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EXISTENCE OF COUPLED FIXED POINTS VIA MEASURE OF
NONCOMPACTNESS AND APPLICATIONS

A. AGHAJANI* AND N. SABZALI

ABSTRACT. Using the technique of measures of noncompactness we present some
results on the existence of coupled fixed points for a class of operators. Also as an
application, we discuss the existence of solutions for a general system of nonlinear
functional integral equations. Furthermore, we present an example to show the
efficiency of our results.

1. INTRODUCTION AND PRELIMINARIES

Bhaskar and Lakshmikantham [13] introduced the concept of a coupled fixed
point and obtained some coupled fixed point theorems for a class of operators and
later, many authors generalized their results (see [1,16,19,20]). It is worth to men-
tion that existence theorems of coupled fixed point can be used to investigate the
existence of solutions for systems of functional integral equations and boundary
value problems (see [13, 14, 16, 18, 21]). In this paper, we prove some existence
theorems of coupled fixed point for some classes of operators using the concept of
measure of noncompactness, that was first introduced by Kuratowski in [17] and
has been successfully applied in the theories of differential and integral equations,
see for examples ([3, 4, 5, 10, 12, 17]). For this purpose, we reduce the problem of
existence of coupled fixed points to the problem of existence of fixed points, and
using Schauder’s fixed point theorem, Darbo’s fixed point theorem for condensing
operators and constructing some measures of noncompactness on product spaces,
we prove our main results.

Throughout this paper we assume that F is a Banach space. For a subset X of E,

the closure and closed convex hull of X in E are denoted by X and co(X), respec-

tively. Also let B, be the closed ball in E centered at zero and with radius r and
we write B(xg, ) to denote the closed ball centered at xy with radius r. Moreover,
we symbolize by Mg the family of nonempty bounded subsets of £/ and by 91 the
subfamily consisting of all relatively compact subsets of E.

The following definitions will be needed in the sequel.

Definition 1.1 ([8]). A mapping p : Mr — [0,00) is said to be a measure of
noncompactness in FE if it satisfies the following conditions;

(B1) The family Kerp = {X € Mg : u(X) = 0 is nonempty and Kerp C Ng.

(B2) X CY = p(X) < u(Y).

(Bs) pw(X) = u(X).
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(By) 4(CoX) = u(X).

(Bs) pAX + (1 =NY) <Ap(X)+ (1 =Np(Y) for A€ [0,1).

(Bg) If (X,,) is a sequence of closed sets from Mg such that X,y C X, (n > 1)
and if lim,_,oo u(X,) = 0, then the intersection set Xoo = (oo Xy is
nonempty.

The family Keru described in (Bj) said to be the kernel of the measure of non-
compactness p. Observe that the intersection set Xo, from (Bg) is a member of the
family Kerp. In fact, since p(Xoo) < p(Xy) for any n, we infer that u(Xs) = 0.
This yields that X, € Kerpu.

Definition 1.2 ([14]). An element (z,y) € X x X is called a coupled fixed point
of a mapping G: X x X — X if G(z,y) = z and G(y,x) = y.

The following theorems and examples are basic to all the results of this work.

Theorem 1.3 ([11]). Suppose i, s, ..., u, are measures of noncompactness in
Ey, Es, ..., E, respectively. Moreover assume that the function F : [0,00)"™ — [0, 00)
is convex and F(x1,x2,...,x,) =0 if and only if x; =0 fori=1,3,...,n. Then

w(X) = F(u1(X1), p2(X2), .-, n(X0))

defines a measure of noncompactness in By x Fs X --- X E, where X; denotes the
natural projection of X into E; fori=1,2,...,n.

Now, as results from Theorem 1.3, we present the following examples.

Example 1.4. Let p be a measure of noncompactness, considering F(x,y) =
max{z,y} for any (z,y) € [0,00)?, then all the conditions of Theorem 1.3 are
satisfied. Therefore, 1(X) = max{u(X1), u(X2)} is a measure of noncompactness
in the space E x E where X;, ¢ = 1,2 denote the natural projections of X.

