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(∂x, ∂y, ∂z), ω = ∇ × u, and ∇ · u = 0. u can be represented by ω (for example,
through Biot-Savart law), and the following 2D quasi-geostrophic equation comes
from the transportation of the potential temperature θ by an incompressible flow
(cf., e.g., [3, 4, 8, 9])

Dθ

Dt
=
∂θ

∂t
+ u · ∇θ = 0

with initial condition θ|t=0 = θ0. The relation between the active scalar θ and the
velocity u is given by

u = ∇⊥ψ, θ = (−△)
1
2 (−ψ)

where

∇⊥ψ ≡
(
− ∂ψ

∂y
,
∂ψ

∂x

)
.

Define the bracket {,} as

{f, g} = fxgy − fygx.

Then, we have

(1.2) θt + {ψ, θ} = 0.

It is clear that if denoting

[u, ω] = (u · ∇)ω − (ω · ∇)u,

then (1.1) can be written as

(1.3) ωt + [u, ω] = 0.

As pointed out by Constantin, Majda and Tabak [2], the 2D quasi-geostrophic
equation has a striking mathematical and physical analogy to the 3D incompressible
Euler equation and they both exhibit similar geometric/analytic structure. For
example, there exists a correspondence between ∇⊥θ in the 2D quasi-geostrophic
equation and the vorticity ω for the 3D incompressible Euler equation.

Recently it has been realized that there exist Lax pair structures and Darboux
transformations for these two systems. In [5, 11], Friedlander and Vishik found a
Lax pair for the Euler equations written in the Lagrangian coordinates, while Li [8]
gave a Darboux transformation for 2D Euler equations and their Lax pair. In [3],
Deng presented a Lax pair for 2D quasi-geostrophic equations, which is similar to
that of 3D Euler equations.

In this paper, we will give new and general Darboux transformations for 2D quasi-
geostrophic equations as well as for 3D incompressible inviscid Euler equations. As
one can see from our results, there is actually a good similarity between the 3D
incompressible inviscid Euler equation and the 2D quasi-geostrophic equation at
Darboux transformation for them.
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2. Main results and proofs

First, we recall the definition of Lax pair and two basic interrelated lemmas. For
more related information, the reader is referred to the references [3–5,8].

Definition 2.1. Suppose that L(t), A(t) are two time dependent operators. If for
any function φ in the intersection of L(t) and A(t), we have

dL

dt
φ = (LA−AL)φ,

then we call L(t), A(t) a Lax pair.

Let

L(t)ξ(t) := λ(t) · ξ(t),
where λ(t) is the eigenvalue of L(t), and ξ(t) the eigenfunction with respect to λ(t).
Then λ(t) is independent of time; in other words,

dλ(t)

dt
= 0.

As for the evolution manner of ξ(t), we know that

dξ(t)

dt
= −A(t)ξ(t).

Note that (1.2) has exactly the same form as the equation governing the evolution
of vorticity in the 2D Euler equation. So, from the idea of the Euler equation, we
can get the Lax pairs of 2D quasi-geostrophic equations.

Lemma 2.2. The Lax pair of the 2D quasi-geostrophic equation (1.2) is given by

(2.1)

{
{θ, p} = λp,

pt + {ψ, p} = 0,

where λ is a complex constant, and p a complex-valued function.

The proof of the lemma is similar to that of [8, Theorem 1]. We omit it here.

From [8], we also know the following lemma holds.

Lemma 2.3. A Lax pair of the 3D Euler equation (1.3) is given by

(2.2) Lφ = λφ,

(2.3) φt +Aφ = 0.

Here Lφ = (ω · ∇)φ− (φ · ∇)ω = [ω, φ], Aφ = (u · ∇)φ− (φ · ∇)u = [u, φ],

λ is a complex constant, and φ = (φ(1), φ(2), φ(3)) is a complex 3-vector valued
function.
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Consider the Lax pair (2.1) at λ = 0, i.e.,

(2.4) {θ, p} = 0,

(2.5) pt + {ψ, p} = 0.

Clearly, p = θ is a solution to (2.4) and (2.5).

