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COUPLED FIXED POINT THEOREMS IN UNIFORM SPACES
AND APPLICATIONS

TRAN VAN AN, KIEU PHUONG CHI, AND LE KHANH HUNG

ABSTRACT. In this paper, we prove some coupled fixed point theorems for gen-
eralized contractive mappings in uniform spaces and apply them to study the
existences-uniqueness problem for a class of nonlinear integral equations with
unbounded deviations.

1. INTRODUCTION

It is known that the fixed point theory plays a crucial role not only in the existence
theory of differential equations, integral equations, functional equations, partial dif-
ferential equations, random differential equations but also in computer science and
economics, and the modern fixed point theory is attached usually to the nonlinear
analysis. In this paper we present some results concerning the coupled fixed point
theorems in uniform spaces as natural extensions of metric coupled fixed point the-
orems that have recently exposed by many authors (see [4], [5] and the references
given therein). Our goal is to explore not only the results themselves but also to
apply them in solving nonlinear integral equations. Note that the known results in
metric spaces are not applicable to the problems in the following section 4 (see [5],
[9] and the references given therein).

2. PRELIMINARIES

Let X be a uniform space. The uniform topology on X is generated by a family of
uniform continuous pseudometrics on X (see [7]). In this paper, by (X, P) we mean
a Hausdorff uniform space whose uniformity is generated by a saturated family of
pseudometrics P = {dn(z,y) : « € I}, where I is an index set. Note that, (X, P) is
Hausdorff if and only if d,(x,y) = 0 for all a € I implies z = y.

Definition 2.1 ([1]). Let (X,P) be a Hausdorff uniform space.

1) A sequence {z,} C X is Cauchy if do(zp,xm) — 0 as m,n — oo for every
ael.

2) X is said to be sequentially complete if every Cauchy sequence {z,} in X
converges to x € X.

Definition 2.2 ([1]). Let j : I — I be an arbitrary mapping of the index I into
itself. The iterations of j can be defined inductively by

i) = a,j%a) = (5" ) k=12,...
The following concept was introduced by V. Lakshmikantham.
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Definition 2.3 ([6]). Let (X, <) be a partially ordered set and F': X x X — X.
The mapping F' is said to have the mixed monotone property if F' is monotone
non-decreasing in its first argument and is monotone non-increasing in its second
argument, that is, for any z,y € X

T1,T2 € Xa:El < Ty = F(mlvy) < F(l’g,y)
and
y1,%2 € X,y1 <yo = F(z,y1) > F(x,y2).

Now, we introduce a class of functions which plays a crucial role in the fixed point
theory. Sometimes, they are called to be control functions.

Let ® = {¢q : @ € I} be a family of functions (which one call ®-contractive)
with the properties

i) ¢q @ [0,4+00) = [0,400) is monotone non-decreasing and continuous.

i) 0 < pa(t) < tforall ¢ >0 and ¢,(0) = 0.

Remark 2.4. 1) If E is a locally convex space with a saturated family of seminorms
{Pa tacr, then the associated family of pseudometrics {pq }acr defined by po(x,y) =
pal(z —y) for every z,y € F and o € I. The uniform topology, which is generated
by this family of pseudometrics, coincides with the original topology of the space
E. Therefore, as a corollary of our results, we obtain the fixed point theorems in
the locally convex spaces.

2) Let us point out that here the mapping j arises in a natural way. It is generated
by the deviating arguments. This allows us to obtain an application in solving
nonlinear integral equations with unbounded deviations. We note that if j(a) = «
for every « € I then some fixed point theorems in uniform spaces easily follow from
the fixed point theorems in metric spaces with variably contractive conditions (see
110]).

3. COUPLED FIXED POINT THEOREMS IN UNIFORM SPACES

We begin this section at giving a new coupled fixed point theorem in ordered
uniform spaces.

