banach space and A : D(A) ⊂ E → 2E be an accretive
operator that satisfies the range condition. Assumed that K is a nonempty closed
convex subset of E such that D(A) ⊂ K ⊂

∩
r>0R(I + rA). For x0 ∈ K, define

xn+1 = αnxn + (1− αn)Jrnxn, n ≥ 0. (3.1)

If 0 ∈ R(A) and {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞), then

(i) lim
n→∞

∥xn − p∥ exists and hence {xn} is bounded;

(ii) If lim
n→∞

αn = 0 and lim
n→∞

rn = ∞, then for each r > 0,

lim
n→∞

∥xn − Jrxn∥ = 0;

(iii) If 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0 and lim
n→∞

rn
rn+1

= 1,

then for each r > 0,

lim
n→∞

∥xn − Jrxn∥ = 0;
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(iv) If E is uniformly convex and lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0, then for

each r > 0,
lim
n→∞

∥xn − Jrxn∥ = 0.

Proof. (i) Since 0 ∈ R(A), we can take p ∈ A−10 = F (Jr) for all r > 0. Then we
have

∥xn+1 − p∥ =∥αn(xn − p) + (1− αn)(Jrnxn − p)∥
≤αn∥xn − p∥+ (1− αn)∥Jrnxn − p∥
≤∥xn − p∥
...

≤∥x0 − p∥.
Therefore, {∥xn − p∥} is non-increasing and bounded below, and that (i) is proved.

(ii) From (i), we get the boundedness of {Jrnxn} since

∥Jrnxn∥ ≤ ∥Jrnxn − p∥+ ∥p∥ ≤ ∥xn − p∥+ ∥p∥.
Using the condition lim

n→∞
αn = 0, we obtain that

lim
n→∞

∥xn+1 − Jrnxn∥ = lim
n→∞

αn∥xn − Tn+1xn∥ = 0. (3.2)

For each r > 0, we also have

∥Jrnxn − JrJrnxn∥ =∥(I − Jr)Jrnxn∥ = r∥ArJrnyn∥
≤r|AJrnxn| ≤ r∥Arnxn∥

=r
∥xn − Jrnxn∥

rn
→ 0(n → ∞).

Therefore,
lim
n→∞

∥Jrnxn − JrJrnxn∥ = 0. (3.3)

Hence, for each r > 0,

∥xn+1 − Jrxn+1∥ ≤ ∥xn+1 − Jrnxn∥+ ∥Jrnxn − JrJrnxn∥+ ∥JrJrnxn − Jrxn+1∥
≤ 2∥xn+1 − Jrnxn∥+ ∥Jrnxn − JrJrnxn∥.

Combining (3.2) and (3.3), we obtain that for each r > 0,

lim
n→∞

∥xn − Jrxn∥ = 0.

(iii) From the resolvent identity (2.1), we have

Jrn+1xn+1 = Jrn

( rn
rn+1

xn+1 +
(
1− rn

rn+1

)
Jrn+1xn+1

)
.

Therefore, for a constant M > 0 with M ≥ max{∥Jrnxn∥, ∥xn∥},

∥Jrn+1xn+1 − Jrnxn∥ ≤
∥∥∥ rn
rn+1

(xn+1 − xn) +
(
1− rn

rn+1

)
(Jrn+1xn+1 − xn)

∥∥∥
≤∥xn+1 − xn∥+

∣∣∣1− rn
rn+1

∣∣∣∥Jrn+1xn+1 − xn+1∥

≤∥xn+1 − xn∥+ 2M
∣∣∣1− rn

rn+1

∣∣∣.
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Hence, from lim
n→∞

rn
rn+1

= 1, we have

lim sup
n→∞

(∥Jrn+1xn+1 − Jrnxn∥ − ∥xn+1 − xn∥) ≤ 0.

An application of Lemma 2.4 to yield

lim
n→∞

∥xn − Jrnxn∥ = 0. (3.4)

Since 0 < lim inf
k→∞

rn, then there exists ε > 0 and a positive integer N > 0 such

that ∀n > N , rn ≥ ε. Thus for each r > 0, using the resolvent identity (2.1) again,
we also have

Jrnxn = Jr

( r

rn
xn +

(
1− r

rn

)
Jrnxn

)
,

and hence

∥Jrnxn − Jrxn∥ ≤
∥∥∥ r

rn
xn +

(
1− r

rn

)
Jrnxn − xn

∥∥∥
=
∣∣∣1− r

rn

∣∣∣∥Jrnxn − xn∥

≤
(
1 +

r

rn

)
∥xn − Jrnxn∥

≤
(
1 +

r

ε

)
∥xn − Jrnxn∥.

