
Copyright 2014



954 T. V. AN, K. P. CHI, AND L. K. HUNG

Definition 2.3 ([6]). Let (X,≤) be a partially ordered set and F : X ×X → X.
The mapping F is said to have the mixed monotone property if F is monotone
non-decreasing in its first argument and is monotone non-increasing in its second
argument, that is, for any x, y ∈ X

x1, x2 ∈ X,x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and
y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Now, we introduce a class of functions which plays a crucial role in the fixed point
theory. Sometimes, they are called to be control functions.

Let Φ = {φα : α ∈ I} be a family of functions (which one call Φ-contractive)
with the properties

i) φα : [0,+∞) → [0,+∞) is monotone non-decreasing and continuous.
ii) 0 < φα(t) < t for all t > 0 and φα(0) = 0.

Remark 2.4. 1) If E is a locally convex space with a saturated family of seminorms
{pα}α∈I , then the associated family of pseudometrics {ρα}α∈I defined by ρα(x, y) =
pα(x− y) for every x, y ∈ E and α ∈ I. The uniform topology, which is generated
by this family of pseudometrics, coincides with the original topology of the space
E. Therefore, as a corollary of our results, we obtain the fixed point theorems in
the locally convex spaces.

2) Let us point out that here the mapping j arises in a natural way. It is generated
by the deviating arguments. This allows us to obtain an application in solving
nonlinear integral equations with unbounded deviations. We note that if j(α) = α
for every α ∈ I then some fixed point theorems in uniform spaces easily follow from
the fixed point theorems in metric spaces with variably contractive conditions (see
[10]).

3. Coupled fixed point theorems in uniform spaces

We begin this section at giving a new coupled fixed point theorem in ordered
uniform spaces.

Theorem 3.1. Let (X,≤) be a partially ordered set and P = {dα(x, y) : α ∈ I} be a
family of pseudometrics on X such that (X,P) is a Hausdorff sequentially complete
uniform space. Let F : X × X → X be a mapping having the mixed monotone
property on X. Suppose that

1) For every α ∈ I there exists φα ∈ Φ such that

(3.1) dα
(
F (x, y), F (u, v)

)
≤ φα

(dj(α)(x, u) + dj(α)(y, v)

2

)
,

for all x ≤ u, y ≥ v;
2) For each α ∈ I, there exists φα ∈ Φ such that sup{φjn(α)(t) : n = 0, 1, . . .} ≤

φα(t) and
φα(t)

t
is non-decreasing;

3) There are x0, y0 ∈ X such that x0 ≤ F (x0, y0), y0 ≥ F (y0, x0) and

djn(α)
(
x0, F (x0, y0)

)
+ djn(α)

(
y0, F (y0, x0)

)
< 2p(α) < ∞,
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for every α ∈ I, n ∈ N.

Also, assume either a) F is continuous; or,

b) X has the following property
i) If a non-decreasing sequence {xn} in X converges to x then xn ≤ x for

all n ∈ N.
ii) If a non-increasing sequence {yn} in X converges to y then yn ≥ y for

all n ∈ N.
Then F has a coupled fixed point, that is, there exist x, y ∈ X such that
x = F (x, y), y = F (y, x).

Proof. Let x0, y0 ∈ X such that x0 ≤ F (x0, y0), y0 ≥ F (y0, x0). Put x1 = F (x0, y0)
and y1 = F (y0, x0). Then x0 ≤ x1 and y0 ≥ y1. Again, set x2 = F (x1, y1) and
y2 = F (y1, x1). Since F has the mixed monotone property, then we have x1 ≤ x2
and y1 ≥ y2. Continuing this way, we get two sequences {xn} and {yn} in X such
that xn+1 = F (xn, yn), yn+1 = F (yn, xn) and

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · , y0 ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ yn+1 ≥ · · ·

Now, for each n = 0, 1, 2, . . . and α ∈ I, we put

δαn = dα(xn, xn+1) + dα(yn, yn+1).

By the assumption 3), we have

(3.2) δ
jn(α)
0 = djn(α)

(
x0, F (x0, y0)

)
+ djn(α)

(
y0, F (y0, x0)

)
< 2p(α) < ∞.