Theorem 2.4. Let f = f(t, x, y) be any solution to (2.4) and (2.5). Define

(2.6) p̃ = p
fx
θx

and

(2.7) ψ̃ = ψ + F, θ̃ = θ + (−∆)
1
2 (−F ),

for the potentials θ and ψ, where F is subject to the following constraints

(2.8) {θ, (−∆)
1
2 (−F )} = 0, {θ + (−∆)

1
2 (−F ), F} = 0.

Then

(i) p̃ solves the system (2.4) and (2.5) at (θ̃, ψ̃).
(ii) (2.6) and (2.7) form the Darboux transformation for the 2D quasi-geostrophic

equation (1.2) and its Lax pair (2.4) and (2.5).

Proof. By (2.4), (2.7) and (2.8) , we have

{θ, θ̃} = 0,

and

{θ̃, F} = 0.

Therefore, θ and θ̃ have the same level set, and θ̃ and F have the same level set.
So, θ and F have the same level set, that is,

{θ, F} = 0.

Similarly, we can see that p and F have the same level set, that is,

{p, F} = 0.

Clearly, to prove the theorem, we only need to prove that

(2.9) {θ̃, p̃} = 0,

and

(2.10) p̃t + {ψ̃, p̃} = 0.

We will prove (2.9) and (2.10) by two steps.
Step 1. First, we verify the following two identities

(2.11) {θ, p̃} = 0,

and

(2.12) p̃t + {ψ, p̃} = 0.



DARBOUX TRANSFORMATIONS FOR FLUID EQUATIONS 933

From

{θ, p} = 0, {θ, f} = 0,

it follows that

{θ, p̃} =
{
θ,
pfx
θx

}
= θx

((pyfx + pfxy)θx − pfxθxy
(θx)2

)
− θy

((pxfx + pfxx)θx − pfxθxx
(θx)2

)
=

1

(θx)2
[θx(pyfx + pfxy)θx − θxpfxθxy − θy(pxfx + pfxx)θx + θypfxθxx]

=
fx
θx

(θxpy − θypx) +
1

(θx)2
p(θxθxfxy − θxfxθxy − θxθyfxx + θyfxθxx)

=
fx
θx

{θ, p}+ p

θx
p(θxfy − θyfx)x

=
p

θx
{θ, f}x

= 0.

This means that (2.11) is true.
On the other hand, since

ft + {ψ, f} = 0;

pt + {ψ, p} = 0;

θt + {ψ, θ} = 0,

we obtain

p̃t + {ψ, p̃}
= p̃t + ψxp̃y − ψyp̃x

=
(pfx
θx

)
t
+ ψx

(pfx
θx

)
y
− ψy

(pfx
θx

)
x

=
fx
θx
pt +

fx
θx
ψxpy − ψy

fx
θx
px + p

(fx
θx

)
t
+ pψx

(fx
θx

)
y
− pψy

(fx
θx

)
x

=
fx
θx

(pt + {ψ, p}) + p
1

θx
((ft)x + ψxfxy − ψyfxx)

− pfx
(θx)2

((θt)x + ψxθxy − ψyθxx)

=
p

θx
((ft)x + ψxfxy − ψyfxx + ψxxfy − ψxyfx)−

p

θx
ψxxfy +

p

θx
ψxyfx

− pfx
(θx)2

((θt)x + ψxθxy − ψyθxx + ψxxθy − ψxyθx) +
pfx
(θx)2

φxxθy

− pfx
(θx)2

ψxyθx

=
p

θx
(ft + {ψ, f})x −

pfx
(θx)2

(θt + {ψ, θ})x −
p

θx
ψxxfy +

pfy
θxθy

ψxxθy
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= 0.

This means that (2.12) is true.
Step 2. We prove (2.9) and (2.10).

From (2.11), the hypothesis {θ, (−∆)
1
2 (−F )} = 0, and the argument as in the

beginning of the proof, it follows that

{(−∆)
1
2 (−F ), p̃} = 0.

This, together with (2.11), yields that

{θ + (−∆)
1
2 (−F ), p̃} = 0.

So we have (2.9).
Similarly, we know, by (2.7) and (2.12), that

{F, p̃} = 0.

