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942 A. AGHAJANI AND N. SABZALI

(B4) µ(CoX) = µ(X).
(B5) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1).
(B6) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊆ Xn, (n ≥ 1)

and if limn→∞ µ(Xn) = 0, then the intersection set X∞ =
∩∞

n=1Xn is
nonempty.

The family Kerµ described in (B1) said to be the kernel of the measure of non-
compactness µ. Observe that the intersection set X∞ from (B6) is a member of the
family Kerµ. In fact, since µ(X∞) ≤ µ(Xn) for any n, we infer that µ(X∞) = 0.
This yields that X∞ ∈ Kerµ.

Definition 1.2 ([14]). An element (x, y) ∈ X ×X is called a coupled fixed point
of a mapping G : X ×X → X if G(x, y) = x and G(y, x) = y.

The following theorems and examples are basic to all the results of this work.

Theorem 1.3 ([11]). Suppose µ1, µ2, . . . , µn are measures of noncompactness in
E1, E2, . . . , En respectively. Moreover assume that the function F : [0,∞)n → [0,∞)
is convex and F (x1, x2, . . . , xn) = 0 if and only if xi = 0 for i = 1, 3, . . . , n. Then

µ(X) = F (µ1(X1), µ2(X2), . . . , µn(Xn))

defines a measure of noncompactness in E1 × E2 × · · · × En where Xi denotes the
natural projection of X into Ei for i = 1, 2, . . . , n.

Now, as results from Theorem 1.3, we present the following examples.

Example 1.4. Let µ be a measure of noncompactness, considering F (x, y) =
max{x, y} for any (x, y) ∈ [0,∞)2, then all the conditions of Theorem 1.3 are
satisfied. Therefore, µ̃(X) = max{µ(X1), µ(X2)} is a measure of noncompactness
in the space E ×E where Xi, i = 1, 2 denote the natural projections of X.

Example 1.5. Let µ be a measure of noncompactness. We define F (x, y) = x+ y
for any (x, y) ∈ [0,∞)2. Then F has all the properties mentioned in Theorem 1.3.
Hence µ̃(X) = µ(X1) + µ(X2) is a measure of noncompactness in the space E × E
where Xi, i = 1, 2 denote the natural projections of X.

Theorem 1.6 (Darbo [8]). Let Ω be a nonempty, bounded, closed, and convex subset
of a Banach space E and let G : Ω −→ Ω be a continuous mapping. Assume that
there exists a constant k ∈ [0, 1) such that

(1.1) µ(G(X)) ≤ kµ(X)

for any nonempty set X ⊂ Ω. Then G has a fixed point.

Theorem 1.7 (Schauder [2]). Let Ω be a closed, convex subset of a normed linear
space E. Then every compact, continuous map G : Ω → Ω has at least one fixed
point.

In addition, let BC(R+) be the set of all real functions defined, bounded and
continuous on R+. The norm in BC(R+) is defined as the standard supremom
norm, i.e,

(1.2) ∥x∥∞ = sup {|x(t)| : t ≥ 0} .
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We will use a measure of noncompactness in the space BC(R+) which is stated in
([9,11]). In order to define this measure let us fix a nonempty bounded subset of X
of BC(R+) and a positive number L > 0. For x ∈ X and ε ≥ 0 denote by ωL(x, ε),
the modulus of continuity of x on the interval [0, L], i.e,

ωL(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, L] , |t− s| ≤ ε}.
Moreover, let us put

ωL(X, ε) = sup
{
ωL(x, ε) : x ∈ X

}
,

ωL
0 (X) = lim

ε→0
ωL(X, ε),

ω0(X) = lim
l→∞

ωL
0 (X).

If t is a fixed number from R+, let us denote

X(t) = {x(t) : x ∈ X} .
Finally, consider the function µ defined on MBC(R+) by the formula

(1.3) µ(X) = ω0(X) + lim sup
t→∞

diamX(t)

where
diamX(t) = sup {|x(t)− y(t)| : x, y ∈ X} .

It can be shown ([9, 11]) that the function µ(X) defines a measure of noncompact-
ness in the sense of the above accepted definition. The kernel kerµ of this measure
contains nonempty and bounded sets X such that functions belonging to X are
locally equicontinuous on R+ and the thickness of the bundle formed by functions
from X tends to zero at infinity.

