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Since

CX(F ) = 1− TX(F c),

it is also clear that the description of distributions via the containment functional
is tantamount to a Choquet-Kendall-Matheron theorem with the hitting functional
being defined on a class of open instead of compact sets.

The method of proof differs from those in the literature. To establish the result for
a compact Hausdorff space, an integral representation theorem due to Rébillé [14]
is used. Then the Alexandrov compactification is used to derive the extension to
locally compact spaces.

The structure of the paper is as follows. Section 2 collects the basic notation and
definitions. The main result is presented in Section 3 and proved in Section 4 and
5. Section 6 shows examples of random closed sets in spaces without the second
countability axiom. Section 7 closes the paper with some final remarks.

2. Preliminaries

Let (E, τ) be a locally compact Hausdorff space. If E is the union of a count-
able family of compact spaces, then E is called σ-compact. The closure and the
complement of a subset A are denoted by clA,Ac. The space of all real continuous
functions on E will be denoted by C(E), while we will use C0(E) if the functions
additionally vanish at infinity (i.e. the sets {|f | ≥ n−1} are compact for all n ∈ N).
Clearly, if E is compact then C(E) = C0(E).

Some classes of sets we will be using are the following. If necessary, we will specify
the carrier space in parentheses.

F Closed sets
F∗ Non-empty closed sets
Ff Functionally closed sets, i.e. those having the form {f = 0} (equivalently,

{f ≥ 0}) for some f ∈ C(E)
Gf Functionally open sets, i.e. those having the form {f > 0} for some f ∈ C(E)
F0 Sets having the form {f = 0} (equivalently, {f ≥ 0}) for some f ∈ C0(E)
K Compact sets
K∗ Non-empty compact sets
B The Borel σ-algebra σ(τ)
B0 The Baire σ-algebra σ(Gf ), the coarsest σ-algebra making all real continuous

functions measurable
K0 Baire compact sets (K0 = K ∩ B0)
Gfδ Countable intersections of functionally open sets

The topology τ coincides with the weak topology generated by C0(E) [1, Corollary
2.2], therefore every closed subset of E is the intersection of sets in F0. Moreover,
it is easy to check that Ff is closed under countable intersections and Ff ⊂ Gfδ.

Let H be a lattice of subsets of E such that Ø,E ∈ H. A mapping ν : H → [0, 1]
is a capacity if it is monotone (ν(A) ≤ ν(B) whenever A ⊂ B), ν(E) = 1 and
ν(Ø) = 0. Further properties which a capacity may have are the following.

Outer continuity: An ↘ A implies ν(An) → ν(A).
Inner continuity: An ↗ A implies ν(An) → ν(A).
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Complete monotony: ν(
∪n

i=1Ai) ≥
∑

Ø ̸=I⊂{1,...,n}(−1)|I|+1ν(
∩

i∈I Ai) for any n ∈
N.

Complete alternation: ν(
∩n

i=1Ai) ≤
∑

Ø ̸=I⊂{1,...,n}(−1)|I|+1ν(
∪

i∈I Ai) for any

n ∈ N.
Minitivity: ν(A ∩B) = min{ν(A), ν(B)}.
Let ν be a capacity defined on H. If a bounded function f : E → R is H-

measurable, in the sense that the level sets {f ≥ t} are in H for each t ∈ R, its
Choquet integral against ν is defined to be∫

fdν =

∫ ∞

0
ν({f ≥ t})dt−

∫ 0

−∞
[1− ν({f ≥ t})]dt,

where both Riemann integrals exist due to the monotonicity of the function t 7→
ν({f ≥ t}).

3. Main result

If E is an LCSH space, a function from a measurable space to F∗ is a random
closed set if and only if it is Effros measurable, namely the events {X ⊂ F} are
measurable for all closed F . In this paper, X will be called a random closed set if

{X ⊂ F} is measurable for each F ∈ F0.

This notion is formally less stringent than the usual one, but they coincide in LCSH
spaces.

Proposition 3.1. Let E be a locally compact Hausdorff space, and let X be a
function from a measurable space to F∗. Then,

(a) X is a random closed set if and only if inf f(X) is a random variable for
every f ∈ C0(E).

(b) If E is second countable, then X is a random closed set if and only if X is
Effros measurable.

Proof. Part (a) is routine. Only the necessity in part (b) is not trivial. It will suffice
to show that F0 = F in a LCSH space.