Now we claim that δαn ≤ 2φα

(
δ
j(α)
n−1

2

)
for every α ∈ I, n ∈ N. Indeed, in view of the

condition 1) and since xn−1 ≤ xn and yn−1 ≥ yn, we obtain

dα(xn, xn+1) = dα
(
F (xn−1, yn−1), F (xn, yn)

)
≤ φα

(dj(α)(xn−1, xn) + dj(α)(yn−1, yn)

2

)
(3.3)

= φα

(δj(α)n−1

2

)
.

By the same argument, we have

(3.4) dα(yn, yn+1) ≤ φα

(δj(α)n−1

2

)
.

Combining (3.3) and (3.4), we deduce that

(3.5) δαn ≤ 2φα

(δj(α)n−1

2

)
for all n ∈ N, α ∈ I.
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Since φα is a monotone non-decreasing function, then by (3.5) and (3.2), we have

δαn
2

≤ φα

(δj(α)n−1

2

)
≤ φα

(
φj(α)

(δj2(α)n−2

2

))
≤ φα

(
φj(α)

(
. . . φjn−1(α)

(δjn(α)0

2

)
. . .

))
≤ φn

α

(δjn(α)0

2

)
≤ φn

α

(
p(α)

)
.

Put φn
α

(
p(α)

)
= bαn for each α ∈ I and n ∈ N. Then δαn ≤ 2bαn for every α ∈ I, n ∈ N.

Using the triangle inequality, we get

dα(xn, xn+p) + dα(yn, yn+p) ≤
p−1∑
i=0

[
dα(xn+i, xn+i+1) + dα(yn+i, yn+i+1)

]
=

p−1∑
i=0

δαn+i ≤ 2

p−1∑
i=0

bαn+i.

Since p(α) > 0 and φα(t) < t for every t > 0, we obtain

(3.6) φn
α

(
p(α)

)
= φα

(
φn−1
α (p(α))

)
< φn−1

α

(
p(α)

)
< · · · < φα

(
p(α)

)
< p(α).

Because φα(t)
t is a monotone non-decreasing function, then by (3.6), we have

(3.7)
bαn+1

bαn
=

φα

(
φn
α(p(α))

)
φn
α

(
p(α)

) ≤
φα

(
p(α)

)
p(α)

< 1.

This implies that the series
∑∞

m=0 b
α
m is convergent. Hence

∑p−1
i=0 bαn+i → 0 as

n → ∞ for all p. Thus it follows that dα(xn, xn+p) → 0 and dα(yn, yn+p) → 0 as
n → ∞ for all p, that is {xn}, {yn} are Cauchy sequences. Because X is sequentially
complete, there exist x, y ∈ X such that limn→∞ xn = x, limn→∞ yn = y.

Now, we consider the following cases
Case 1: Let F be continuous. Then we have x = limn→∞ xn+1 = limn→∞ F (xn, yn)

= F (x, y), y = limn→∞ yn+1 = limn→∞ F (yn, xn) = F (y, x). It follows that x, y is a
coupled fixed point of F .

Case 2: Let X have the property as in the assumption b), {xn} be a non-
decreasing sequence such that xn → x, and {yn} be a non-increasing sequence such
that yn → y. Then we have xn ≤ x and yn ≥ y for all n ∈ N. Using the triangle
inequality and the contractive condition, we get

dα
(
x, F (x, y)

)
≤ dα(x, xn+1) + dα

(
xn+1, F (x, y)

)
= dα(x, xn+1) + dα

(
F (xn, yn), F (x, y)

)
≤ dα(x, xn+1) + φα

(dj(α)(xn, x) + dj(α)(yn, y)

2

)
≤ dα(x, xn+1) +

dj(α)(xn, x) + dj(α)(yn, y)

2
.
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Letting n → ∞, we arrive at dα
(
x, F (x, y)

)
= 0 for all α ∈ I. This implies that

x = F (x, y). By the same way, we have y = F (y, x). The proof is completed. �

It is our interest to provide additional conditions to ensure that the coupled fixed
point in Theorem 3.1 is in fact unique. Therefore, we have to add the properties
for a partial order on X ×X and the mapping j : I → I.

Definition 3.2 ([1]). A uniform space (X,P) is said to be j-bounded if for every
α ∈ I and x, y ∈ X there exists q(x, y, α) such that

djn(α)(x, y) ≤ q(x, y, α) < ∞, for all n ∈ N.