Theorem 3.1. Let (X, <) be a partially ordered set and P = {dq(x,y) : « € I} be a
family of pseudometrics on X such that (X, P) is a Hausdorff sequentially complete
uniform space. Let F' : X x X — X be a mapping having the mired monotone
property on X. Suppose that

1) For every o € I there exists g, € ® such that

dja) (T, 1) + dja) (Y, U)>
2 M

(3.1) da (F (@), F(uv)) < oo

for allx < wu,y >v;
2) For each o € I, there exists 9, € ® such that sup{pjn(a)(t) :n =0,1,...} <

o (t
Zu(t) ana 72
3) There are xo,yo € X such that xo < F(z0,%0), %0 > F(yo,x0) and
dj”(oc) (x()a F(x07y0)) + dj"(a) (ZJO; F(yOa l'())) < 2p(04) < 00,

s non-decreasing;
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for every a € I,n € N.
Also, assume either a) F is continuous; or,

b) X has the following property
i) If a non-decreasing sequence {xy} in X converges to x then x,, < x for
all n € N.
ii) If a non-increasing sequence {y,} in X converges to y then y, >y for
alln € N.
Then F has a coupled fixed point, that is, there exist x,y € X such that

z=F(z,y),y=F(y,z).
Proof. Let xg,yo € X such that zo < F(x0,v0),y0 > F(y0,x0). Put 1 = F(z0, y0)
and y; = F(yo,70). Then xzy < x; and yp > y1. Again, set zo = F(z1,y1) and
y2 = F(y1,x1). Since F has the mixed monotone property, then we have z; < x9

and y; > yo. Continuing this way, we get two sequences {z,} and {y,} in X such
that 41 = F(Zn, Yn), Yn+1 = F(Yn, zn) and

o<1 ST ST STpp1 S, Y02 YL 2 Y22 2 Yn 2 Ynpl = e
Now, for each n =0,1,2,... and a € I, we put
Oy = da(Tn, Tni1) + da(Yn, Yn+1)-
By the assumption 3), we have

(3.2) 5 = djn (o) (20, F(x0,50)) + djn(a) (v0, F (Y0, 20)) < 2p(a) < oo.

(@)

Now we claim that 5 < 2g0a(5”51) for every o € I,n € N. Indeed, in view of the

condition 1) and since x,—1 < x, and y,—1 > y,, we obtain

da(l'nazn+1) = da(F(fL‘nflaynfl)vF($myn))
dj(a)(Tn-1,Tn) + dj(a)(Yn—1, yn))
)

«

(3.3)

IA
S

S 2
)

2

By the same argument, we have

5]
2

(3.4) do(Yn, Yn+1) < Pa

Combining (3.3) and (3.4), we deduce that

5](04)
(3.5) 5o < 2%( ”2—1) for all n € N, € I.
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Since ¢, is a monotone non-decreasing function, then by (3.5) and (3.2), we have

. (@) 2
%n < %(5’]12‘1) < ¢a (%‘(a)( 52 ))

< on(osa- () )

Put % (p(a)) = bg for each o € I and n € N. Then 67 < 2b% for every o € I,n € N.
Using the triangle inequality, we get

3
L

da(xm xn—s-p) + da(Yn, yn+p) < [da(xn—i-iy Tpyit1) + da(Ynii, yn+i+1)]

s
I
)

bS]

)

p—1
Opyi <2 b
=0

Il
o

Since p(a) > 0 and @, (t) < t for every t > 0, we obtain

(36)  @alp(a)) =P (7 (p(e) <@a ' (p(a) < - < Ba(p(@) < pla).

Because %T(t) is a monotone non-decreasing function, then by (3.6), we have
(3.7) biss _ Za(@(p(@) _ Palp(e) _ |

by on(p() —  pla)

This implies that the series >~ b% is convergent. Hence Z?:_ol bpy; — 0 as
n — oo for all p. Thus it follows that do(zp, Zn+p) — 0 and do(Yn, Yntp) — 0 as
n — oo for all p, that is {z,, }, {yn} are Cauchy sequences. Because X is sequentially
complete, there exist x,y € X such that lim, . z, = z,lim,, o0 yn = y.

Now, we consider the following cases

Case 1: Let F be continuous. Then we have = lim,, o0 Zp+1 = limy,—y00 F'(Zn, Yn)
= F(z,y),y = limp 00 Ynt1 = limy 00 F(ypn, xn) = F(y,x). It follows that z,y is a
coupled fixed point of F'.