Let F ∈ F . From [2, Lemma 1.1], F ∈ F0 if and only if F c is locally compact
and σ-compact. The former is clear, since every open subset of a locally compact
Hausdorff space is locally compact. As to σ-compactness, note that an LCSH space
is both metrizable (by Urysohn’s metrizability theorem, e.g. [8, Theorem 16, p.125])
and σ-compact (e.g. [9, Lemma 6.8, p.169]). Denote by Gn the open set of all points
at a distance less than n−1 from F . Then F c =

∪
nG

c
n and each of the Gc

n is σ-
compact since it is closed in E. Thus F c is indeed σ-compact, and the proof is
complete. �

Our main theorem is as follows.

Theorem 3.2. Let E be a locally compact σ-compact Hausdorff space. Then,

(a) For every random closed set X in E, its containment functional CX on F0

is an outer continuous, completely monotone capacity.
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(b) For every outer continuous, completely monotone capacity µ on F0, there
exists a random closed set X in E such that CX = µ.

Note that the existence result in part (b) easily implies uniqueness. That is so
because two distributions having the same containment functional coincide on the
π-system generating the σ-algebra and so are identical.

The proof of part (a) is straightforward and relies on basic properties of proba-
bilities, see e.g. [10, Sections 1.2 and 1.6]. The following two sections are devoted
to proving part (b).

4. The compact Hausdorff case

In this section, we assume E is a compact Hausdorff space. Therefore, F0 = Ff =
K0 (for the last identity, see e.g. [5]) and we will use K0 throughout.

Proof of Theorem 3.2.(b) in the compact case. Fix an outer continuous, completely
monotone capacity µ on K0 (while a generic capacity is denoted ν in the proof).
The task is to construct a random closed set X, on some probability space, such
that CX = µ on K0.

Let C[B0;K0] be the family of all outer continuous, completely monotone capac-
ities ν on B0 which are K0-inner regular, namely

ν(A) = sup
A⊃K∈K0

ν(K)

for all A ∈ B0. The following lemma is [14, Proposition 2]; in view of equation (5.2)
in [15], it essentially follows from [15, Theorem 5.1.(2)].

Lemma 4.1. Let ν be an outer continuous, completely monotone capacity on K0.
Then ν has a unique extension ν∗ ∈ C[B0;K0].

Each function in C(E) is bounded and K0-measurable. Let C[B0;K0] be endowed
with the topology τC of pointwise convergence of the functionals f ∈ C(E) 7→∫
fdν ∈ R (analogous to the weak topology of probability measures).
In the language of cooperative game theory, a filter game is a 0-1 valued minitive

capacity. Let F[B0;K0] be the set of all outer continuous, K0-inner regular filter
games on B0. Let σF be the σ-algebra on F[B0;K0] generated by the restrictions to
F[B0;K0] of all τC-continuous functionals φ : C[B0;K0] → R which are linear in the
sense that

φ(λν1 + (1− λ)ν2) = λφ(ν1) + (1− λ)φ(ν2)

for λ ∈ [0, 1], ν1, ν2 ∈ C[B0;K0].
The σ-algebra σF provides a measurable structure for certain 0-1 valued capaci-

ties. Our main tool is the following integral representation of Choquet integrals by
Rébillé [14, Theorem 1 plus Proposition 4].

Lemma 4.2. Let ν ∈ C[B0;K0]. Then, there exists a probability measure mν on σF
such that, for every f ∈ C(E),∫

fdν =

∫ ∫
fdη dmν(η).
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The unanimity game of B ∈ B0 is the 0-1 valued capacity on B0 given by

uB(A) =

{
1, B ⊂ A

0, B ̸⊂ A.

Let us introduce a closely related notion which we will call qualified unanimity
games. For any fixed B ∈ B0, the K0-qualified unanimity game of B is the 0-1
valued capacity on B0 such that

qB(A) = 1 if and only if B ⊂ K ⊂ A for some K ∈ K0.

The name ‘qualified unanimity’ corresponds to the fact that the unanimity of all
players in B is necessary but more players may need to be enrolled as only coalitions
in K0 are qualified to reach the goal of the game.

The set of K0-qualified unanimity games of all compact sets will be denoted by
Q[B0;K0;K]. In general, every unanimity game is minitive and so is a filter game,
but there exist filter games which are not unanimity games. On the other hand, the
unanimity game of a set in K0 is always a K0-qualified unanimity game.

The key to our result is proving that the filter games we are considering are
exactly the K0-qualified unanimity games.

Theorem 4.3. F[B0;K0] = Q[B0;K0;K].