Let (X,≤) be a partially ordered set. Then, we consider the partial order on
X ×X that defined by

for (x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇔ x ≤ u, y ≥ v.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 are fulfilled. If X is
j-bounded and for every (x, y), (z, t) ∈ X ×X there exists (u, v) ∈ X ×X which is
comparable to them, then F has a unique coupled fixed point.

Proof. By Theorem 3.1, we conclude that the set of coupled fixed points of F is
nonempty. Assume that (x, y), (z, t) are coupled fixed points of F , that is x =
F (x, y), y = F (y, x) and z = F (z, t), t = F (t, z). We shall prove that x = z and
y = t. By assumption, there exists (u, v) ∈ X × X which is comparable to (x, y)
and (z, t). Put u0 = u, v0 = v. By induction, we construct the sequences {un}, {vn}
defined by un+1 = F (un, vn), vn+1 = F (vn, un) for n = 0, 1, 2, . . . Suppose that
(x, y) ≤ (u, v) = (u0, v0). Since F has the mixed monotone property, we have
u1 = F (u0, v0) ≥ F (u, y) ≥ F (x, y) = x; v1 = F (v0, u0) ≤ F (y, x) = y. Hence
(u1, v1) ≥ (x, y). By the same argument, we infer that (un, vn) ≥ (x, y) for every
n = 0, 1, 2, . . .. Then

dα(x, un+1) = dα
(
F (x, y), F (un, vn)

)
≤ φα

(dj(α)(x, un) + dj(α)(y, vn)

2

)
,

and

dα(y, vn+1) = dα
(
F (y, x), F (vn, un)

)
= dα

(
F (vn, un), F (y, x)

)
≤ φα

(dj(α)(vn, y) + dj(α)(un, x)

2

)
.

It follows that

dα(x, un+1) + dα(y, vn+1)

2
≤ φα

(dj(α)(x, un) + dj(α)(y, vn)

2

)
,
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for every n = 0, 1, 2, . . .. Since X is j-bounded, we have

dα(x, un+1) + dα(y, vn+1)

2

≤ φα

(
φj(α)

(dj2(α)(x, un−1) + dj2(α)(y, vn−1)

2

))
≤ φα

(
φj(α)

(
. . . φjn−1(α)

(djn(α)(x, u1) + djn(α)(y, v1)

2

)
. . .

))
≤ φn

α

(djn(α)(x, u1) + djn(α)(y, v1)

2

)
≤ φn

α

(q(x, u1, α) + q(y, v1, α)

2

)
.

Put cαn = φn
α

(q(x, u1, α) + q(y, v1, α)

2

)
. By the same computation as in the proof

of Theorem 3.1, we can deduce that
∑∞

n=0 c
α
n is convergent. This yields cαn → 0 as

n → ∞. It follows that dα(x, un+1) + dα(y, vn+1) → 0 as n → ∞ for every α ∈ I.
Thus we have x = limn→∞ un, y = limn→∞ vn.

Similarly, we get z = limn→∞ un, t = limn→∞ vn. Hence x = z and y = t. �
Corollary 3.4. In addition to hypotheses of Theorem 3.3, if x0 and y0 are compara-
ble then F has a unique fixed point, that is, there exists x ∈ X such that F (x, x) = x.

Proof. Since x0, y0 are comparable, we have x0 ≥ y0 or x0 ≤ y0. Assume that
x0 ≥ y0. Then, by the mixed monotone property of F , we have

x1 = F (x0, y0) ≥ F (y0, y0) ≥ F (y0, x0) = y1,

and by induction we get the sequences {xn} and {yn} satisfying xn ≥ yn for all
n ≥ 0. Now, since x = limn→∞ xn+1, y = limn→∞ yn+1, by the continuity of dα, we
have

(3.8) dα(x, y) = lim
n→∞

dα(xn+1, yn+1).

On the other hand

(3.9)

dα(xn+1, yn+1) = dα
(
F (xn, yn), F (yn, xn)

)
≤ φα

(dj(α)(xn, yn) + dj(α)(yn, xn)

2

)
= φα

(
dj(α)(xn, yn)

)
≤ φα

(
φj(α)(dj2(α)(xn−1, yn−1))

)
≤ φα

(
φj(α)

(
. . . φjn−1(α)

(
djn(α)(x1, y1)

)
. . .

))
≤ φn

α

(
djn(α)(x1, y1)

)
≤ φn

α

(
q(x1, y1, α)

)
.