Case 2: Let X have the property as in the assumption b), {z,} be a non-
decreasing sequence such that x,, — z, and {y,} be a non-increasing sequence such
that y, — y. Then we have z,, < z and y, > y for all n € N. Using the triangle
inequality and the contractive condition, we get

da(l'aF(fL‘ay)) < da(x71'n+1) +da($n+1,F(a?,y))
= doz(xaxn—I—l) +da(F(xmyn)7F(x7y))

d‘a Tn,T +d'a Yn,Y
Sda(xyxn+1)+@a< it )( )2 ¢ )( ))

d'a n +da n,
< do (@, 1) + -1 (= $)2 (o) (Y y)‘
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Letting n — oo, we arrive at do(x, F(z,y)) = 0 for all & € I. This implies that
x = F(x,y). By the same way, we have y = F/(y,z). The proof is completed. = [

It is our interest to provide additional conditions to ensure that the coupled fixed
point in Theorem 3.1 is in fact unique. Therefore, we have to add the properties
for a partial order on X x X and the mapping j: I — I.

Definition 3.2 ([1]). A uniform space (X, P) is said to be j-bounded if for every
a € I and z,y € X there exists ¢(z,y, «) such that

djn(a)(z,y) < q(z,y,a) < oo, for all n € N.

Let (X, <) be a partially ordered set. Then, we consider the partial order on
X x X that defined by

for (z,y), (u,v) € X x X, (z,y) < (u,v) &z <u,y > .

Theorem 3.3. Suppose that the conditions of Theorem 3.1 are fulfilled. If X 1is
j-bounded and for every (x,y), (z,t) € X x X there exists (u,v) € X x X which is
comparable to them, then F has a unique coupled fixed point.

Proof. By Theorem 3.1, we conclude that the set of coupled fixed points of F' is
nonempty. Assume that (z,y), (z,t) are coupled fixed points of F', that is x =
F(z,y),y = F(y,z) and z = F(z,t),t = F(t,z). We shall prove that x = 2z and
y = t. By assumption, there exists (u,v) € X x X which is comparable to (z,y)
and (z,t). Put ug = u,v9 = v. By induction, we construct the sequences {u,}, {v,}
defined by upt1 = F(un,vn),vn+1 = F(vn,uy) for n = 0,1,2,... Suppose that
(z,y) < (u,v) = (ug,vp). Since F has the mixed monotone property, we have
up = F(ug,vp) > F(u,y) > F(x,y) = x; v1 = F(vo,ug) < F(y,z) = y. Hence
(u1,v1) > (z,y). By the same argument, we infer that (u,,v,) > (z,y) for every
n=20,1,2,.... Then

do (2, Up+1) = dg (F(a:, Y), F(un, vn))

iy (@, un) + di) (Y, vn)
< j(a) \ J()\Y>
= %‘< 2 )

and
d (yavn—i-l a(F Unvun))
oé(F Unsy Un), F(y, x))

dj(a)(Vn, Y) + dj(a) (un, T)
%‘< 2 )

<

It follows that

do(x, un + da Y, Un d'a(xaun)—i_d'a(yyv)
( +1)2 ( +1)§%<a(> 2J<> n)



958 T. V. AN, K. P. CHI, AND L. K. HUNG

for every n =0,1,2,.... Since X is j-bounded, we have

da(l‘a un+1) + da(ya Un+1)
2

< o (@j(a) <dj2(a) (2, up—1) -2F dj2(a) (Y5 Un—1) ))
djn (o) (¥, u1) ; djn<a>(ya”1)) ))

< pa (5@ (- @i

2

q(:l:?ula Oé) + q(y,vl,a))
5 .

T, U, Q) +q(y7v17a)>

(
(djn(a) (7, u1) + djn(a) (v, Ul))
(

< Pa
q(

Put ¢ = oy By the same computation as in the proof

of Theorem 3.1, we can deduce that ) 7, c% is convergent. This yields ¢ — 0 as

n — oco. It follows that do(z, unt1) + do(y, vnt1) — 0 as n — oo for every o € I.
Thus we have = = lim,, o Up, y = lim, o0 V.
Similarly, we get z = lim,, o0 Uy, t = lim,,_ oo v,,. Hence x = z and y = ¢. O

Corollary 3.4. In addition to hypotheses of Theorem 3.3, if x¢ and yg are compara-
ble then F' has a unique fixed point, that is, there exists x € X such that F(xz,z) = x.