2. Main results

Before starting the main results, we always suppose that Ω is a nonempty,
bounded, closed, and convex subset of E, moreover

Λ =
{
δ : [0,∞) → [0,∞) : δ is increasing map and lim

n→∞
δn(t) = 0 for each t > 0

}
.

Theorem 2.1. Let G : Ω× Ω −→ Ω be a continuous function such that

(2.1) µ(G(X1 ×X2) ≤ kmax{µ(X1), µ(X2)}
for any X1, X2 ⊂ Ω, where µ is an arbitrary measure of noncompactness and k is a
constant with 0 ≤ k < 1. Then G has at least a coupled fixed point.

Proof. First note that , example 1.4 implies that µ̃(X) = max{µ(X1), µ(X2)} is
a measure of noncompactness in the space E × E where Xi, i = 1, 2 denote the

natural projections of X. Also the map G̃ : Ω× Ω −→ Ω× Ω where

G̃(x, y) = (G(x, y), G(y, x)).

is clearly continuous on Ω × Ω by its definition. Now we claim that G̃ satisfies all
the conditions of Theorem 1.6. To prove this, let X ⊂ Ω×Ω be a nonempty subset.
Then, by (B2) and (2.1) we earn

µ̃(G̃(X)) ≤ µ̃(G(X1 ×X2), G(X2 ×X1))
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= max{µ(G(X1 ×X2)), µ(G(X2 ×X1))}
≤ max{kmax{µ(X1), µ(X2)}, kmax{µ(X2), µ(X1)}}
= kmax{µ(X1), µ(X2)}.

Hence

µ̃(G(X)) ≤ kµ̃(X)

Thus, our conclusion follows from Theorem 1.6. �
Corollary 2.2. Let G : Ω× Ω −→ Ω be a continuous function such that

∥G(x, y)−G(u, v)∥ ≤ kmax{∥x− u∥ , ∥y − v∥}
for any (x, y), (u, v) ∈ Ω×Ω where, 0 ≤ k < 1 be a constant. Then G has a coupled
fixed point.

Proof. It is easy to see that the map µ : ME −→ [0,∞) defined by µ(X) = diam(X)
is a measure of noncompactness. Therefore, it is sufficient to prove that the inequal-
ity (2.1) is satisfied. To do this, let X1, X2 ⊂ Ω and (x, y), (u, v) ∈ X1 ×X2. Then,
we get

∥G(x, y)−G(u, v)∥ ≤ kmax{∥x− u∥ , ∥y − v∥}
≤ kmax{diam(X1), diam(X2)}

Thus

diam(G(X1 ×X2)) ≤ kmax{diam(X1), diam(X2)}.
So, by Theorem 2.1 G has a coupled fixed point. �

The following lemma is crucial to our next result.

Lemma 2.3. Let δ ∈ Λ and G : Ω −→ Ω be a continuous function satisfying

(2.2) µ(G(X)) ≤ δ(µ(X))

for each X ⊂ Ω, where µ is an arbitrary measure of noncompactness. Then G has
at least one fixed point.

Proof. Let Ω0 = Ω, we construct a sequence (Ωn) such that Ωn = Co(GΩn−1), for
n ≥ 1. If there exists an integer N ≥ 0 such that µ(CN ) = 0 then CN is relatively
compact, therefore, Theorem 1.7 implies that G has a fixed point. Hence we shall
assume that µ(Ωn) ̸= 0 for all n ≥ 0. It is easy to see that δ(t) < t for all t > 0. In
addition, by (2.2) we get

µ(Ωn+1) = µ(Co(G(Ωn)))

= µ(G(Ωn))

≤ δ(µ(Ωn))

≤ δ2(µ(Ωn−1))

...

≤ δn(µ(Ω)).(2.3)

Therefore, taking limit as n → ∞ in the inequality (2.3), we have µ(Ωn) → 0, as
n → ∞. And since Ωn+1 ⊆ Ωn and G(Ωn) ⊆ Ωn for all n ≥ 1, then by (B6),
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Ω∞ =
∩n=∞

n=1 Ωn is a nonempty convex closed set, invariant under G and relatively
compact. Then by Theorem 1.7, G has a fixed point. �
Theorem 2.4. Let µ be an arbitrary measure of noncompactness and δ ∈ Λ. Sup-
pose that mapping G : Ω× Ω −→ Ω is a continuous function satisfying

(2.4) µ(G(X1 ×X2)) ≤ δ
(µ(X1) + µ(X2)

2

)
for all X1, X2 ⊂ Ω. Then G has at least a coupled fixed point.