By the same argument as in the proof of Theorem 3.3, we infer that the series∑∞
n=0 φ

n
α

(
q(x1, y1, α)

)
is convergent. Thus

(3.10) lim
n→∞

φn
α

(
q(x1, y1, α)

)
= 0.

From (3.8), (3.9) and (3.10), we have dα(x, y) = limn→∞ dα(xn+1, yn+1) ≤
limn→∞ φn

α

(
q(x1, y1, α)

)
= 0. Hence, dα(x, y) = 0 for all α ∈ I. This implies that

x = y or F (x, x) = x.
In the case x0 ≤ y0, the proof is similar. �
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The following examples illustrate for our theorems.

Example 3.5. Let X = R∞ =
{
x = {xn} : xn ∈ R, n = 1, 2, . . .

}
and Pn : X → R

be a mapping defined by Pn(x) = Pn

(
{xn}

)
= xn for each n = 1, 2, . . .. Let I =

N∗×R+ be the index set. For every (n, r) ∈ I consider the map d(n,r) : X×X → R
defined by

d(n,r)(x, y) = r
∣∣Pn(x)− Pn(y)

∣∣, for every x, y ∈ X.

Then {d(n,r) : (n, r) ∈ I} is a family of pseudometrics on X generating the uniform
structure on X.

Consider the partially ordered relation “ ≤ ” on X which defined by x ≤ y ⇔
xn ≤ yn for every n = 1, 2, . . .

Let F : X ×X → X be a map defined by

(3.11) F (x, y) =
{
1, 1 +

(
1− 1

2

)
(x2 − y2), 1 +

(
1− 1

3

)
(x3 − y3), . . .

}
for every x = {xn}, y = {yn} ∈ X.

We now claim that F satisfies all conditions of Theorem 3.1. Indeed, for every
(n, r) ∈ I we consider the map φ(n,r) : [0,+∞) → [0,+∞) defined by φ(n,r)(t) =
2(n−1)
2n−1 t for every t ≥ 0, and denote by j : I → I the map defined by j(n, r) =(
n, 2r(1− 1

2n)
)
for every (n, r) ∈ I. It is easy to see that

φjk(n,r)(t) =
2(n− 1)

2n− 1
t = φ(n,r)(t) for every k = 0, 1, 2, . . .

Denote

φ(n,r)(t) =
2(n− 1)

2n− 1
t, for every t ≥ 0 and (n, r) ∈ I.

Then we have

sup{φjk(n,r)(t) : k = 0, 1, 2, . . .} ≤ φ(n,r)(t), for every t ≥ 0,

and
φ(n,r)(t)

t = 2(n−1)
2n−1 is monotone non-decreasing.

Next, we show that F has the mixed monotone property. Indeed, if x1, x2, y ∈ X
and x1 ≤ x2 then x1n ≤ x2n for every n = 1, 2, . . . It follows that x1n − yn ≤ x2n − yn,
for every n = 1, 2, . . .. This implies that(

1− 1

n

)
(x1n − yn) ≤

(
1− 1

n

)
(x2n − yn), n = 1, 2, . . .

or

Pn

(
F (x1, y)

)
≤ Pn

(
F (x2, y)

)
.

Thus F (x1, y) ≤ F (x2, y).
Now, if x, y1, y2 ∈ X and y1 ≤ y2 then y1n ≤ y2n for every n = 1, 2, . . . It follows

that xn − y1n ≥ xn − y2n. This implies that
(
1− 1

n

)
(xn − y1n) ≥

(
1− 1

n

)
(xn − y2n), for

every n = 1, 2, . . ., that is F (x, y1) ≥ F (x, y2). Hence F has the mixed monotone
property.
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Now, we show that F satisfies the contractive condition (3.1) with φα and j above
mentioned. Indeed, let x ≤ u, y ≥ v then for every (n, r) ∈ I we have

(3.12)

d(n,r)
(
F (x, y), F (u, v)

)
= r

∣∣Pn

(
F (x, y)

)
− Pn

(
F (u, v)

)∣∣
= r

∣∣∣(1− 1

n

)
(xn − yn)−

(
1− 1

n

)
(un − vn)

∣∣∣
= r

(
1− 1

n

)∣∣(xn − yn)− (un − vn)
∣∣

= r
(
1− 1

n

)
(un − xn + yn − vn),

and

dj(n,r)(x, u) = d(
n,2r(1− 1

2n
)
)(x, u)

= 2r
(
1− 1

2n

)
|xn − un|

= 2r
(
1− 1

2n

)
(un − xn),

and
dj(n,r)(y, v) = d(

n,2r(1− 1
2n

)
)(y, v)

= 2r
(
1− 1

2n

)
|yn − vn|

= 2r
(
1− 1

2n

)
(yn − vn).