Proof. Since xg,yo are comparable, we have g > yg or g < yg. Assume that
o > yo. Then, by the mixed monotone property of F', we have

x1 = F(x0,y0) = F(y0,90) > F(yo, o) = y1.

and by induction we get the sequences {z,} and {y,} satisfying =, > y, for all
n > 0. Now, since z = limy, o0 Tp+1,y = limy 00 Yn+1, by the continuity of d,, we
have

(3.8) do(z,y) = nhjgo do(Tnt1, Ynt1)-
On the other hand

do(Tpi1,Ynt1) = da(F(xm?/n) F(ynain))
(dj(a) Zn;s Yn) +d( ><ymf'«“n)>

< Qo = ?a (dja) (@n, yn))
(3.9) < Ya (gpj dg(a Tn—1,Yn— 1)))
< ea(@j (- i1 (A (@) )

< Pq (djn(a)(l’l,yﬂ) < pn(g(z1,y1,)).
By the same argument as in the proof of Theorem 3.3, we infer that the series
Yoo Pa (q(ml,yl,a)) is convergent. Thus

(3.10) lim @7 (q(21,91,a)) = 0.

n—oo
From (3.8), (3.9) and (3.10), we have duo(z,y) = limp_oo da(Tnt1,Ynt1) <
limy, 00 P (q(@1,y1,@)) = 0. Hence, do(x,y) = 0 for all & € I. This implies that
x=yor Fz,z) ==
In the case xg < g, the proof is similar. O
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The following examples illustrate for our theorems.

Example 3.5. Let X =R* = {z ={z,}:2, € R,n=1,2,...} and P, : X = R
be a mapping defined by P,(z) = P,({zn}) = z, for each n = 1,2,.... Let I =
N* x R* be the index set. For every (n,r) € I consider the map d,,y: X x X = R
defined by

n,r

diny (7, y) = T“Pn(l') — Pn(y)|, for every z,y € X.

Then {d(, ) : (n,7) € I'} is a family of pseudometrics on X generating the uniform
structure on X.

Consider the partially ordered relation “ < ” on X which defined by «z < y <
Ty <y, forevery n=1,2,...

Let F: X x X — X be a map defined by

(3.11) F(m,y):{l,l—i— (1—%)(:52—3/2),1—1— (1—%)(:1:3—1,3),...}

for every x = {zn},y = {yn} € X.

We now claim that F' satisfies all conditions of Theorem 3.1. Indeed, for every
(n,r) € I we consider the map ¢, ) : [0,4+00) — [0,+00) defined by ¢, (t) =

22(2:1% for every ¢t > 0, and denote by j : I — I the map defined by j(n,r) =

(n,2r(1 — 5-)) for every (n,r) € I. It is easy to see that

2(n—1)
Pk, (1) = mt = P(n,r)(t) for every £ =0,1,2,...
Denote
2(n—1
Plnry(t) = 2(2_1)15, for every t > 0 and (n,r) € I.

Then we have

SUp{@jk (nr)(t) 1 k= 0,1,2,...} <P, (t), for every t >0,

Brnm (t —1) . .
and @(”’;) @ _ 22(2_}) is monotone non-decreasing.
Next, we show that F' has the mixed monotone property. Indeed, if 2!, 22,y € X

and 2! < 22 then 2} < 22 for every n = 1,2, ... It follows that z} —y, < 22 — y,,
for every n = 1,2,.... This implies that

(1—%)(:1:,11—yn) < (1—%)(1’%—3/”), n=12...

or
P, (F(z',y)) < P.(F(2?,y)).
Thus F(z!,y) < F(2?%,y).

Now, if z,y!,9% € X and y' < y? then y! < 2 for every n = 1,2,... It follows
that z, —yl > x, — y2. This implies that (1 —1)(z,, —yl) > (1 - 2)(z, — ¢2), for
every n = 1,2,..., that is F(z,y') > F(z,y?). Hence F has the mixed monotone
property.
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Now, we show that F satisfies the contractive condition (3.1) with ¢, and j above
mentioned. Indeed, let x < w,y > v then for every (n,r) € I we have

iy (F(2,y), F(u,0)) = 7| Py (F(2,y)) — Pa(F(u,v))|
T A

(3.12) _ T(l _ %) (20— yn) — (un —vn)]

and
i) @:0) = () (@0)
- 27“(1 - %)p@n |
- 2r(1 - %) (i — ),
and

n
= 2r<1 - %) (Yn — vn)
This implies that
(3.13)
B (e Ll L N Y G )

n—1
= n T(un_xn+yn_vn)'