Proof. We define a mapping G̃ : Ω× Ω −→ Ω× Ω by putting

G̃(x, y) = (G(x, y), G(y, x)).

It is obvious that G̃ is continuous. On the other hand, from Example 1.5, we deduce
that the formula

µ̃(X) := µ(X1) + µ(X2)

defines a measure of noncompactness on E×E where Xi, i = 1, 2 denote the natural
projections of X. Now let X ⊂ Ω×Ω be any nonempty subset. Then by (B2) and
(2.4) we obtain

µ̃(G̃(X)) ≤ µ̃(G(X1 ×X2), G(X2 ×X1))

= µ(G(X1 ×X2)) + µ(G(X2 ×X1)))

≤ δ
(µ(X1) + µ(X2)

2

)
+ δ

(µ(X2) + µ(X1)

2

)
= 2δ

(µ(X1) + µ(X2)

2

)
= 2δ

( µ̃(X)

2

)
.

Hence
1

2
µ̃(G̃(X)) ≤ δ

(1
2
µ̃(X)

)
.

Taking µ̃
′
= 1

2 µ̃, we get

µ̃
′
(G̃(X)) ≤ δ(µ̃

′
(X)).

Since, µ̃
′
is also a measure of noncompactness, therefore, all the conditions of Lemma

2.3 are satisfied. Hence G has a coupled fixed point. Let, 0 ≤ k < 1 be a constant
and δ(t) = kt for each t ∈ [0,∞). Then, Theorem 2.4 gives the following corollary.

�
Corollary 2.5. Assume that G : Ω× Ω −→ Ω be a continuous function such that

(2.5) µ(G(X1 ×X2)) ≤
k

2
(µ(X1) + µ(X2))

for each X1, X2 ⊂ Ω where 0 ≤ k < 1 is a constant. Then G has a coupled fixed
point.

Corollary 2.6. Let G : Ω×Ω −→ Ω be a continuous function. In addition, suppose
that

∥G(x, y)−G(u, v)∥ ≤ δ
(∥x− u∥+ ∥y − v)∥

2

)
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for any (x, y), (u, v) ∈ Ω× Ω where δ ∈ Λ. Then G has a coupled fixed point.

Proof. As it mentioned before, the function µ : ME −→ [0,∞) defined by µ(X) =
diam(X) is a measure of noncompactness. Now, let X1, X2 ⊂ Ω and (x, y), (u, v) ∈
X1 ×X2. Then

∥G(x, y)−G(u, v)∥ ≤ δ
(∥x− u∥+ ∥y − v)∥

2

)
≤ δ

(diam(X1) + diam(X2)

2

)
.

This yields

diam(G(X)) ≤ δ
(diam(X1) + diam(X2)

2

)
.

Now, Theorem 2.4 concludes the proof �

Corollary 2.7. Let G : Ω×Ω −→ Ω be a continuous function. Assume that, there
exists a k ∈ [0, 1) with

∥G(x, y)−G(u, v)∥ ≤ k

2
(∥x− u∥+ ∥y − v)∥)

for any (x, y), (u, v) ∈ Ω× Ω. Then G has a coupled fixed point.

Proof. Taking δ(t) = k
2 in Corollary2.6. �

3. Existence of solutions for a system of integral equations

In this section, as an application of our results we are going to study the existence
of solutions for the following system of integral equations

(3.1)

{
x(t) = f(t, x(ξ(t)), y(ξ(t))) +

∫ q(t)
0 h(t, s, x(η(s)), y(η(s)))ds,

y(t) = f(t, y(ξ(t)), x(ξ(t))) +
∫ q(t)
0 h(t, s, y(η(s)), x(η(s)))ds,

under the following general assumptions.
(i) f : R+×R×R → R is continuous and the function t → f(t, 0, 0) is a member

of the space BC(R+);
(ii) there exists k ∈ [0, 1) such that

(3.2) |f(t, x, y)− f(t, u, v)| ≤ k

2
(|x− u|+ |y − v|),

for any t ≥ 0 and for all x, y, u, v ∈ R;
(iii) the functions ξ, η, q : R+ → R+ are continuous and ξ(t) → ∞ as t → ∞.
(iv) h : R+×R+×R×R → R is a continuous function and there exist x0, y0 ∈ R

and a positive constant d such that

(3.3)