This implies that
(3.13)

φ(n,r)

(dj(n,r)(x, u) + dj(n,r)(y, v)

2

)
= φ(n,r)

(
r
(
1− 1

2n

)
(un − xn + yn − vn)

)
=

2(n− 1)

2n− 1
r
(
1− 1

2n

)
(un − xn + yn − vn)

=
n− 1

n
r(un − xn + yn − vn).

It follows from (3.12) and (3.13) that

d(n,r)
(
F (x, y), F (u, v)

)
≤ φ(n,r)

(dj(n,r)(x, u) + dj(n,r)(y, v)

2

)
.

Now, put x0 = y0 = (1, 1, . . .) then by a simple computation we have x0 = y0 =
F (x0, y0) = F (y0, x0) and djk(n,r)

(
x0, F (x0, y0)

)
+ djk(n,r)

(
y0, F (y0, x0)

)
= 0 < ∞.

Finally, it is easy to see from (3.11) that F is continuous. Hence, the conditions
of Theorem 3.1 are fulfilled for F and F has at least of a coupled fixed point.

Example 3.6. Let X = R∞ =
{
x = {xn} : xn ∈ R, n = 1, 2, . . .

}
and Pn : X → R

be a mapping defined by Pn(x) = Pn

(
{xn}

)
= xn for each n = 1, 2, . . .. Let I =

N∗×R+ be the index set. For every (n, r) ∈ I consider the map d(n,r) : X×X → R
defined by

d(n,r)(x, y) = r
∣∣Pn(x)− Pn(y)

∣∣, for every x, y ∈ X.
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Then {d(n,r) : (n, r) ∈ I} is a family of pseudometrics on X generating the uniform
structure on X.

Consider the partially ordered relation “ ≤ ” on X which defined by x ≤ y ⇔
xn ≤ yn for every n = 1, 2, . . .

Let F : X ×X → X be a map defined by

F (x, y) =
{
1, 1 +

(
1− 1

2

)
.
x2 − y2

2
, 1 +

(
1− 1

3

)
.
x3 − y3

2
, . . .

}
.

Denote φ(n,r)(t) =
2(n− 1)

2n− 1
t for every t ≥ 0 and define j : I → I by j(n, r) =(

n, r(1− 1
2n)

)
for every (n, r) ∈ I. By the same computation as in Example 3.5, we

can show that F satisfies the conditions of Theorem 3.1 with φ(n,r)(t) =
2(n− 1)

2n− 1
t.

Now, we check that X is j-bounded. Indeed, for each (x, y) ∈ X we have

djk(n,r)(x, y) = d(
n,r(1− 1

2n
)k
)(x, y)

= r
(
1− 1

2n

)k∣∣Pn(x)− Pn(y)
∣∣

≤ r
∣∣Pn(x)− Pn(y)

∣∣ = q
(
x, y, (n, r)

)
< ∞.

This proves that X is j-bounded. It is easy to see that if (x, y), (z, t) ∈ X × X
then there exists (u, v) ∈ X is comparable to them. Thus F satisfies Theorem 3.3.
Hence, F has a unique coupled fixed point, and it is x = y = {1, 1, . . .}.

Remark 3.7. Note that we cannot omit the j-bounded property of X in the The-
orem 3.3. This is illustrated by the following example.

Example 3.8. By using Example 3.5, it is not difficult to see that X is not j-
bounded. Indeed, for every (n, r) ∈ I we have j(n, r) =

(
n, 2r(1− 1

2n)
)
, j2(n, r) =

j
(
n, 2r(1− 1

2n)
)
=

(
n, 22r(1− 1

2n)
2
)
, and by induction we get

jk(n, r) =
(
n, 2kr

(
1− 1

2n

)k)
, for every k = 1, 2, . . .