It follows from (3.12) and (3.13) that

d; x,u)+d; )
d(n,r) (F(.’L’,y),F(U,’U)) < So(n,r)( J(nﬂ")( ) 2 Jr) (y ))
Now, put 2° = ¢ = (1,1, ...) then by a simple computation we have 2° = " =
F(xoayo) = F(yoaxo) and djk(n,r) (xov F(l’o, yO)) + djk(n,r) (yO’ F(yovxo)) =0 < o0.
Finally, it is easy to see from (3.11) that F' is continuous. Hence, the conditions
of Theorem 3.1 are fulfilled for F' and F has at least of a coupled fixed point.

Example 3.6. Let X = R>® = {a:: {zp}: 2, €Rn= 1,2,...} and P, : X - R
be a mapping defined by P,(z) = P,({zn}) = @, for each n = 1,2,.... Let I =
N* x RT be the index set. For every (n,r) € I consider the map Ay : XXX =5 R
defined by

0

d(n,r)(xay) = T‘Pn@?) - Pn(y)|a for every z,y € X.
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Then {d,, : (n,7) € I} is a family of pseudometrics on X generating the uniform
structure on X.

Consider the partially ordered relation “ < ” on X which defined by « < y <
Ty < yp for every n=1,2,...

Let F: X x X — X be a map defined by

1\ 22—y 1\ 3 —ys3
F(a, :{1,1 (1—7>. 1 (1—7>.7,...}.
(@.y) + 2 2 + 3 2

2(n—1
2(711)15 for every t > 0 and define j : I — I by j(n,r) =
n_

(n,r(1—5-)) for every (n,r) € I. By the same computation as in Example 3.5, we
2(n—1
can show that F' satisfies the conditions of Theorem 3.1 with ©,, ,y(t) = 2(1)25.
) n —
Now, we check that X is j-bounded. Indeed, for each (x,y) € X we have

Denote ¢y, ;) (t) =

djk(n,r) (:L’, y) = d(n,r(l—%)k) (xa y)

1 \k
=r(1=5-) |Pule) = Paly)|
< T}Pn(x) - Pn(y)‘ = q(x,y, (n,r)) < 0.

This proves that X is j-bounded. It is easy to see that if (x,y),(z,t) € X x X
then there exists (u,v) € X is comparable to them. Thus F satisfies Theorem 3.3.
Hence, F' has a unique coupled fixed point, and it is x =y = {1, 1,...}.

Remark 3.7. Note that we cannot omit the j-bounded property of X in the The-
orem 3.3. This is illustrated by the following example.

Example 3.8. By using Example 3.5, it is not difficult to see that X is not j-

bounded. Indeed, for every (n,r) € I we have j(n,r) = (n,2r(1 — 5)), j*(n,r) =

j(n,2r(1 — 5)) = (n,2%(1 — 5-)?), and by induction we get

) k L \*
jr(n,r) = (n,2 7“(1 - 7) ), for every k=1,2,...
2n
Thus, for any z,y € X, we have
d]k(n,r)(xay) = d(n,ZkT(l—i)k) (.fU,y)

=2 (1~ %)k\mx) —P(w)|

_ r<2”_ 1)'“\13”(95) ~Py)|.

n
Since klim (Z”n—*l)k = oo for each n > 1, we can conclude that there is no
— 00

q(x,y, (n,r)) < +oo such that djk, ) (x,y) < q(a:, Y, (n,r)) forevery kK =0,1,2,....
This proves that X is not j-bounded.
In fact, F' have more than one coupled fixed point. For example, we consider

x={l,zo,1,1,...},y ={1,y2,1,1,...},
with xo + yo = 2. It is easy to check that z,y are coupled fixed points of F.
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4. APPLICATION TO NONLINEAR INTERGRAL EQUATIONS

As an application of the coupled fixed point theorems proved in the previous
section, in this section we will investigate the existence of a unique solution to
nonlinear integral equations.

Let us consider the following integral equations

At)
(4.1) x(t) = h(t) —I—/O [Kl(t, s) + Ksf(t, s)] (f(s,x(s)) + g(s, x(s)))ds,

where K1, Ko € C’([O,+oo) X [0,+oo),R), 1,9 € C([O, +00) X R,R), and an un-
known function z(t) € C([0,+00),R). The deviation A : [0,400) — [0,+00)
is a continuous function, in general case, unbounded. Note that, since deviation
A : [0,+00) — [0,+00) is unbounded, we can not apply the known coupled fixed
point theorems in metric space (see [4], [5], [9]) for the above integral equations.