This implies (2.10).
Thus, the proof of Theorem 2.4 is completed.

�

Remark 2.5. By the similar arguments as those in the proof above, we can prove
the same conclusion as in Theorem 2.4 for the following p̃

p̃ = p
fy
θy
.

Moreover, we have

Theorem 2.6. Let f = f(t, x, y) be any solution to (2.4) and (2.5), and let G(·, ·)
and H(·, ·) be continuously differentiable functions. Define

(2.13) p̃ =
1

θx
G(f, p)H(f, p)x

and

(2.14) ψ̃ = ψ + F, θ̃ = θ + (−∆)
1
2 (−F ),

for the potentials θ and ψ, where F is subject to the constraints

{θ, (−∆)
1
2 (−F )} = 0, {θ + (−∆)

1
2 (−F ), F} = 0.

Then

(i) p̃ solves the system (2.4) and (2.5) at (θ̃, ψ̃).
(ii) (2.13) and (2.14) form the Darboux transformation for the 2D quasi-geostrophic

equation (1.2) and its Lax pair (2.4) and (2.5).

Proof. By Theorem 2.4, we know that if f and p are solutions to the system (2.4)
and (2.5), then

(i) p̃ solves the system (2.4) and (2.5) at (θ̃, ψ̃).
(ii) (2.6) and (2.7) form the Darboux transformation for the 2D quasi-geostrophic

equation (1.2) and its Lax pair (2.4) and (2.5).
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Therefore, in order to prove Theorem 2.6, we only need to verify that G(f, p) and
H(f, p) satisfy (2.4) and (2.5).

It is not hard to see that

{θ,G(f, p)} = Gf{θ, f}+Gp{θ, p} = 0,

(G(f, p))t + {ψ,G(f, p)} = Gf (ft + {ψ + f}) +Gp(pt + {ψ, p}) = 0.

So G(f, p) satisfies (2.4) and (2.5). Likewise, we infer that H(f, p) satisfies (2.4)
and (2.5) too. Thus, the proof of Theorem 2.6 is complete.

�

Remark 2.7. By virtue of Theorem 2.6, we get the following Darboux transforma-
tion for the Euler equation given in [8],

p̃ =
1

Ωx
[px − (∂xlnf)p],

when taking G(f, p) and H(f, p) as two special functions.

Consider the Lax pair (2.2), (2.3) at λ = 0, i.e.,

(2.15) [ω, φ] = (ω · ∇)φ− (φ · ∇)ω = 0,

(2.16) φt + [u, φ] = (u · ∇)φ− (φ · ∇)u = 0.

Theorem 2.8. Let f = f(t, x, y, z) = (f (1), f (2), f (3)) = f (1)

ω(1)ω, and f (1) be any
solution to

(ω · ∇)f (1) − (f · ∇)ω(1) = 0,

and

f
(1)
t + (u · ∇)f (1) − (f · ∇)u(1) = 0.

Define

(2.17) φ̃ =
f (1)

ω(1)
φ,

and

(2.18) ũ = u+H, ω̃ = ω +∇×H,

for the potentials u and ω, where H is a vector valued function and subject to the
constraints

(2.19) [φ̃,∇×H] = 0, [φ̃,H] = 0.

Then

(i) φ̃ solves the system (2.15) and (2.16) at (ũ, ω̃).
(ii) (2.17) and (2.18) form the Darboux transformation for the 3D Euler equa-

tion (1.3) and its Lax pair (2.15) and (2.16).
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Proof. Clearly, to prove the theorem, we only need to prove the following two equa-
tions

[ω̃, φ̃] = 0,

and

(2.20) φ̃t + [ũ, φ̃] = 0.

(2.20) implies that it suffices to show that

(2.21) [ω, φ̃] = 0,

and

(2.22) φ̃t + [u, φ̃] = 0.

Now we begin to prove (2.21).
Write

M = ω · ∇, N = φ · ∇, Ñ = φ̃ · ∇.

Then,

M(Nϕ) = ((ω · ∇)φ) · (∇ϕ) + φ · (ω · ∇)(∇ϕ),
N(Mϕ) = ((φ · ∇)ω) · (∇ϕ) + ω · (φ · ∇)(∇ϕ).