Thus, for any x, y ∈ X, we have

djk(n,r)(x, y) = d(
n,2kr(1− 1

2n
)k
)(x, y)

= 2kr
(
1− 1

2n

)k∣∣Pn(x)− Pn(y)
∣∣

= r
(2n− 1

n

)k∣∣Pn(x)− Pn(y)
∣∣.

Since lim
k→∞

(2n−1
n )k = ∞ for each n > 1, we can conclude that there is no

q
(
x, y, (n, r)

)
< +∞ such that djk(n,r)(x, y) < q

(
x, y, (n, r)

)
for every k = 0, 1, 2, . . ..

This proves that X is not j-bounded.
In fact, F have more than one coupled fixed point. For example, we consider

x = {1, x2, 1, 1, . . .}, y = {1, y2, 1, 1, . . .},

with x2 + y2 = 2. It is easy to check that x, y are coupled fixed points of F .
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4. Application to nonlinear intergral equations

As an application of the coupled fixed point theorems proved in the previous
section, in this section we will investigate the existence of a unique solution to
nonlinear integral equations.

Let us consider the following integral equations

(4.1) x(t) = h(t) +

∫ ∆(t)

0

[
K1(t, s) +K2(t, s)

](
f(s, x(s)) + g(s, x(s))

)
ds,

where K1,K2 ∈ C
(
[0,+∞) × [0,+∞),R

)
, f, g ∈ C

(
[0,+∞) × R,R

)
, and an un-

known function x(t) ∈ C
(
[0,+∞),R). The deviation ∆ : [0,+∞) → [0,+∞)

is a continuous function, in general case, unbounded. Note that, since deviation
∆ : [0,+∞) → [0,+∞) is unbounded, we can not apply the known coupled fixed
point theorems in metric space (see [4], [5], [9]) for the above integral equations.

Adopting the assumptions in [3] and [9], we assume that the functionsK1,K2, f, g
fulfill the following conditions

Assumption 4.1. A) K1(t, s) ≥ 0 and K2(t, s) ≤ 0 for all t, s ≥ 0;
B) For each compact subset K ⊂ R, there exist the positive numbers λ, µ and

φK ∈ Φ such that for all x, y ∈ R, x ≥ y and for all t ∈ K,

0 ≤ f(t, x)− f(t, y) ≤ λφK

(x− y

2

)
and

−µφK

(x− y

2

)
≤ g(t, x)− g(t, y) ≤ 0

and

max(λ, µ) sup
t∈K

∫ ∆(t)

0

(
K1(t, s)−K2(t, s)

)
ds ≤ 1

2
;

C) For each compact subset K ⊂ R, there exists a compact set K ⊂ R such that
for all n ∈ N,

∆n(K) ⊂ K;

D) For each compact subset K ⊂ R, there exists φK ∈ Φ such that
φK(t)

t
is

non-decreasing and

φ∆n(K)(t) ≤ φK(t)

for all n ∈ N and for all t ≥ 0.

Definition 4.2. An element (α, β) ∈ C
(
[0,+∞),R

)
× C

(
[0,+∞),R

)
is a coupled

lower and upper solution of the integral equation (4.1) if for any t ∈ [0,+∞) we
have α(t) ≤ β(t) and

α(t) ≤ h(t) +

∫ ∆(t)

0
K1(t, s)

(
f(s, α(s)) + g(s, β(s))

)
ds

+

∫ ∆(t)

0
K2(t, s)

(
f(s, β(s)) + g(s, α(s))

)
ds,
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and

β(t) ≥ h(t) +

∫ ∆(t)

0
K1(t, s)

(
f(s, β(s)) + g(s, α(s))

)
ds

+

∫ ∆(t)

0
K2(t, s)

(
f(s, α(s)) + g(s, β(s))

)
ds.

Theorem 4.3. Consider the integral equation (4.1) with K1,K2 ∈ C
(
[0,+∞) ×

[0,+∞),R
)
and f, g ∈ C

(
[0,+∞)×R,R

)
and h ∈ C

(
[0,+∞),R

)
and suppose that

Assumption 4.1 is fulfilled. Then the existence of a coupled lower and upper solution
for (4.1) provides the existence of a unique solution of (4.1) in C

(
[0,+∞),R

)
.

Proof. Denote R+ = [0,+∞). Let X = C(R+,R). Then X is a partially ordered
set with the partially ordered relation on X defined

for x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t), for all t ∈ R+.