∫ q(t)

0
|h(t, s, x0, y0)| ds ≤ d

for all t ∈ R+. In addiition,

lim
t→∞

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s))| ds = 0,(3.4)
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0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s))| ds ≤ ∞(3.5)

for any t ∈ R+ and uniformly respect to x, y, u, v ∈ BC(R+).
Then we can formulate our assertion as follows.

Theorem 3.1. Let the conditions (i) − (iv) hold. Then the system of equations
(3.1) has at least one solution in the space BC(R+)×BC(R+).

Proof. Let us consider the map G : E × E → E which is defined by the formula

(3.6) G(x, y)(t) = f(t, x(ξ(t), y(ξ(t))) +

∫ q(t)

0
h(t, s, x(η(s), y(η(s)))ds

where E = BC(R+) and the norm ∥.∥ on E×E is defined by ∥(x, y)∥ = ∥x∥∞+∥y∥∞
for any (x, y) ∈ E × E. It is easy to see that G(x, y) is continuous on R+ for all
(x, y) ∈ E × E. Also, as a direct consequence of (3.2) and (3.6) we have

|(G(x, y)(t)| ≤ |f(t, x(ξ(t)), y(ξ(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|

+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s))))− h(t, s, x0, y0)| ds

+

∫ q(t)

0
|h(t, s, x0, y0)| ds

≤ k

2
(|x(ξ(t))|+ |y(ξ(t))|) + d0(3.7)

where by (i), (3.3) and (3.5) we get

d0 := sup
t∈R+

|f(t, 0, 0)|+ sup
t∈R+

{
∫ q(t)

0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, x0, y0)| ds+ d.

is finite. Hence, G maps E ×E into E. Moreover, from the inequality (3.7) we get

(3.8) ∥G(x, y)∥∞ ≤ k

2
(∥x∥∞ + ∥y∥∞) + d0.

Thus, from the estimate (3.8) we see that G(Br × Br) ⊂ Br for r = d0
1−k . Now we

show that the map G : Br×Br → Br is continuous. In fact for ε > 0, (u, v) ∈ Br×B

and (x, y) ∈ Br ×Br with ∥(x, y)− (u, v)∥ ≤ ε, we have

(3.9) |(G(x, y)(t)− (G(u, v))(t)| ≤ k

2
(|x(ξ(t))− u(ξ(t))|+ |y(ξ(t))− v(ξ(t))|)

+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s))− h(t, s, u(η(s)), v(η(s))| ds.

On the other hand, using (3.4), there exists L > 0 such that

(3.10)

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s))− h(t, s, u(η(s)), v(η(s))| ds ≤ ε

for any t > L. Thus, from (3.9) and (3.10) we get

(3.11) |(G(x, y)(t)− (G(u, v))(t)| ≤
(k
2
+ 1

)
ε
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for t > L. Now in case that t ∈ [0, L], we have

|(G(x, y)(t)− (G(u, v))(t)|

≤ k

2
ε+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s))− h(t, s, u(η(s)), v(η(s))| ds

< ε+

∫ qL

0
ω(ε)ds

< ε+ qLω(ε),(3.12)

where
qL = sup{q(t) : t ∈ [0, L]}

and

ω(ε) = sup{|h(t, s, x(η(s)), y(η(s))− h(t, s, u(η(s)), v(η(s))| :
t, s ∈ [0, L] , x,y,u, v ∈ [−r, r] , ∥(x, y)− (u, v)∥ ≤ ε}.