Example 1.5. Let u be a measure of noncompactness. We define F(z,y) = x +y
for any (x,y) € [0,00)2. Then F has all the properties mentioned in Theorem 1.3.
Hence u(X) = pu(X1) + p(X2) is a measure of noncompactness in the space E x E
where X;, ¢ = 1,2 denote the natural projections of X.

Theorem 1.6 (Darbo [8]). Let Q be a nonempty, bounded, closed, and convex subset
of a Banach space E and let G : Q@ — Q be a continuous mapping. Assume that
there exists a constant k € [0,1) such that

(L.1) W(G(X)) < k()

for any nonempty set X C Q. Then G has a fixed point.

Theorem 1.7 (Schauder [2]). Let  be a closed, convex subset of a normed linear
space . Then every compact, continuous map G : 2 — € has at least one fized
point.

In addition, let BC'(R4) be the set of all real functions defined, bounded and
continuous on Ri. The norm in BC(R.) is defined as the standard supremom
norm, i.e,

(1.2) el = sup {le(®)] : ¢ > 0}.



COUPLED FIXED POINTS VIA MEASURE OF NONCOMPACTNESS 943

We will use a measure of noncompactness in the space BC'(R,) which is stated in
([9,11]). In order to define this measure let us fix a nonempty bounded subset of X
of BC(R,) and a positive number L > 0. For 2 € X and £ > 0 denote by w’(z,¢),
the modulus of continuity of x on the interval [0, L], i.e,
wL(x7E) = sup{]af(t) - QZ(S)‘ s lse [O7L] ) ‘t - 3‘ < 5}'
Moreover, let us put
wh(X,e) = sup {wL(:c,a) czeX},
wi(X) = limwh(X,e),

e—0

wo(X) = lim wf(X).

=0
If ¢ is a fixed number from R, let us denote
X(t)={z(t): z€ X}.
Finally, consider the function p defined on Mpc (g, ) by the formula
(1.3) w(X) = wo(X) + limsup diam X (t)
t—o0

where

diamX (t) = sup{|z(t) —y(t)| : =,y € X}.
It can be shown (]9, 11]) that the function u(X) defines a measure of noncompact-
ness in the sense of the above accepted definition. The kernel ker i of this measure
contains nonempty and bounded sets X such that functions belonging to X are
locally equicontinuous on R and the thickness of the bundle formed by functions
from X tends to zero at infinity.

2. MAIN RESULTS

Before starting the main results, we always suppose that ) is a nonempty,
bounded, closed, and convex subset of E, moreover

A= {5 :[0,00) = [0,00) : ¢ is increasing map and ILm d"(t) = 0 for each t > 0} .

Theorem 2.1. Let G : Q x Q — Q be a continuous function such that
(2.1) W(G(X1 % Xa) < kmax{p(X,), u(X2)}

for any X1, Xo C Q, where p is an arbitrary measure of noncompactness and k is a
constant with 0 < k < 1. Then G has at least a coupled fixed point.

Proof. First note that , example 1.4 implies that p(X) = max{u(X1), u(X2)} is
a measure of noncompactness in the space E' x E where X;, i = 1,2 denote the
natural projections of X. Also the map G : Q x Q@ — Q x Q where

G(z,y) = (G(x,y),G(y, x)).

is clearly continuous on 2 x by its definition. Now we claim that G satisfies all
the conditions of Theorem 1.6. To prove this, let X C  x €2 be a nonempty subset.
Then, by (B2) and (2.1) we earn

LG(X)) < HG(X; x X2),G(Xa x X1))
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max{pu(G(X1 x X2)), u(G(X2 x X7))}
< max{kmax{u(X1), u(X2)}, k max{u(Xs2), u(X1)}}
kmax{u(X1), n(X2)}.

Hence
A(G(X)) < K(X)
Thus, our conclusion follows from Theorem 1.6. Il
Corollary 2.2. Let G : Q) x Q — Q be a continuous function such that
1G (2, y) = G(u,v)|| < kmax{[lz —ull, [ly — v[|}
for any (z,y), (u,v) € Q@ xQ where, 0 < k <1 be a constant. Then G has a coupled
fixed point.

