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920 TIM DALBY

of WORTH*, WORTH and the w-FPP. This pathway allows the incorporation of
the Banach-Mazur distance in the result.

2. Preliminaries

The most common way to prove that a Banach space has the w-FPP is to assume
the opposite is true and try for a contradiction. If the Banach space, X, does
not have the w-FPP then there is a nonempty weak compact convex set, C, and
a nonexpansive mapping T : C → C which is fixed point free. This means that
diam(C) > 0 and leads to the existence of a sequence (xn) in C where

lim
n

∥Txn − xn∥ = 0.

Such a sequence is called an approximate fixed point sequence.

The next step is to use weak compactness and Zorn’s lemma to show the existence
of minimal invariant subsets of C. If K is a minimal invariant subset of C for T
then K is nonempty weak compact convex and T (K) ⊆ K. K also has the property
that it has no nonempty weak compact convex proper subsets that are T -invariant.

The Goebel-Karlovitz Lemma states that if K is a minimal invariant subset and
(xn) is an approximate fixed point sequence in K then

lim
n

∥x− xn∥ = diam(K) for all x ∈ K.

More properties of (xn) can be developed using the fact that any subsequence of
an approximate fixed point sequence is another approximate fixed point sequence.
We may assume that (xn) is weak convergent and by a dilation and translation
we can further assume that xn ⇀ 0 and diam(K) = 1. This means that 0 ∈
K and limn ∥xn∥ = 1. By taking subsequences if necessary, we also assume that
limn ∥xn − xn+1∥ = 1.

Now consider X̃ := l∞(X)/c0(X). The elements of X̃ are x̃ := [xn] where [xn]
represents the equivalence class (xn) in l∞(X).

The mapping J : Z → X̃, J(x) = [xn] where xn = x for all n is the natural isometric

embedding of X into X̃.

Define C̃ in X̃ by
C̃ := {[xn] : xn ∈ C for all n}

then C̃ is a closed bounded subset with diam(C̃) = diam(C) and JC ⊂ C̃.

Define T̃ : C̃ → C̃ by
T̃ [xn] := [Txn]

then T̃ is a well defined nonexpansive mapping where T̃ (JC) ⊂ JC. The fact

that C̃ is closed bounded and convex means that there are approximate fixed point
sequences for T̃ in C̃.

If (xn) is an approximate fixed point sequence for T then [xn] is a fixed point of

T̃ . Conversely if [xn] is a fixed point for T̃ then (xn) is an approximate fixed point
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sequence for T . This leads to a result of Lin [18] where the Goebel-Karlovitz lemma

is translated into X̃. The results states:

If C is a weak compact minimal invariant set for T and (x̃n) is an approx-

imate fixed point sequence for T̃ in C̃ then

lim
n

∥x̃n − Jx∥ = diam(C) for all x ∈ C.

Combining this with diam(C) = 1 and 0 ∈ C we have limn ∥x̃n∥ = 1. Since such
an approximate fixed point sequence always exists we may conclude that sup{∥x̃∥ :

x̃ ∈ C̃} = 1.

This property is inherited by any T̃ -invariant, closed convex and nonempty subset,
W , of C̃. That is

sup{∥w̃∥ : w̃ ∈ W} = 1.

In the proof of the main result below, such a W will be constructed and used to
force a contradiction.

The w-FPP is separably determined so throughout this paper, X, will be assumed
to be a infinite dimensional separable real Banach space.

For more information on any of those above steps see Goebel and Kirk [12] or Kirk
and Sims [16].

3. Definitions and notation

A Banach space, X, has WORTH if for every weak null sequence (xn) and every
x ∈ X,

lim sup
n

∥xn − x∥ = lim sup
n

∥xn + x∥.

This concept was introduced independently by Rosenthal [21] and Sims [23]. For
separable Banach spaces this is the same as X being asymptotically unconditional
(au), a concept used in the Cowell and Kalton paper [3].

If X∗ has a similar property involving weak* null sequences then the property is
called WORTH*. More specifically, a Banach space, X∗, has WORTH* if for every
weak* null sequence (x∗n) and every x∗ ∈ X∗,

lim sup
n

∥x∗n − x∗∥ = lim sup
n

∥x∗n + x∗∥.