Therefore, from the uniform continuity of h on [0, L]× [0, qL]× [−r, r]× [−r, r], we
obtain ω(ε) → 0, as ε → 0. Hence, the inequalities (3.11) and (3.12) prove that G is

continuous on Br×B. Now we claim that the map G satisfies the condition (2.5) of
Corollary 2.5. For proving this, fix L, ε ∈ R+ and let us choose nonempty subsets

X1, X2 of Br and t, t
′ ∈ [0, L] , with

∣∣∣t− t
′
∣∣∣ < ε. Also, without loss of generality we

can assume that q( t) < q(t
′
). Now let (x, y) ∈ X1 ×X2. Then we get∣∣∣G(x, y)(t)−G(x, y)(t

′
)
∣∣∣

≤ k

2
((ωL(x, ωL(ξ, ε))) + (ωL(y, ωL(ξ, ε))) + ωL

r (f, ε)

+

∫ q(t
′
)

0

∣∣∣h(t, s, x(η(s)), y(η(s)))− h(t
′
, s, x(η(s)), y(η(s)))

∣∣∣ ds
+

∫ q(t
′
)

q(t)
|h(t, s, x(η(s)), y(η(s)))| ds

≤ k

2
((ωL(x, ωL(ξ, ε))) + (ωL(y, ωL(ξ, ε)))

+ωL
r (f, ε) +

∫ qL

0
ωqL
r (h, ε)ds+ ωqL

r (q, ε)HL
r ,(3.13)

where

ωL(ξ, ε) = sup{
∣∣∣ξ(t)− ξ(t

′
)
∣∣∣ : t, t

′ ∈ [0, L] ,
∣∣∣t− t

′
∣∣∣ ≤ ε}

ωL(x, ωL(ξ, ε)) = sup{
∣∣∣x(t)− x(t

′
)
∣∣∣ : t, t

′ ∈ [0, L] ,
∣∣∣t− t

′
∣∣∣ ≤ ωL(ξ, ε)},

ωL
r (f, ε) = sup

{∣∣∣f(t, x, y)− f(t
′
, x, y)

∣∣∣ : t, t
′ ∈ [0, L] ,

∣∣∣t− t
′
∣∣∣ ≤ ε, |x|+ |y| ≤ r

}
,

ωqL
r (h, ε) = sup

{∣∣∣h(t, s, x, y)− h(t
′
, s, x, y)

∣∣∣ : t, t
′ ∈ [0, L] ,∣∣∣t− t

′
∣∣∣ ≤ ε, s ∈ [0, qL] , |x|+ |y| ≤ r

}
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and

HL
r = sup{|h(t, s, x, y)| : t ∈ [0, L] , s ∈ [0, qL] and |x|+ |y| ≤ r}.

Since (x, y) was an arbitrary element of X1 ×X2, the inequality (3.13) implies that

ωL(G(X1 ×X2), ε) ≤ k

2
(ωL(X1, ω

L(ξ, ε)) + ωL(X2, ω
L(ξ, ε))) + ωL

r (f, ε)

+

∫ qL

0
ωqL
r (h, ε)ds+ ωL

r (q, ε)H
L
r .(3.14)

On the other hand, since f and h are uniformly continuous on [0, L] × [0, L] ×
[−r, r] and [0, L]× [0, qL]× [−r, r]× [−r, r], respectively, also because of the uniform
continuity of q and ξ on [0, L] we have ωL

r (f, ε) → 0, ωqL
r (h, ε) → 0, ωL(ξ, ε) → 0

and ωL
r (q, ε) → 0 as ε → 0. Now, since HL

r is finite, (3.14) implies that

(3.15) ωL
0 (G(X1 ×X2)) ≤

k

2
(ωL

0 (X1) + ωL
0 (X2)).

So, by taking L → ∞ from (3.15), we have

(3.16) ω0(G(X1 ×X2)) ≤
k

2
(ω0(X1) + ω0(X2)).

Moreover for (x, y), (u, v) ∈ X1 ×X2 and t ∈ R+ we obtain

|(G(x, y)(t)− (G(u, v))(t)|

≤ k

2
(|x(ξ(t))− u(ξ(t))|+ |y(ξ(t))− v(ξ(t))|)

+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s)))| ds

≤ k

2
(diamX1(ξ(t)) + diamX2(ξ(t)))

+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s)))| ds.

This yields

(3.17) diam(G(X1 ×X2))(t) ≤
k

2
(diamX1(ξ(t)) + diamX2(ξ(t)))

+

∫ q(t)

0
|h(t, s, x(η(s)), y(η(s)))− h(t, s, u(η(s)), v(η(s)))| ds.