Adopting the assumptions in [3] and [9], we assume that the functions K7, K», f, g
fulfill the following conditions

Assumption 4.1. A) K(t,s) > 0 and Ka(t,s) <0 for all ¢,s > 0;
B) For each compact subset K C R, there exist the positive numbers A, u and
pr € ® such that for all z,y € R, x > y and for all t € K,

0< ft,x) = ft,y) < AW( ;y)

and

i (* o) ) <gt.w) — glt,y) <0

and
A(t) 1
max (A, p) sup/ (Ki(t,s) — Ka(t,s))ds < =;
teK Jo 2
C) For each compact subset K C R, there exists a compact set K C R such that
for all n € N,
A"(K) C K;

Pr(t) .
¢ 1S

D) For each compact subset K C R, there exists g € ® such that
non-decreasing and
an(r)(t) < Pk (t)
for all n € N and for all ¢ > 0.
Definition 4.2. An element («, ) € C’([O, —|—oo),R) X C([O, —|—oo),R) is a coupled

lower and upper solution of the integral equation (4.1) if for any ¢ € [0, +00) we
have a(t) < p(t) and

alt) < / Ka(t,)(F(s,0(s)) + (s, B(s)))ds

/ Ko(t, 5)(£(s, B(5)) + g(s, a(s)))ds,
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and

A)
B(H) > h(t)+ /0 Ki(t,5)(£(5, B(5)) + (s, a(s)))ds

A(t)
4 [ Kaltos) (105 (o) + g5, 5(5) ds.
0

Theorem 4.3. Consider the integral equation (4.1) with K1, Ko € C([0,+00) x
[0,4+00),R) and f,g € C([0,+00) X R,R) and h € C([0,+00),R) and suppose that
Assumption 4.1 is fulfilled. Then the existence of a coupled lower and upper solution
for (4.1) provides the existence of a unique solution of (4.1) in C([0,+00),R).

Proof. Denote RT = [0,400). Let X = C(R",R). Then X is a partially ordered
set with the partially ordered relation on X defined

forz,y € X, =<y x(t) <y(t), forall tcRT.
For each compact subset K C R, we define
p(f) =sup{|f(t)| : t € K}, for every f € C(RT,R).

It is known that the family of seminorms {px}, where K runs over all compact
subsets of R, defines a locally convex Hausdorff topology of the space. Hence, X is
a Hausdorff sequentially uniform space whose uniformity is generated by the family
of pseudometrics {dx} (K runs over all compact subsets of R) defined by

di (f,9) = pr(f —g) =sup{|f(t) —g(t)| : t € K}.

Let us next define the map j : I — I, where the index set I consists of all compact
subsets of RT, by the following way: For an arbitrary compact set K C RT we put
J(K) := [0, max;ex A(t)], and j*(K) = j(j" ' (K)), for every n € N. Then, since
A : [0, 400) — [0, +00) is a continuous function the sets j(K),j?(K),i3(K),... are
also compact.

Suppose {uy} is a monotone non-decreasing sequence in X that converges to
w € X. Then for every t € RT, we have uy(t) < uz(t) < -+ < wup(t) < ..., and
un(t) — u(t) as n — oo. This implies that u,(t) < u(t) for every t € RT, and
n € N. Hence u,, < u, for all n € N.

Similarly, we can verify that if {v,} is a monotone non-increasing sequence in X
that converges to v € X, then v < v, for all n. Hence, the condition (b) in Theorem
3.1 holds.

Now we define on X x X the following partially ordered relation: for every
(x,y), (u,v) € X x X

(z,) < (u,v) & 2(t) <u(t) and y(t) > v(t), for every t € RT.
Observe that for every x,y € X, by the uniform topology of X, we easily see that the
functions max{z(t),y(t)}, min{xz(t),y(t)} for each t € RT are the upper and lower
bounds of x,y, respectively in X. This follows that for every (z,v), (u,v) € X x X,
there exists (max{a:,u},min{y,v}) € X x X which is comparable to (z,y) and
(u,v).
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Define F': X x X — X by

A()

F(z,y)(t) = ; Ki(t,5)(f(s,2(5)) + g(s,y(s)))ds
A(t)

| Kalt, ) (7o (5)) + (s, (s))ds + ()

for allt € RT.