Proof. Tt is easy to see that the map p : Mg — [0, 00) defined by u(X) = diam(X)
is a measure of noncompactness. Therefore, it is sufficient to prove that the inequal-
ity (2.1) is satisfied. To do this, let X7, Xo C Q and (x,y), (u,v) € X1 X Xo. Then,
we get

1G(z,y) = G(u,0)[| < kmax{[lz —ul, [ly — v}
< kmax{diam(X1),diam(X2)}
Thus
diam(G(X1 x X3)) < kmax{diam(X1), diam(X2)}.
So, by Theorem 2.1 GG has a coupled fixed point. O

The following lemma is crucial to our next result.

Lemma 2.3. Let 6 € A and G : Q — Q be a continuous function satisfying
(22) 1(G(X)) < 6(u(X))

for each X C Q, where u is an arbitrary measure of noncompactness. Then G has
at least one fixed point.

Proof. Let Qy = Q, we construct a sequence (£2,,) such that Q, = Co(GQ, _,), for
n > 1. If there exists an integer N > 0 such that u(Cyx) = 0 then Cl is relatively
compact, therefore, Theorem 1.7 implies that G has a fixed point. Hence we shall
assume that p(€,) # 0 for all n > 0. It is easy to see that 6(t) < ¢ for all ¢ > 0. In
addition, by (2.2) we get

M(QnJrl) = K

VANVAN

(2.3) 6" (n(€2)).
Therefore, taking limit as n — oo in the inequality (2.3), we have p(€,) — 0, as
n — oo. And since Q,41 C Q, and G(Q,) C Q, for all n > 1, then by (Bs),

IN
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Qoo = Mn=7° Qy, is a nonempty convex closed set, invariant under G and relatively
compact. Then by Theorem 1.7, G has a fixed point. O

Theorem 2.4. Let p be an arbitrary measure of noncompactness and § € A. Sup-
pose that mapping G : 2 x Q — Q is a continuous function satisfying

(2.4) H(G(X x X)) < o(MEL 1))

for all X1,Xo C Q. Then G has at least a coupled fized point.

Proof. We define a mapping G:OxQ—0xQ by putting
G(x,y) = (G(x,y), Gy, x)).

It is obvious that G is continuous. On the other hand, from Example 1.5, we deduce
that the formula

(X) = p(X1) + pl(Xa)
defines a measure of noncompactness on F x F where X;, ¢ = 1,2 denote the natural
projections of X. Now let X C © x Q be any nonempty subset. Then by (Bz) and
(2.4) we obtain

H(G(X)) < H(G(X1x X3),G(Xy x X1))

= ,U(G(Xl X XQ)) + M(G(XQ X Xl)))
(u +M(X2)>+5(M)
0

IN
>

(M)
(*5 )

L@ < 5( ).

2
= 2

= 20

Hence

Taking u 2/% we get
7 (G(X)) < 8 (X)),

Since, ﬁ/ is also a measure of noncompactness, therefore, all the conditions of Lemma
2.3 are satisfied. Hence G has a coupled fixed point. Let, 0 < k < 1 be a constant
and §(t) = kt for each ¢ € [0,00). Then, Theorem 2.4 gives the following corollary.

O

Corollary 2.5. Assume that G :  x Q — € be a continuous function such that

(25) H(O(X X Xa)) < 5 (u(X0) + (X))

for each X1, Xs C Q where 0 < k < 1 is a constant. Then G has a coupled fized
point.

Corollary 2.6. Let G : QxQ — Q be a continuous function. In addition, suppose
that

Gla.y) — ) < o L= : Iy~ )i
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for any (x,y), (u,v) € Q x Q where 6 € A. Then G has a coupled fized point.