For each compact subset K ⊂ R, we define

pK(f) = sup{|f(t)| : t ∈ K}, for every f ∈ C(R+,R).

It is known that the family of seminorms {pK}, where K runs over all compact
subsets of R, defines a locally convex Hausdorff topology of the space. Hence, X is
a Hausdorff sequentially uniform space whose uniformity is generated by the family
of pseudometrics {dK} (K runs over all compact subsets of R) defined by

dK(f, g) = pK(f − g) = sup{|f(t)− g(t)| : t ∈ K}.
Let us next define the map j : I → I, where the index set I consists of all compact

subsets of R+, by the following way: For an arbitrary compact set K ⊂ R+ we put
j(K) := [0,maxt∈K ∆(t)], and jn(K) = j

(
jn−1(K)

)
, for every n ∈ N. Then, since

∆ : [0,+∞) → [0,+∞) is a continuous function the sets j(K), j2(K), j3(K), . . . are
also compact.

Suppose {un} is a monotone non-decreasing sequence in X that converges to
u ∈ X. Then for every t ∈ R+, we have u1(t) ≤ u2(t) ≤ · · · ≤ un(t) ≤ . . . , and
un(t) → u(t) as n → ∞. This implies that un(t) ≤ u(t) for every t ∈ R+, and
n ∈ N. Hence un ≤ u, for all n ∈ N.

Similarly, we can verify that if {vn} is a monotone non-increasing sequence in X
that converges to v ∈ X, then v ≤ vn for all n. Hence, the condition (b) in Theorem
3.1 holds.

Now we define on X × X the following partially ordered relation: for every
(x, y), (u, v) ∈ X ×X

(x, y) ≤ (u, v) ⇔ x(t) ≤ u(t) and y(t) ≥ v(t), for every t ∈ R+.

Observe that for every x, y ∈ X, by the uniform topology ofX, we easily see that the
functions max{x(t), y(t)}, min{x(t), y(t)} for each t ∈ R+ are the upper and lower
bounds of x, y, respectively in X. This follows that for every (x, y), (u, v) ∈ X ×X,
there exists

(
max{x, u},min{y, v}

)
∈ X × X which is comparable to (x, y) and

(u, v).
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Define F : X ×X → X by

F (x, y)(t) =

∫ ∆(t)

0
K1(t, s)

(
f(s, x(s)) + g(s, y(s))

)
ds

+

∫ ∆(t)

0
K2(t, s)

(
f(s, y(s)) + g(s, x(s))

)
ds+ h(t)

for all t ∈ R+.
Next, we show that F has the mixed monotone property. Indeed, for x1, x2 ∈

C(R+,R) and x1 ≤ x2, that is x1(t) ≤ x2(t) for every t ∈ R+, by Assumption 4.1
we have

F (x1, y)(t)− F (x2, y)(t) =

∫ ∆(t)

0
K1(t, s)

[
f(s, x1(s)) + g(s, y(s))

]
ds

+

∫ ∆(t)

0
K2(t, s)

[
f(s, y(s)) + g(s, x1(s))

]
ds+ h(t)

−
∫ ∆(t)

0
K1(t, s)

[
f(s, x2(s)) + g(s, y(s))

]
ds

−
∫ ∆(t)

0
K2(t, s)

[
f(s, y(s)) + g(s, x2(s))

]
ds− h(t)

=

∫ ∆(t)

0
K1(t, s)

[
f(s, x1(s))− f(s, x2(s))

]
ds

−
∫ ∆(t)

0
K2(t, s)

[
g(s, x2(s))− g(s, x1(s))

]
ds ≤ 0,

for every t ∈ R+. This yields F (x1, y)(t) ≤ F (x2, y)(t) for every t ∈ R+, that is
F (x1, y) ≤ F (x2, y).

By the same computation, we arrive at F (x, y1) ≤ F (x, y2) if y1, y2 ∈ C(R+,R)
and y1 ≥ y2. Hence, F has the mixed monotone property.