It follows from (3.4) that

lim
n→∞

∥Jrnxn − Jrxn∥ = 0. (3.5)

Since ∥xn−Jrxn∥ ≤ ∥xn−Jrnxn∥+∥Jrnxn−Jrxn∥, combining (3.4) and (3.5), the
desired result is reached.

(iv) Without loss of generality, we may assume that lim
n→∞

∥xn − p∥ ̸= 0 for some

p ∈ A−10. Since A is accretive and E is uniformly convex, we have from (2.2)
(λ = 1

2 , R = ∥x0 − p∥ and r = ∥xn − p∥),

∥Jrnxn − p∥ ≤
∥∥∥Jrnxn − p+

rn
2
(Arnxn − 0)

∥∥∥
=
∥∥∥Jrnxn − p+

1

2
(xn − Jrnxn)

∥∥∥
=
∥∥∥1
2
(xn + Jrnxn)− p

∥∥∥
≤∥xn − p∥

[
1− 1

2
δE

(∥xn − Jrnxn∥
∥x0 − p∥

)]
.

Since ∥xn+1 − p∥ ≤ αn∥xn − p∥+ (1− αn)∥Jrnxn − p∥, we have

1

2
(1− αn)∥xn − p∥δE

(∥xn − Jrnxn∥
∥x0 − p∥

)
≤αn∥xn − p∥+ (1− αn)∥xn − p∥

− ∥xn+1 − p∥
=∥xn − p∥ − ∥xn+1 − p∥.
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By lim sup
n→∞

αn < 1 and lim
n→∞

∥xn − p∥ ̸= 0, we obtain

lim
n→∞

δE

(∥xn − Jrnxn∥
∥x0 − p∥

)
= 0.

This implies
lim
n→∞

∥xn − Jrnxn∥ = 0. (3.6)

Consequently, combining (3.5) and (3.6), we obtain the desired result. �
Theorem 3.2. Let E be a reflexive Banach space which satisfies Opial’s condition
and A : D(A) ⊂ E → 2E be an accretive operator that satisfies the range condition
and 0 ∈ R(A). Assumed that K is a nonempty closed convex subset of E such that

D(A) ⊂ K ⊂
∩

r>0R(I + rA). If {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞) satisfy one of
the conditions (a) and (b),

(a) lim
n→∞

αn = 0 and lim
n→∞

rn = ∞;

(b) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0 and lim
n→∞

rn
rn+1

= 1.

Then as n → ∞, {xn}, defined by (3.1) weakly converges to some zero x∗ of A.

Proof. It follows from Theorem 3.1 (i) and (ii) and (iii) that {xn} is bounded and
for each r > 0,

lim
n→∞

∥xn − Jrxn∥ = 0.

Then {xn} is weakly sequentially compact by the reflexivity of E, and hence we
may assume that there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗. We

claim that x∗ ∈ A−10 = F (Jr). Indeed, suppose x∗ ̸= Jrx
∗, then from the Opial’s

property of E, we obtain that

lim sup
k→∞

∥xnk
− x∗∥ < lim sup

k→∞
∥xnk

− Jrx
∗∥

≤ lim sup
k→∞

(∥xnk
− Jrxnk

∥+ ∥Jrxnk
− Jrx

∗∥)

≤ lim sup
k→∞

∥xnk
− x∗∥.

This is a contradiction, thus x∗ = Jrx
∗. The claim is proved.

Now we prove {xn} converges weakly to x∗. Supposed that {xn} doesn’t converge
weakly to x∗, then there exists another subsequence {xnj} of {xn} which weakly

converges to some y ̸= x∗, y ∈ K. We also have y ∈ A−10. Because limn→∞ ∥xn−p∥
exists for all p ∈ A−10 by Theorem 3.1 (i) and E satisfies the Opial’s condition,
then we have

lim
n→∞

∥xn − x∗∥ = lim
k→∞

∥xnk
− x∗∥ < lim

k→∞
∥xnk

− y∥

= lim
j→∞

∥xnj − y∥ < lim
j→∞

∥xnj − x∗∥

= lim
n→∞

∥xn − x∗∥.

Which is a contradiction, we must have y = x∗. In a summary, we have proved
that the set {xn} is weakly sequentially compact and each cluster point in the weak
topology equals to x∗. Hence, {xn} converges weakly to x∗ ∈ A−10. The proof is
complete. �
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Using the same methods as Theorem 3.2, we can easily obtain the following
results.

Corollary 3.3. Let E be a reflexive Banach space which satisfies Opial’s condition
and A : D(A) ⊂ E → 2E be an m-accretive operator with 0 ∈ R(A). If {αn} and
{rn} are as Theorem 3.2. Then as n → ∞, {xn}, defined by (3.1) weakly converges
to some zero x∗ of A.