Proof. We begin with the inclusion Q[B0;K0;K] ⊂ F[B0;K0]. Let K ∈ K; to prove
the minitivity of qK , one checks easily with the definition that qK(A ∩ B) = 1 if
and only if qK(A) = 1 and qK(B) = 1. For outer continuity, let {An}n be Baire
sets with An ↘ A. If qK(An) = 1 for all n, then there exist Kn ∈ K0 with
K ⊂ Kn ⊂ An. Then K ⊂

∩
nKn ⊂ A so qK(An) → qK(A). Hence, qK is outer

continuous. Finally, as regards inner regularity, if qK(A) = 0 then it is trivial;
otherwise, there is K ′ ∈ K0 such that K ⊂ K ′ ⊂ A. Thence, qK(K ′) = 1 and
indeed qK(A) = maxA⊃L∈K0 qK(L).

We proceed now to proving the inclusion F[B0;K0] ⊂ Q[B0;K0;K].
Step 1. The proof makes an essential use of singletons and other sets which may
fail to be Baire sets, so we must start by extending each η ∈ F[B0;K0] to deal with
such sets. For any Borel set A, we define

ηB(A) = sup
A⊃K∈K0

η(C).

Since η is K0-inner regular, ηB is indeed an extension of η. We do not need ηB
to have more properties than monotony (which is clear from the definition) and
minitivity. Indeed, using the monotony and minitivity of η,

min{ηB(A), ηB(B)} ≥ ηB(A ∩B) ≥ sup
A⊂KA∈K0,B⊂KB∈K0

min{ηB(KA), ηB(KB)}

= min{ηB(A), ηB(B)}.

Fix η ∈ F[B0;K0] and set

Z = {x ∈ E | ηB({x}c) = 0}.

Our task is to show that η = qZ and Z is non-empty and closed.
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Step 2. Let us prove the identity

η(G) = min
x̸∈G

ηB({x}c)

for G ∈ Gf . If η(G) = 1, it follows from the monotony of η; therefore we assume
η(G) = 0.

Let i : P(E)\{Ø} → E select a point from each non-empty subset of E. Define
the set-valued mapping

W : (a, b) ∈ {(a, b) ∈ E× E | a ̸= b} 7→ {G ∈ Gf | a ∈ G, b ̸∈ clG}.
The images W (a, b) are non-empty. Indeed, a and b are separated by disjoint open
neighbourhoods Ga, Gb so b̸∈ clGa. By the complete regularity of E, there is a
continuous function f with f(b) = 0 and f(clGa) = {1}, therefore {f > 1/2} ∈
W (a, b). Then the axiom of choice ensures the existence of a selection w of W (i.e.
w(a, b) is a functionally open neighbourhood of a whose closure misses b).

Our main tool now is a mapping Φ : K∗ → K∗ defined as follows. For anyK ∈ K∗,

(1) If K ⊂ Z or K is a singleton, then let Φ(K) = K.
(2) Else, if ηB({i(K)}c) = 0 then let Φ(K) = {i(K)}.
(3) Else, let K ′ = K ∩ {i(K)}c. If ηB({i(K ′)}c) = 0 then let Φ(K) = {i(K ′)}.

If Φ(K) still remains undefined, set

K1 = cl(K ∩ w(i(K), i(K ′))),

K2 = cl(K ∩ w(i(K), i(K ′))c).

Since K = K1∪K2, we have K
c = Kc

1∩Kc
2 and so ηB(K

c) = min{ηB(Kc
1), ηB(K

c
2)}.

(4) If ηB(K
c) = ηB(K

c
1), let Φ(K) = K1.

(5) Else, let Φ(K) = K2.

The relevant fact following from the construction of Φ is that, for every K ∈ K∗,

Φ(K) ∈ K∗, Φ(K) ⊂ K, ηB(Φ(K)c) = ηB(K
c).

We use transfinite recursion now to define a family {Kα}α as follows:

K0 = Gc.
If α is an ordinal, then Kα+1 = Φ(Kα).
If α is a limit ordinal, then Kα =

∩
β<αKβ.

Note that Kα is non-empty for every ordinal α. And, since they are decreasing in
α, there exists K∞ ∈ K∗ such that, for some β, Kα = K∞ for any α ≥ β.

We claim K∞ ⊂ Z. Reasoning by contradiction, assume some x ∈ K∞ has
ηB({x}c) = 1. That rules out the possibility that K∞ is a singleton, since

ηB(K
c
∞) = ηB(K

c
β) = ηB(G) = η(G) = 0.