Proof. As it mentioned before, the function p : Mp — [0, 00) defined by u(X) =
diam(X) is a measure of noncompactness. Now, let X1, Xo C Q and (x,y), (u,v) €
X1 x Xo. Then

IN

5(”%‘ —uf J; ly — U)H)
6<dmm(X1) —;— dzam(X2)>‘

1G (2, y) = G(u,v)]|

This yields

diam(X1) + diam(X2)>
5 .
Now, Theorem 2.4 concludes the proof O

diam(G(X)) < 5(

Corollary 2.7. Let G : Q x Q — Q be a continuous function. Assume that, there
exists a k € [0,1) with

1G(z,y) = G(u,v)|| < (Hm—u||+||y—v)”)
for any (z,y), (u,v) € Q@ x Q. Then G has a coupled fized point.
Proof. Taking §(t) = % in Corollary2.6. O

3. EXISTENCE OF SOLUTIONS FOR A SYSTEM OF INTEGRAL EQUATIONS

In this section, as an application of our results we are going to study the existence
of solutions for the following system of integral equations

51) {x@=f@ﬂﬂ> +F“ £(1(s)), y(n(s)))ds,
(0) = F(1,5(E(0), 260 + 13 R, 5 (n(s)), ) s,

under the following general assumptions.

(7) f: Ry x R xR — R is continuous and the function ¢ — f(¢,0,0) is a member
of the space BC'(Ry);

(1) there exists k € [0, 1) such that

(32) ‘f(t,.%‘,y)—f(t u,v ’

for any t > 0 and for all x,y,u,v € R;
(7i7) the functions &, 7, ¢ : Ry — Ry are continuous and £(t) — oo as t — oo.
(iv) h: Ry xRy x Rx R — R is a continuous function and there exist xq,yo € R
and a positive constant d such that

(lz = ul + [y —]),

l\D\?v'

q(t)
(3.3) / Ih(t, 5, 20, 0)| ds < d
0

for all t € R;. In addiition,

q(t)
Blim [ |h(t,s,2(n(s)),y(0(s))) = h(t, s, u(n(s)), v(n(s))] ds =0,

t—o00 0
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q(t)
(3.5) /O h(t, s, x(n(s)),y(n(s))) — h(t, s,u(n(s)),v(n(s))|ds < oo

for any t € R4 and uniformly respect to x,y,u,v € BC(Ry).
Then we can formulate our assertion as follows.

Theorem 3.1. Let the conditions (i) — (iv) hold. Then the system of equations
(3.1) has at least one solution in the space BC(R4) x BC(R4).

Proof. Let us consider the map G : £ x F — E which is defined by the formula

q(t)
(36)  G(z,y)(t) —f(w(é(t),y(f(t))H/o h(t, s, z(n(s),y(n(s)))ds

where E = BC(Ry) and the norm ||.|| on E x E is defined by ||(z, y)| = [|z]| o+ ¥l
for any (z,y) € E x E. It is easy to see that G(z,y) is continuous on R, for all
(z,y) € E x E. Also, as a direct consequence of (3.2) and (3.6) we have

(G, y)O] < [f(x(E(),y(E()) — f(20,0)[ +[£(£,0,0)|

q(t)

+A (1t 5, 2(n(s)),y(n(s)))) — h(t. 5, 20, 30)| ds
q(t)

+A Ih(t, 5,20, 90)| ds

P e+ lule)) + do

where by (7), (3.3) and (3.5) we get

q(t)

dO ‘= sup |f(t7 07 0)| + Sup{ ‘h(t, 5>$(77(5))a y(n(s))) - h(tv 8717073/0)‘ ds + d.
teRL teR 4 0

(3.7) <

is finite. Hence, G maps E x E into E. Moreover, from the inequality (3.7) we get

k
(3.8) 1G(z, Y)lloo < 5 (lzlloe + 1Yllo) + do-

Thus, from the estimate (3.8) we see that G(Br x B,) C B, for r = 1d_—0k. Now we

show that the map G : B, x B, — B, is continuous. In fact for ¢ > 0, (u,v) € B, x B
and (z,y) € By, x B, with |[(z,y) — (u,v)]| < &, we have

k

(3.9)  [(G(z,y) () = (G(u,0))(B)] < 5 ([2(£(1)) — w(€®)] + [y(£(1)) — v(E())])

q(t)
+/0 h(t, s, 2(n(s)), y(n(s)) — h(t, s,u(n(s)), v(n(s))| ds.