Proof. Since A is m-accretive, A is accretive and satisfies the range condition
D(A) ⊂ E = R(I + rA) for all r > 0. Putting K = E, the desired result is
reached. �
Corollary 3.4. Let E be a reflexive Banach space which satisfies Opial’s condition
and A : D(A) ⊂ E → 2E be an accretive operator that satisfies the range condition
and 0 ∈ R(A). Assumed that D(A) is convex and {αn} and {rn} are as Theorem
3.2. Then as n → ∞, {xn}, defined by (3.1) weakly converges to some zero x∗ of
A.

Proof. Putting K = D(A) and following Theorem 3.2, we can obtain the desired
conclusion. �
Theorem 3.5. Let E be a uniformly convex Banach space which satisfies the Opial’s
conditionand A : D(A) ⊂ E → 2E be an accretive operator that satisfies the range
condition and 0 ∈ R(A). Assumed that K is a nonempty closed convex subset of

E such that D(A) ⊂ K ⊂
∩

r>0R(I + rA). If {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞)
satisfy lim sup

n→∞
αn < 1 and lim inf

n→∞
rn > 0. Then as n → ∞, {xn}, defined by (3.1)

weakly converges to some zero x∗ of A.

Theorem 3.6. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and A : D(A) ⊂ E → 2E be an accretive operator that satisfies the
range condition and 0 ∈ R(A). Assumed that K is a nonempty closed convex subset

of E such that D(A) ⊂ K ⊂
∩

r>0R(I + rA). If {αn} ⊂ (0, 1) and {rn} ⊂ (0,+∞)
satisfy lim sup

n→∞
αn < 1 and lim inf

n→∞
rn > 0. Then as n → ∞, {xn}, defined by (3.1)

weakly converges to some zero x∗ of A.

Proof. Theorem 3.1 guarantees {xn} is bounded and for each r > 0,

lim
n→∞

∥xn − Jrxn∥ = 0.

Similar to Theorem 3.2, there exists a subsequence {xnk
} of {xn} converging weakly

to some x∗ ∈ K. By Lemma 2.2, we have x∗ ∈ F (Jr) = A−10.
Now we prove {xn} converges weakly to x∗. Supposed that {xn} doesn’t converge

weakly to x∗, then there exists another subsequence {xnl
} of {xn} which weakly

converges to some y ∈ K. We also have y ∈ F (Jr) = A−10. Next we show x∗ = y.
Set Tn = αnI+(1−αn)Jrn , then it is clear that {Tn} is a sequence of nonexpansive

mappings of K with F =
∞∩
n=0

F (Tn) =
∞∩
n=0

F (Jrn) = A−10 ̸= ∅ and xn+1 = Tnxn.

Therefore, Lemma 2.1(ii) assures that lim
n→∞

⟨xn, j(x∗ − y)⟩ exists. Hence, we have

lim
n→∞

⟨xn, j(x∗ − y)⟩ = lim
k→∞

⟨xnk
, j(x∗ − y)⟩ = ⟨x∗, j(x∗ − y)⟩,
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and

lim
n→∞

⟨xn, j(x∗ − y)⟩ = lim
l→∞

⟨xnl
, j(x∗ − y)⟩ = ⟨y, j(x∗ − y)⟩.

Consequently,

⟨x∗, j(x∗ − y)⟩ = ⟨y, j(x∗ − y)⟩,
that is ∥x∗ − y∥ = 0. We must have y = x∗. Thus {xn} converges weakly to
x∗ ∈ A−10. The proof is complete. �

Theorem 3.7. Let E be a uniformly convex Banach space and its dual E∗ have
the Kadec-Klee property and A : D(A) ⊂ E → 2E be an accretive operator that
satisfies the range condition and 0 ∈ R(A). Assumed that K is a nonempty closed

convex subset of E such that D(A) ⊂ K ⊂
∩

r>0R(I + rA). If {αn} ⊂ (0, 1) and
{rn} ⊂ (0,+∞) satisfy lim sup

n→∞
αn < 1 and lim inf

n→∞
rn > 0. Then as n → ∞, {xn},

defined by (3.1) weakly converges to some zero x∗ of A.

Proof. As in the proof of Theorem 3.6, we can reach the following objectives:
(1) there exists a subsequence {xnk

} of {xn} converging weakly to some x∗ ∈
A−10;

(2) the nonexpansive mappings sequence {Tn} satisfies the conditions of Lemma
2.1.