Cowell and Kalton [3] refer to this property as X has property(au* ) and Lima [17]
calls it property(wM* ). In that paper Lima showed that if X has property(wM* )
then X∗ has the RNP and so ℓ1 ̸↪→ X.

In [6] Dalby showed that ifX∗ hasWORTH* thenX hasWORTH. Clearly, WORTH
and WORTH* are equivalent if X is reflexive. Cowell and Kalton [3] conjecture
WORTH implies WORTH* if ℓ1 ̸↪→ X.
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The notion of WORTH has its origins in a Banach lattice property, weak orthogonal-
ity. In [2] Borwein and Sims said that a Banach lattice, X, was weakly orthogonal
if for every sequence (xn) weakly convergent to x0,

lim inf
n

lim inf
m

∥ |xn − x0| ∧ |xm − x0| ∥ = 0.

Using this concept Borwein and Sims were able to generalise Maurey’s result that
c0 has the w-FPP [18]. They proved that if X is a weakly orthogonal Banach lattice
and its Riesz angle, α(X), is less than 2 then X has the w-FPP [2]. Sims, in [23],
was able to drop the Riesz angle condition by slightly strengthening the definition of
weak orthogonality. The new definition is, X is a weakly orthogonal Banach lattice
if for every weak null sequence, (xn), in X and every x ∈ X,

lim
n

∥ |xn| ∧ |x| ∥ = 0.

It has become the practice to use the stronger definition when referring to weak
orthogonality, see for example Sims [23] and Garćıa-Falset [9]. Clearly, a weakly
orthogonal Banach lattice has WORTH. Crucially, for this paper, any Banach space
with 1-unconditional basis is a weakly orthogonal Banach lattice with the natural
ordering and original norm. In addition, the norm is order continuous and the
lattice is order complete.

Stability results for weakly orthogonal Banach lattices were established by Sims
[22], Khamsi and Turpin [15], and Dalby [4].The Banach-Mazur distance that Sims

achieved was
√
5−1, Khamsi and Turpin achieved 4

3 and Dalby reached
√
33−3
2 . The

proof used in the latter result will be adapted and used in the next section. That
proof, in turn, was based on the ideas of Baillon that were reported in Aksoy and
Khamsi [1].

The crucial result needed is theorem 4.2 of Cowell and Kalton [3] which states
Let X be a separable Banach space. Then the following conditions are
equivalent:

(i) X has (au*).
(ii) For any δ > 0 there is a Banach space Y with a shrinking 1-unconditional

basis and a subspace Xδ of Y such that d(X,Xδ) < 1 + δ.

4. Main result

Theorem 4.1. A Banach space X has the w-FPP if there exists a Banach space,

Y , where Y ∗ has WORTH* and the Banach-Mazur distance d(X,Y ) <
√
33−3
2 .

Proof. Assume that X does not satisfy the w-FPP. Then there exists a nonempty
weak compact, convex set C ⊂ X, minimal for nonexpansive T : C → C with
diam(C) = 1. Further, let (xn) be an approximate fixed point sequence in C where
xn ⇀ 0, limn ∥xn∥ = 1 and limn ∥xn+1 − xn∥ = 1.

Let Y be a Banach space with Y ∗ having WORTH* where U : X → Y is a linear

isomorphism with ∥U∥∥U−1∥ = m where m <
√
33−3
2 .
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Using theorem 4.2 of [3], for any δ > 0 there is a Banach space Z with shrinking 1-
conditional basis and a subspace Yδ of Z such that d(Y, Yδ) < 1+ δ. Let A : Y → Yδ
be a linear isomorphism with ∥A∥∥A−1∥ = p where p < 1 + δ. Note that Z is a
weakly orthogonal Banach lattice with order continuous norm.

Then B := AU : X → Yδ is a linear isomorphism with

∥B∥∥B−1∥ ≤ mp <
(√33− 3

2

)
(1 + δ).

So Bxn ⇀ 0 in Yδ and Z. By taking subsequences if necessary, we may assume,
using weak orthogonality, that limn ∥ |Bxn| ∧ |Bxn+1| ∥ = 0. For more details see
[22] or [23].

Along with X̃ := l∞(X)/c0(X), let Ỹδ := l∞(Yδ)/c0(Yδ) and Z̃ := l∞(Z)/c0(Z).