Consequently, rule (1) does not apply to K∞. Since Φ(K∞) = Kβ+1 = K∞ is
not a singleton, (2) and (3) do not apply either. But the same happens to (4) and
(5), since both (K∞)1 and (K∞)2 are proper subsets of K∞ (indeed, i(K∞)̸∈(K∞)2,
i(K∞∩{i(K∞)}c)̸∈(K∞)1). Cases (1) through (5) exhaust all possibilities but none
of them is the case, a contradiction.

Since

Ø ̸= K∞ ⊂ Gc ∩ Z,
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there exists x ̸∈G with ηB({x}c) = 0 and so indeed

η(G) = min
x ̸∈G

ηB({x}c).

Step 3. We will show now that η = qZ and Z ∈ K. Since it contains K∞, Z is
non-empty. From the formula above, η(G) = 1 if and only if Z ⊂ G, so η = uZ on
Gf . By the outer continuity of η and uZ , the identity extends to Gfδ (in particular,
it holds in K0.)

At this point, let us check that Z is compact. Take x ∈ Zc, then ηB({x}c) = 1 so
there is K ∈ K0 such that η(K) = 1 for some K ∈ K0 with x̸∈K. By the regularity
of E, there is an open neighbourhood Gx separating x from K. For each y ∈ Gx we
have ηB({y}c) ≥ η(K) = 1, and so G ⊂ Zc. Accordingly, Zc is open.

To conclude the proof, we recap three facts: (i) qZ = uZ = η on K0; (ii) η is outer
continuous and K0-inner regular; (iii) qZ is so as well since Q[B0;K0;K] ⊂ F[B0;K0].
By Lemma 4.1 (uniqueness of the outer continuous, inner regular extension to B0),
we have η = qZ . �

Finally, denote by P the probability measure mµ∗ obtained by applying Lemma
4.2 to the extended capacity µ∗, and consider the function

X : (F[B0;K0], σF,P) → K∗

which maps each filter game η to the unique Z ∈ K∗ such that η = qZ . By Theorem
4.3, X is well defined and bijective. The following result concludes the proof; note
that its general part has some independent significance, cf. [10, Theorem 5.1, p.70].

Proposition 4.4. The function X is a random closed set and, for every upper
semicontinuous Baire function f : E → R,∫

fdµ =

∫
inf f(X)dP.

In particular, CX = µ.

Proof. Denote the Lebesgue measure in R by Leb. Note that any g ∈ C(E) is
bounded and B0-measurable. For any η ∈ F[B0;K0], if g is non-negative we have∫

gdη =

∫ ∞

0
qX(η)({g ≥ t})dt

= Leb({t ∈ [0,∞) | ∃H ∈ K0 | X(η) ⊂ H ⊂ {g ≥ t}}).
Choosing

H = {g ≥ inf g(X(η))} ∈ Ff = K0,

we readily show that the right-hand side above equals inf g(X(η)). And the identity∫
gdη = inf g(X(η))

extends to the general case by applying it to g − inf g(E).
Taking into account Lemma 4.2 now, we have∫

gdµ =

∫
gdµ∗ =

∫
inf g(X)dP
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for g ∈ C(E). An upper semicontinuous Baire function f on E is the pointwise limit
of a decreasing sequence {fn}n of continuous functions [11, Theorem 3]. Since the
Choquet integral against an outer continuous capacity is continuous on decreasing
sequences [17, Theorem 1],∫

fdµ = inf
n

∫
fndµ = inf

n

∫
inf fn(X)dP.

The sequence {inf fn(X)}n being non-decreasing with limit inf f(X), the monotone
convergence theorem yields the sought identity.

To show that X is a random closed set, fix an arbitrary F ∈ F0 = Ff . We
can write F = {f = 1} for some continuous function f : E → [0, 1]. Define
φ : ν ∈ C[B0;K0] 7→

∫
fdν ∈ R. Clearly, φ is linear and τC-continuous. By the

definition of σF, the restriction φ|F[B0;K0] is σF-measurable. But then the event

{X ⊂ F} = {f(X) = {1}} = {η ∈ F[B0;K0] | inf f(X(η)) = 1}

= {η ∈ F[B0;K0] |
∫

fdη = 1} = (φ|F[B0;K0])
−1(1)

is measurable.
Finally, for any K ∈ K0, its indicator function IK is an upper semicontinuous

Baire function and so

µ(K) =

∫
IKdµ =

∫
inf IK(X)dP = P(X ⊂ K) = CX(K).