Now we prove {xn} converges weakly to x∗. Supposed that {xn} doesn’t converge
weakly to x∗, then there exists another subsequence {xnl

} of {xn} which weakly
converges to some y ∈ K. We also have y ∈ A−10.

Next we show x∗ = y. In fact, from Lemma 2.1(i), we have lim
n→∞

∥txn − (1 −
t)x∗ − y∥ exists. Using Lemma 2.3 we obtain y = x∗. Thus {xn} converges weakly
to x∗ ∈ A−10. �

Using the same argumentation technique as Corollary 3.3 and 3.4, we can easily
obtain the following results.

Corollary 3.8. Let E be a uniformly convex Banach space which either satisfies
the Opial’s condition or has Fréchet differentiable norm or its dual E∗ have the
Kadec-Klee property. Suppose that A : D(A) ⊂ E → 2E be an accretive operator
that satisfies the range condition and 0 ∈ R(A). If D(A) is convex and {αn} and
{rn} satisfy lim sup

n→∞
αn < 1 and lim inf

n→∞
rn > 0. Then as n → ∞, {xn}, defined by

(3.1) weakly converges to some zero x∗ of A.

Corollary 3.9. Let E be a uniformly convex Banach space which either satisfies
the Opial’s condition or has Fréchet differentiable norm or its dual E∗ have the
Kadec-Klee property. Suppose that A : D(A) ⊂ E → 2E be an m-accretive operator
with 0 ∈ R(A). If {αn} and {rn} satisfy lim sup

n→∞
αn < 1 and lim inf

n→∞
rn > 0. Then

as n → ∞, {xn}, defined by (3.1) weakly converges to some zero x∗ of A.

4. Strongly convergence theorems

Theorem 4.1. Let E be a Banach space and A : D(A) ⊂ E → 2E be an accretive
operator that satisfies the range condition and 0 ∈ R(A). Assumed that K is a
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nonempty compact convex subset of E such that D(A) ⊂ K ⊂
∩

r>0R(I + rA) and
for x0 ∈ K, iteratively define

xn+1 = αnxn + (1− αn)Jrnxn, n ≥ 0.

If {αn} and {rn} satisfy one of the following two conditions:

(a) lim
n→∞

αn = 0 and lim
n→∞

rn = ∞;

(b) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0 and lim
n→∞

rn
rn+1

= 1.

Then as n → ∞, {xn} strongly converges to some zero x∗ of A.

Proof. By Theorem 3.1 (i) and the compactness of K, we see that {xn} admits a
strongly convergent subsequence {xnk

} whose limit we shall denote by x∗. Then,
again by Theorem 3.1 (ii) or (iii), we have x∗ ∈ A−10 = F (Jr). As ∀p ∈ A−10,
lim
n→∞

∥xn − p∥ exists by Theorem 3.1 (i), x∗ is actually the strong limit of the

sequence {xn} itself. �

From the proof of Theorem 4.1, we can get the following Corollary.

Corollary 4.2. Let E,K,A, {xn}, {αn}, {rn} be as Theorem 4.1. Then as n → ∞,
{xn} strongly converges to some zero x∗ of A if and only if there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
→ x∗ ∈ A−10 (k → ∞).

Similar to the argumentation of Theorem 4.1, we can get the following. Since the
proof is a repeating work, we omit it.

Theorem 4.3. Let E be a uniformly convex Banach space and A : D(A) ⊂ E → 2E

be an accretive operator that satisfies the range condition and 0 ∈ R(A). As-

sumed that K is a nonempty compact convex subset of E such that D(A) ⊂ K ⊂∩
r>0R(I + rA) and for x0 ∈ K, iteratively define

xn+1 = αnxn + (1− αn)Jrnxn, n ≥ 0.

If {αn} and {rn} satisfy lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0. Then as n → ∞, {xn}
strongly converges to some zero x∗ of A.

Corollary 4.4. Let E be a Banach space and A : D(A) ⊂ E → 2E be an accretive

operator that satisfies the range condition and 0 ∈ R(A). Assumed that D(A) is a
compact convex subset of E and for x0 ∈ K, iteratively define

xn+1 = αnxn + (1− αn)Jrnxn, n ≥ 0.

(1) If {αn} and {rn} satisfy one of the following two conditions:
(a) lim

n→∞
αn = 0 and lim

n→∞
rn = ∞;

(b) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and lim inf
n→∞

rn > 0 and lim
n→∞

rn
rn+1

= 1.

Then as n → ∞, {xn} strongly converges to some zero x∗ of A;
(2) If E is a uniformly convex Banach space and {αn} and {rn} satisfy lim sup

n→∞
αn

< 1 and lim inf
n→∞

rn > 0. Then as n → ∞, {xn} strongly converges to some

zero x∗ of A.
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