Note that Z̃ is a Banach lattice with order continuous norm. Then B leads to a
linear isomorphism B̃ : X̃ → Ỹδ where ∥B∥ = ∥B̃∥.

Let ã := [xn], b̃ := [xn+1] then let ũ = B̃ã and ṽ = B̃b̃. This means that |ũ|∧|ṽ| = 0.

Since Z̃ is order complete we can use principal band projections Pũ, Pṽ where

Pũũ = ũ and Pṽṽ = ṽ,

∥Pũ∥ = ∥Pṽ∥ = ∥Ĩ − Pũ∥ = ∥Ĩ − Pṽ∥ = 1.

So
PũJZ = 0 = PṽJZ = PũPṽ.

In addition,
∥Ĩ − 2Pũ − 2Pṽ∥ and ∥Ĩ − 2Pũ∥ are ≤ 1.

Let Q := {x̃ ∈ C̃ : ∥x̃− ã∥ = ∥x̃− b̃∥ = 1
2}.

Then Q is a closed convex T̃ invariant set with ã+b̃
2 ∈ Q.

Let
V :=

{
x̃ ∈ C̃ : ∃ x0 ∈ C such that ∥x̃− JXx0∥ ≤ m

2

}
.

Then V is a closed convex T̃ invariant set with ã+b̃
2 ∈ V .

Therefore W := Q ∩ V is a nonempty closed convex subset of C̃ which is invariant
under T̃ . So sup{∥w̃∥ : w̃ ∈ W} = 1.

For any w̃ ∈ W

2B̃−1(Pũ + Pṽ)B̃w̃ =
[
B̃−1(Pũ + Pṽ)B̃w̃ + w̃ − B̃−1(Pũ + Pṽ)B̃w̃ − JXx

]
+

[
B̃−1(Pũ + Pṽ)B̃w̃ − w̃ + B̃−1(Pũ + Pṽ)B̃w̃ + JXx

]
for all x ∈ C.

But
B̃−1(Pũ + Pṽ)B̃w̃ + w̃ − B̃−1(Pũ + Pṽ)B̃w̃ − JXx = w̃ − JXx
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and

∥B̃−1(Pũ + Pṽ)B̃w̃ − w̃ + B̃−1(Pũ + Pṽ)B̃w̃ + JXx∥

= ∥B̃−1(2Pũ + 2Pṽ − Ĩ)B̃w̃ + JXx∥

= ∥B̃−1(2Pũ + 2Pṽ − Ĩ)B̃w̃ − B̃−1(2Pũ + 2Pṽ − Ĩ)B̃JXx∥

= ∥B̃−1(2Pũ + 2Pṽ − Ĩ)B̃(w̃ − JXx)∥
≤ mp∥w̃ − JXx∥.

Therefore ∥B̃−1(Pũ + Pṽ)B̃w̃∥ ≤ (mp+1)m
4 .

Now

w̃ + ã− 2B̃−1PũB̃w̃ = w̃ − ã+ 2ã− 2B̃−1PũB̃w̃

= w̃ − ã+ 2B̃−1PũB̃(ã− w̃)

= B̃−1(Ĩ − 2Pũ)B̃(w̃ − ã).

Therefore ∥w̃ + ã− 2B̃−1PũB̃w̃∥ ≤ mp∥w̃ − ã∥ = mp
2 .

Similarly ∥w̃ + b̃− 2B̃−1PṽB̃w̃∥ ≤ mp
2 .

Therefore ∥∥∥w̃ +
ã+ b̃

2
− B̃−1PũB̃w̃ − B̃−1PṽB̃w̃

∥∥∥
≤ 1

2
∥w̃ + ã− 2B̃−1PũB̃w̃∥+ 1

2
∥w̃ + b̃− 2B̃−1PṽB̃w̃∥

≤ mp

2
.

So ∥∥∥w̃ +
ã+ b̃

2

∥∥∥ ≤
∥∥∥w̃ +

ã+ b̃

2
− B̃−1(Pũ + Pṽ)B̃w̃

∥∥∥+ ∥B̃−1(Pũ + Pṽ)B̃w̃∥

≤ mp

2
+

(mp+ 1)m

4
.