On the other hand, using (3.4), there exists L > 0 such that

q(t)
B10) [T s 00).y(0(5) ~ hlt () () s < <
for any ¢t > L. Thus, from (3.9) and (3.10) we get

(3.11) (@m0 — (@)D < (5 +1)e
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for t > L. Now in case that t € [0, L], we have

(G2, 9)(t) = (G(u, ) (D)

k a(t)
< g€ +/ |h(t,s,2(n(s)),y(n(s)) — h(t, s, u(n(s)), v(n(s))| ds
0
< e+ /QL w(e)ds
0
(3.12) < e+ qrw(e),
where
qr, =sup{q(t) : t € [0, L]}

and

w(e) = sup{|h(t, s, 2(n(s)),y(n(s)) — h(t, s,u(n(s)), v(n(s))| :
s € [0, L], yu,ve (-], (@y) - (o) < e},
Therefore, from the uniform continuity of h on [0, L] x [0,qz] X [—r,7] X [=r, 7], we
obtain w(e) — 0, as ¢ — 0. Hence, the inequalities (3.11) and (3.12) prove that G is

continuous on B, x B. Now we claim that the map G satisfies the condition (2.5) of
Corollary 2.5. For proving this, fix L, ¢ € Ry and let us choose nonempty subsets

X1, X5 of B, and t, t' € [0, L], with ‘t — t,‘ < e. Also, without loss of generality we
can assume that ¢( t) < q(t'). Now let (z,%) € X1 x Xo. Then we get

Gla.y)(t) = Gla,y)(t)

< L (@HEwH(60) + @HyHE ) + ol ()
a(t) ,
[T e sz ),wa(9) = W .l wla(s))| ds

q(t')
4 / Ih(t, 5, 2(n(s)), y(n(s)))] ds
q(t)

(@ (w6 ) + (.M (E )

qar
(3.13) b(fe)+ [ Wt he)ds + ut (g, )HE,
0

IA

where
Wh(E,e) :sup{‘g(t)—g(t’)(: t,t eo,L], )t—t/‘ <e)
Wl (z, Wb (€, €)) zsup{‘a:(t) —a(t) ] 4t e0,L], t—t/’ < wh(e, o),

wt(f.0) =swp{|f(ta,y) = 1 2)| . 1 € [0.2],

t—1|<e lal+lyl<r},

wilt(h,e) = sup{‘h(t,s,:v,y) — h(t/, s,x,y)‘ : ot t e [0,L],

t—t]<e selal, fol+lyl <7}
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and
H} = sup{|h(t,s,z,y)| : t€[0,L],s €[0,qz] and |z|+ |y| <7}.
Since (z,y) was an arbitrary element of X; x Xs, the inequality (3.13) implies that

WH(G(X1 % Xa),e) < g(wL(XlawL(E,ﬁ))+wL(X27wL(£,€)))+Wf(f7€)

ar
(3.14) +/ Wit (h,e)ds + wE(q,e)HE.
0

On the other hand, since f and h are uniformly continuous on [0, L] x [0, L] x
[—r,r] and [0, L] x [0, qz] X [=r, 7] x [=7, 7], respectively, also because of the uniform
continuity of ¢ and ¢ on [0, L] we have w(f,e) — 0, wit(h,e) — 0, w(&,e) = 0
and wX(q,e) — 0 as ¢ — 0. Now, since H] is finite, (3.14) implies that

(3.15) WG % X)) < & (X) + o (30).
So, by taking L — oo from (3.15), we have
(316) wO(G(Xl X XQ)) < g(wo(Xl) —|—w0(X2)).
Moreover for (z,y), (u, v) € X7 x X3 and t € Ry we obtain
[(G(z,y)(t) — (G(u,v)) ()]
g(lﬂf(é(t)) —u(§()] + [y(&®)) —v(&®))])

q(t)
[T bt () u0(3)) = .5, (), o) s

IN

g(diale (&(t)) + diamX2(&(t)))

q(t)
+/0 h(t, s, x(n(s)),y(n(s))) — h(t, s,u(n(s)), v(n(s)))| ds.