Noting that

(ω · ∇)φ = (φ · ∇)ω,

we get

M(Nϕ) = N(Mϕ),

i.e., M is commutative with N . So

[ω, φ] = 0.

Therefore it suffices to prove

MÑ = ÑM,

M(Ñϕ) = ω · ∇
(f (1)
ω(1)

)
(Nϕ) +

f (1)

ω(1)
M(Nϕ),

Ñ(Mϕ) =
f (1)

ω(1)
N(Mϕ) =

f (1)

ω(1)
M(Nϕ),

i.e, we just need to show that

ω · ∇
(f (1)
ω(1)

)
= 0.(2.23)

Next we prove (2.23). Since,

ω · ∇f (1) = f · ∇ω(1),

f =
f (1)

ω(1)
ω,



DARBOUX TRANSFORMATIONS FOR FLUID EQUATIONS 937

we have

ω · ∇
(f (1)
ω(1)

)
=

1

ω(1)
ω · ∇f (1) − f (1)

(ω(1))2
ω · ∇ω(1)

=
1

ω(1)
f · ∇ω(1) − 1

ω(1)
f · ∇ω(1)

= 0,

that is, (2.23) holds. Thus we see that (2.21) holds.
Next we check (2.22). Since

φt + [u, φ] = 0,

w
(1)
t + u · ∇w(1) − ω · ∇u(1) = 0,

f
(1)
t + u · ∇f (1) − f · ∇u(1) = 0,

f =
f (1)

ω(1)
ω,

we obtain

φ̃t + [u, φ̃] =
(f (1)
ω(1)

)
t
φ+

f (1)

ω(1)
φt + (u · ∇)

(f (1)
ω(1)

φ
)
− f (1)

ω(1)
φ · u

=
f (1)

ω(1)
(φt + (u · ∇)φ− (φ · ∇)u) +

(f (1)
ω(1)

)tφ+ (u · ∇f (1)

ω(1)

)
φ

=
f (1)

ω(1)
(φt + [u, φ]) +

1

ω(1)
φ(f

(1)
t + u · ∇f (1))

− f (1)

(w(1))2
φ(w

(1)
t + u · ∇w(1))

=
1

ω(1)
φ(f

(1)
t + u · ∇f (1) − f · ∇u(1)) + 1

ω(1)
φf · ∇u(1)

− f (1)

(w(1))2
φ(w

(1)
t + u · ∇w(1) − ω · ∇u(1))− f (1)

(w(1))2
φ(ω · ∇u(1))

= 0.

Hence, (2.22) holds. By (2.21), (2.22) and the assumption, we get

[ω̃, φ̃] = 0,

and

φ̃t + [ũ, φ̃] = 0.

Thus the proof is complete.
�

Remark 2.9. From Theorem 2.4 and Theorem 2.8, we see that 3-D Euler equa-
tions and 2D quasi-geostrophic equations also have a good similarity at Darboux
transformations.
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Theorem 2.10. Let i = 1, 2, 3,

f =
f (i)

ω(i)
ω,

[ω, f ] = 0,

ft + [u, f ] = 0.

Define

(2.24) φ̃ =
f (i)

ω(i)
φ,

and

(2.25) ũ = u+H, ω̃ = ω +∇×H,

for the potentials u and ω, where H is a vector valued function and subject to the
constraints

[φ̃,∇×H] = 0, [φ̃,H] = 0.

Then

(i) φ̃ solves the system (2.15) and (2.16) at (ũ, ω̃).
(ii) (2.24) and (2.25) form the Darboux transformation for the 3D Euler equa-

tion (1.3) and its Lax pair (2.15) and (2.16).

Proof. Define

f̂ = fA, φ̂ = φA, ω̂ = ωA, û = uA,

where A = P1i is a elementary matrix, and it is get by exchanging the first row with

the i row of identity matrix. Then f̂ , φ̂, ω̂, û satisfy all conditions of Theorem 2.8,
as well as (2.15) and (2.16). Therefore, Theorem 2.10 is true in view of Theorem
2.8.

�
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