But ∥∥∥w̃ +
ã+ b̃

2

∥∥∥ = 2
∥∥∥w̃ − 1

2

(
w̃ − ã+ b̃

2

)∥∥∥
≥ 2∥w̃∥ − 1

2
since ∥w̃ − ã+ b̃

2
∥ ≤ 1

2
.

Therefore

2∥w̃∥ ≤ mp

2
+

(mp+ 1)m

4
+

1

2
.

So

2 ≤ mp

2
+

(mp+ 1)m

4
+

1

2
where p < 1 + δ.
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Since δ is arbitrary, we have

0 ≤ m2 + 3m− 6

m ≥
√
33− 3

2
.

A contradiction, so X has the w-FPP. �

Corollary 4.2. Let X be a reflexive Banach space with WORTH then X has the
FPP

This corollary will be followed up in the next section.

5. Discussion

For a number of years it has been conjectured that there is a connection between
the FPP and the reflexivity of X. Could one property imply the other? Maurey [20]
showed that reflexive subspaces of L1 have the FPP and then Dowling and Lennard
showed that every nonreflexive subspace of L1 fails the FPP.

Recently Lin [19] showed that there is an equivalent norm on ℓ1 that has the fixed
point property. Since then, Hernández Linares and Japón [13] have found classes
of nonreflexive Banach spaces which have, under equivalent norms, the FPP and in
doing so have captured Lin’s result. So one side of the problem has been answered
but there are still intriguing indications of some sort of connection.

One of these involves a property stronger than WORTH, a property introduced in
Kalton [14].

X has property(M) if

(xn) ⇀ 0 and ∥u∥ = ∥v∥ then lim
n

∥xn − u∥ = lim ∥xn − v∥.

Clearly, property(M) implies WORTH.

Property(M*) is the corresponding property in X∗ but using weak* null sequences.
Kalton [14] proved that property(M*) implies property(M) and the reverse impli-
cation holds if ℓ1 ̸↪→ X. So there are some similarities with WORTH. In [11] Garćıa
Falset and Sims showed that property(M) implies the w-FPP.

The connection between property(M), property(M*) and X being reflexive is con-
tained in the following from Dalby [5].

Proposition 5.1. Let X be a Banach space such that X∗ has property(M*) then
the following are equivalent.

a) X is reflexive
b) ℓ1 ̸↪→ X
c) c0 ̸↪→ X
d) X has the FPP
e) X∗ has the FPP.
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If X has property(M) and ℓ1 ̸↪→ X then X∗ has property(M*) and there is a similar
list of equivalent conditions.

If X has property (M) then X is reflexive if and only if ℓ1 ̸↪→ X and c0 ̸↪→ X. So
X is acting like a Banach lattice.

If X∗ has WORTH* then X is very close to a Banach space with a 1-unconditional
basis which can be considered to be a Banach lattice. So maybe X could act like
a Banach lattice. To emphasize this point, note that corollary 4.2 above can be
rewritten to be something like proposition 5.1.

Proposition 5.2. Let X be a Banach space with WORTH. Consider the following
statements.

a) X is reflexive
b) ℓ1 ̸↪→ X
c) X∗ has WORTH*
d) X has the w-FPP

Then a) ⇒ b) ⇐ c) ⇒ d).

Can this proposition be improved in any way? Clearly, looking at proposition 5.1,
the presence or absence of c0 is crucial. If X∗ has WORTH* and Y is the nearby
Banach space with the 1-unconditional basis then if c0 ̸↪→ Y then c0 ̸↪→ X. But
since Y is a Banach lattice and l1 ̸↪→ Y , the property that c0 ̸↪→ Y is equivalent to
Y being reflexive. Does this necessarily mean that X is reflexive? A conjecture is
that if X∗ has WORTH* and c0 ̸↪→ X then X is reflexive. This conjecture is the
same as if X∗ has WORTH* then X is reflexive if and only if c0 ̸↪→ X. Or the same
as if X has WORTH then X is reflexive if and only if c0 ̸↪→ X and l1 ̸↪→ X.
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[10] J. Garćıa-Falset and Lloréns-Fuster, A geometric property of Banach spaces related to the fixed
point property, J. Math. and Anal. 172 (1993), 39–52.



THE PROPERTY WORTH* AND THE WEAK FIXED POINT PROPERTY 927
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