Next, we show that F' has the mixed monotone property. Indeed, for xi,z9 €
C(RT,R) and z1 < @9, that is z1(t) < z2(¢) for every ¢t € RT, by Assumption 4.1
we have

At)
Flan, 9) () — F,y)(t) = /0 Ky (1, 5) [ (5, 21(5)) + g(5,5(s))] ds
A(t)
+ /O Ks(t, 5) [ (5,5()) + g(s,21(5))]ds + h(z)
At)
- /0 Ky (1, 5) [£(5, 22(5)) + (s, y(5))] ds

A(t)
- Ko(t,s)[f(s,y(s)) + g(s, xa(s))] ds — h(t)

A
=, Ki(t,s)[f(s,21(5)) = f(s,22(s))] ds
A(t)
-/ Ka(t,5)[g(s, 2(s)) — g(s,21(s))]ds <0,

for every t € RT. This yields F(z1,y)(t) < F(x2,y)(t) for every t € RT, that is
F(.Tl,y) < F($27y>

By the same computation, we arrive at F(x,y1) < F(x,y2) if y1,y2 € C(RT,R)
and y; > y2. Hence, F' has the mixed monotone property.

Now, for each compact subset K of R and for z > u and y < v, that is x(t) > u(t)
and y(t) < v(t) for every t € RT, we have

dK(F(xay)7F(u7v)) = f:}?lF(m?y)(t) - F(uav)(t”

A(t)
—sup| [ Ka(t.5) (F(s,2(5)) + s,(s)) s
teK 0
A(t)
+ /O Ka(t, ) (f(5,9(s)) + g(s, 2(5)))ds + h(t)
A(t)
- /O Ka(t,5)(f (s, u(s)) + g(s,v(s))) ds

A(t)
_/O Ka(t,)(f(s,v(s)) + g(s,u(s)))ds — h(t)
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teK

A(t)
=sup| [ K0 8)[(£(5.2(9) = £ u() + (905,0(5) = g 0()) s
A(t)
[ Ralt ) [ 9()) = £ 0(6) + a(s,2(5) = gt ()]s
At)
=sup| [ K09 [(£(02(9) = Flsu() = (9(5.0(5)) = gl 9()) s

A(t)
— [ Ra(t. ) [0 0(6)) = Fs.(5D) = {os.(5)) = gt ()|

<sup| [ 00 o (T o (520
[ o (20 () oy
< max{, u}tsg[g /O o [K1(t,s) — Ka(t, s)] [sox(f”(s)g“(s))
o (M) as
A(t
< maxth 1} fglg/o ’ [K1(t, ) = Kot )] ds [¢K<se[o e A1) W>
rou( o | HESE)
g [ 80,9 < s o (g )
Fon( s PEZHN)]
< g lon(P) (M)
< ;[wK(dj<K>(fU>u) ;L (i) (Y, U)) N ¢K(dj<m (y,v) J;dj(K)(%U)H
_ @K(dj(K) (z,w) + djgro) (y: U)).
2

Now, let us (a, 8) € X x X be a coupled lower and upper solution of the integral
equation of (4.1). Then, we have

a(t) < F(a,B)(t) and B(t) > F(B,a)(t) for all t € RT,

that is a < F(a, ) and 8 > F (8, a). Moreover, for each compact subset K C R,
by the continuity and assumption, we have

djn () (0, Fer, B)) + djney (B, F(B,00)) < dio,max_z A(s)] (o, F(a, B))
Fdj0,max, _ A(s)] (B, F(B,)) < 4oc.
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Using again assumption (C), we have

djny(z,y) = sup |z(t) —y(t)| < sup |z(t) — y(t)]
tejn(K) te[O,maxsegA(s)]

= d[O,maxse? A(s)] (l’,y) < +o0,

for all n € N. Therefore X is j-bounded.
Finally, applying Theorem 3.3, we can conclude that F' has a unique coupled
fixed point (x,y). Since a < 8 and Corollary 3.4, we have x = y, that is z(t) = y(t)

for every t € RT. Hence F(x,z) = x and x is the unique solution of the equation
(4.1). O
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