IN

This yields

(3.17) diam(G(X1 x X2))(t) < =(diamX1(&(t)) + diamX2(£(t)))

o |

q(t)
+/0 |h(t, s, z(n(s)),y(n(s))) — h(t, s,u(n(s)), v(n(s)))| ds.

Letting t — oo in (3.17) and using (3.4) we get

(3.18)
hl;iilp diam(G(X1xX2)(t)) < ];(li?lsogp diam(Xl(g(t)))—Hiiriitolp diam(X2(£(t)))).

Adding (3.16) and (3.18) we obtain
wo(G(X1 x X9)) + limsup diam(G (X1 x X2)(t))
t—o0

IN

5 (0(X1) +0(X2))
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+ﬁ (lim sup diam(X1(£(t))) + lim sup diam(X2(£(t))))

2 t—o00 t—o00

— g(wo(Xl) + liltTi)Sllp diam(X1(&())

(3.19) +wo(X2) + limsup diam(X2(£(t))))-
t—o00
Therefore, since £(t) — oo as t — oo, from (1.3) and (3.19) we earn

k
#G(X1 x X2) < 5 (u(X1) + u(X2))-
Finally, applying Corollary 2.5, we obtain the desired result. U

Now we give an example to illustrate how the above theorem can be used in
practice.

Example 3.2. Consider the following system of integral equations

arctg(e(%))+sin((%)) | In(1+|y(5)])

z(t) = e 3 +

4m+tt on+i2
L[ I finGr (VD DV (VE) 2 (1 sinGa 2 (VA
(3.20) 0 (1+[sin(22(v5)) ) (1+£6) (1+y* (V/5) ’

arc EY)+sin(y(L In(14|z(
y(t) = e~ + tg(y(izz:; w(3)) (2:‘-%523)‘)
+ft2 ln(1+8|sin(y2(\/§)|)12(\/§)+52(1+\81n(y2(\/5))|)(1+$4(\/§)dS
0 (1+[sin(y?(v/#)) ) (14£6) (1+24 (V/5) ’
Comparing (3.20) with (3.1), we get
arctg(x) +sin(z)  In(1+ |y|)

fmy) = ey 4t + t4 * 2 + 2
h(t,s.a,y) = In(1 + s [sin(z?)])y* + s*(1 + [sin(2?)[)(1 + y*)
e T+ (@D O+ )
€0 = Lol = vaa =1

3
Now, we show that all the conditions of Theorem 3.1 are satisfied. It is obvious that
f(t,0,0) = e=3 satisfies the condition (7). On other hand, let (z,v), (u,v) € Rx R

with |v| > |y|, then we get
| (1+|y!> )
n
1+ ||

|f(t,x,y)—f(t,u,v)| S
1 1 lv| =y
< —(lz—ul+—1 (1 )
= 27?(‘x e A

1 (| H‘ 1
—( |z —u
s 21 + t2

< |z —u| + In(1 + |u—v]))

1
5
1
= 5-(e—yl+]u—v])
for all t > 0. Thus f satisfies condition (7i). Also it is clear that &, n, ¢ are continuous
and £(t) — oo as t — oo. In addition, g is continuous on Ry x Ry x R x R and
t2

lim |h(t,s,z,y)|ds

t—00 0
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#1n(1 + s |sin(2?)])y? + s2(1 + [sin(2?)]) (1 + y*)

= lim ds
t—oo Jy (1 + [sin(22)[)(1 +26)(1 + y*)
1
3
2 2 s
. _ < i P
A ) [h(t, s, 2,y) = h(t s,u,v)[ds < lim o e

= 0,

which imply that assumptions (iii), (iv) are satisfied. Therefore, as a result of
Theorem 3.1, the system of integral equations (28) has a solution.
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