Now, for each compact subset K of R and for x ≥ u and y ≤ v, that is x(t) ≥ u(t)
and y(t) ≤ v(t) for every t ∈ R+, we have

dK
(
F (x, y), F (u, v)

)
= sup

t∈K

∣∣F (x, y)(t)− F (u, v)(t)
∣∣

= sup
t∈K

∣∣∣ ∫ ∆(t)

0
K1(t, s)

(
f(s, x(s)) + g(s, y(s))

)
ds

+

∫ ∆(t)

0
K2(t, s)

(
f(s, y(s)) + g(s, x(s))

)
ds+ h(t)

−
∫ ∆(t)

0
K1(t, s)

(
f(s, u(s)) + g(s, v(s))

)
ds

−
∫ ∆(t)

0
K2(t, s)

(
f(s, v(s)) + g(s, u(s))

)
ds− h(t)

∣∣∣
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= sup
t∈K

∣∣∣ ∫ ∆(t)

0
K1(t, s)

[(
f(s, x(s))− f(s, u(s))

)
+

(
g(s, y(s))− g(s, v(s))

)]
ds

+

∫ ∆(t)

0
K2(t, s)

[(
f(s, y(s))− f(s, v(s))

)
+

(
g(s, x(s))− g(s, u(s))

)]
ds
∣∣∣

= sup
t∈K

∣∣∣ ∫ ∆(t)

0
K1(t, s)

[(
f(s, x(s))− f(s, u(s))

)
−

(
g(s, v(s))− g(s, y(s))

)]
ds

−
∫ ∆(t)

0
K2(t, s)

[(
f(s, v(s))− f(s, y(s))

)
−

(
g(s, x(s))− g(s, u(s))

)]
ds
∣∣∣

≤ sup
t∈K

∣∣∣ ∫ ∆(t)

0
K1(t, s)

[
λφK

(x(s)− u(s)

2

)
+ µφK

(v(s)− y(s)

2

)]
ds

−
∫ ∆(t)

0
K2(t, s)

[
λφK

(v(s)− y(s)

2

)
+ µφK

(x(s)− u(s)

2

)]
ds
∣∣∣

≤ max{λ, µ} sup
t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s)

][
φK

(x(s)− u(s)

2

)
+ φK

(v(s)− y(s)

2

)]
ds

≤ max{λ, µ} sup
t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s)

]
ds
[
φK

(
sup

s∈[0,maxt∈K ∆(t)]

|x(s)− u(s)|
2

)
+ φK

(
sup

s∈[0,maxt∈K ∆(t)]

|v(s)− y(s)|
2

)]
= max{λ, µ} sup

t∈K

∫ ∆(t)

0

[
K1(t, s)−K2(t, s)

]
ds
[
φK

(
sup

s∈j(K)

|x(s)− u(s)|
2

)
+ φK

(
sup

s∈j(K)

|v(s)− y(s)|
2

)]
≤ 1

2

[
φK

(dj(K)(x, u)

2

)
+ φK

(dj(K)(y, v)

2

)]
≤ 1

2

[
φK

(dj(K)(x, u) + dj(K)(y, v)

2

)
+ φK

(dj(K)(y, v) + dj(K)(x, u)

2

)]
= φK

(dj(K)(x, u) + dj(K)(y, v)

2

)
.

Now, let us (α, β) ∈ X ×X be a coupled lower and upper solution of the integral
equation of (4.1). Then, we have

α(t) ≤ F (α, β)(t) and β(t) ≥ F (β, α)(t) for all t ∈ R+,

that is α ≤ F (α, β) and β ≥ F (β, α). Moreover, for each compact subset K ⊂ R,
by the continuity and assumption, we have

djn(K)

(
α, F (α, β)

)
+ djn(K)

(
β, F (β, α)

)
≤ d[0,maxs∈K ∆(s)]

(
α, F (α, β)

)
+d[0,maxs∈K ∆(s)]

(
β, F (β, α)

)
< +∞.
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Using again assumption (C), we have

djn(K)(x, y) = sup
t∈jn(K)

∣∣x(t)− y(t)
∣∣ ≤ sup

t∈[0,maxs∈K ∆(s)]

∣∣x(t)− y(t)
∣∣

= d[0,maxs∈K ∆(s)](x, y) < +∞,

for all n ∈ N. Therefore X is j-bounded.
Finally, applying Theorem 3.3, we can conclude that F has a unique coupled

fixed point (x, y). Since α ≤ β and Corollary 3.4, we have x = y, that is x(t) = y(t)
for every t ∈ R+. Hence F (x, x) = x and x is the unique solution of the equation
(4.1). �
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