Letting t → ∞ in (3.17) and using (3.4) we get
(3.18)

lim sup
t→∞

diam(G(X1×X2)(t)) ≤
k

2
(lim sup

t→∞
diam(X1(ξ(t)))+lim sup

t→∞
diam(X2(ξ(t)))).

Adding (3.16) and (3.18) we obtain

ω0(G(X1 ×X2)) + lim sup
t→∞

diam(G(X1 ×X2)(t))

≤ k

2
(ω0(X1) + ω0(X2))
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+
k

2
(lim sup

t→∞
diam(X1(ξ(t))) + lim sup

t→∞
diam(X2(ξ(t))))

=
k

2
(ω0(X1) + lim sup

t→∞
diam(X1(ξ(t))

+ω0(X2) + lim sup
t→∞

diam(X2(ξ(t)))).(3.19)

Therefore, since ξ(t) → ∞ as t → ∞, from (1.3) and (3.19) we earn

µ(G(X1 ×X2) ≤
k

2
(µ(X1) + µ(X2)).

Finally, applying Corollary 2.5, we obtain the desired result. �
Now we give an example to illustrate how the above theorem can be used in

practice.

Example 3.2. Consider the following system of integral equations

(3.20)



x(t) = e−3t +
arctg(x( t

3
))+sin(x( t

3
))

4π+t4
+

ln(1+|y( t
3
)|)

2π+t2

+
∫ t2

0

ln(1+s|sin(x2(
√
s))|)y2(√s)+s2(1+|sin(x2(

√
s))|)(1+y4(

√
s)

(1+|sin(x2(
√
s))|)(1+t6)(1+y4(

√
s)

ds,

y(t) = e−3t +
arctg(y( t

3
))+sin(y( t

3
))

4π+t4
+

ln(1+|x( t
3
)|)

2π+t2

+
∫ t2

0

ln(1+s|sin(y2(√s)|)x2(
√
s)+s2(1+|sin(y2(√s))|)(1+x4(

√
s)

(1+|sin(y2(√s))|)(1+t6)(1+x4(
√
s)

ds.

Comparing (3.20) with (3.1), we get

f(t, x, y) = e−3t +
arctg(x) + sin(x)

4π + t4
+

ln(1 + |y|)
2π + t2

,

h(t, s.x, y) =
ln(1 + s

∣∣sin(x2)∣∣)y2 + s2(1 +
∣∣sin(x2)∣∣)(1 + y4)

(1 + |sin(x2)|)(1 + t6)(1 + y4)

ξ(t) =
t

3
, η(s) =

√
s, q(t) = t2.

Now, we show that all the conditions of Theorem 3.1 are satisfied. It is obvious that
f(t, 0, 0) = e−3t satisfies the condition (i). On other hand, let (x, y), (u, v) ∈ R× R
with |v| ≥ |y| , then we get

|f(t, x, y)− f(t, u, v)| ≤ 1

2π

(
|x− u|+ 1

2π + t2

∣∣∣∣ln(1 + |y|
1 + |v|

)∣∣∣∣ )
≤ 1

2π

(
|x− u|+ 1

2π
ln

(
1 +

|v| − |y|
1 + |v|

)
≤ 1

2π
(|x− u|+ ln(1 + |u− v|))

=
1

2π
(|x− y|+ |u− v|))

for all t > 0. Thus f satisfies condition (ii). Also it is clear that ξ, η, q are continuous
and ξ(t) → ∞ as t → ∞. In addition, g is continuous on R+ × R+ × R× R and

lim
t→∞

∫ t2

0
|h(t, s, x, y)| ds
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= lim
t→∞

∫ t2

0

∣∣∣∣∣ ln(1 + s
∣∣sin(x2)∣∣)y2 + s2(1 +

∣∣sin(x2)∣∣)(1 + y4)

(1 + |sin(x2)|)(1 + t6)(1 + y4)

∣∣∣∣∣ds
=

1

3

and

lim
t→∞

∫ t2

0
|h(t, s, x, y)− h(t, s, u, v)| ds ≤ lim

t→∞

∫ t2

0
2

s

1 + t6
ds

= 0,

which imply that assumptions (iii), (iv) are satisfied. Therefore, as a result of
Theorem 3.1, the system of integral equations (28) has a solution.
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