�

5. Extension to the noncompact case

Let E be a locally compact σ-compact Hausdorff space. We regard E as a subset
of its Alexandrov compactification αE = E∪{∞}. Every f ∈ C0(E) has a continuous
extension f̂ ∈ C(αE) with f̂(∞) = 0. Since we need to consider classes of subsets
of both E and αE, we will indicate the carrier space in parentheses.

From [2, Lemma 1.1], there exists a function h ∈ C0(E) with E = {h > 0}.
Therefore Ø = {h = 0} ∈ F0(E) and {∞} = {ĥ = 0} ∈ K0(αE).

Proof of Theorem 3.2.(b) in the general case. Fix an outer continuous, completely
monotone capacity µ : F0(E) → [0, 1]. Let us find a random closed set X such
that CX = µ. Set µ̂ : K0(αE) → [0, 1] given by µ̂(B) = µ(B ∩ E). The mapping
µ̂ is well defined: if B ∈ K0(αE) then B = {f = 0} for some f ∈ C(αE), whence
B ∩ E = {f |E = 0} ∈ F0(E).

It is immediate that µ̂(Ø) = 0, µ̂(αE) = 1. The outer continuity of µ̂ is clear
as well. And µ̂ is completely monotone because the mapping B 7→ B ∩ E is a
∩-homomorphism [15, Section 2].

The proof for the compact case yields the probability space (F[B0(αE);K0(αE)], σF,
P) and a random closed set Y : F[B0(αE);K0(αE)] → F(αE) such that

P(Y ⊂ B) = µ̂(B) for all B ∈ K0(αE).
Set

X = Y ∩ E : F[B0(αE);K0(αE)] → F∗(E).



DISTRIBUTIONS OF RANDOM CLOSED SETS VIA CONTAINMENT FUNCTIONALS 915

The values of X are indeed non-empty almost surely, since

P(X = Ø) = P(Y ⊂ {∞}) = µ̂({∞}) = µ(Ø) = 0.

We must show that X is a random closed set and CX = µ. For any F = {f = 0} ∈
F0(E),

{X ⊂ F} = {Y ⊂ F ∪ {∞}} = {Y ⊂ {f̂ = 0}},
which is measurable. Therefore X is a random closed set in E. Finally,

CX(F ) = P(Y ⊂ F ∪ {∞}) = µ̂(F ∪ {∞}) = µ(F )

for each F ∈ F0(E), and the proof is complete. �
Observe that Y may differ from X ∪ {∞}. Indeed, for any K ∈ K0(E), since

∞̸∈K we have

P(X ⊂ K) = P(Y ⊂ K),

whence {∞̸∈Y } ⊃ {X ⊂ K} modulo a null set.

6. Some examples

In this section we present examples of random closed sets in locally compact
Hausdorff spaces which may fail to be second countable.

Example 6.1. Powers of probability measures. Let P be the distribution of
a random element of E. Then the simplest example of a non-trivial containment
functional is P k since, for i.i.d. random elements ξi of E with distribution P ,

P k(F ) =

k∏
i=1

P(ξi ∈ F ) = P(
k∩

i=1

{ξi ∈ F}) = P({ξi}ki=1 ⊂ F ) = C{ξi}ki=1
(F ).

In general, Ck
X = CX1∪...∪Xk

, with Xk i.i.d. as X.

Example 6.2. Poisson point processes. Point processes can be formulated in
an abstract measurable space [7], in particular a locally compact Hausdorff space
with its Baire σ-algebra. A Poisson point process with intensity measure Λ is a
locally finite process whose random counting measure N satisfies the assumptions

(i) For every measurable A, the count N(A) = card(X ∩ A) is Poisson dis-
tributed with mean Λ(A),

(ii) Disjoint measurable sets A1, . . . , Ak have independent counts N(A1), . . . ,
N(Ak).

Then X is a random closed set in our sense since

{X ⊂ F} = {N(F c) = 0},
and its containment functional is given by

CX(F ) = exp{−Λ(F c)}.

Example 6.3. Random walk in a locally compact group. Let {ξn}n be a
random walk in a locally compact group E (see e.g. [16]), and consider its closed
trajectory X = cl{ξn}n. For any f ∈ C0(E),

inf f(X) = inf f({ξn}n) = inf
n

f(ξn)
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is a random variable (e.g. [3, Corollary 6.3.7]) and so, by Proposition 3.1, X is a
random closed set.

Example 6.4. Random subtrees. A real tree is a metric space (E, d) such that,
for all x, y ∈ E, the following uniqueness properties hold:

(i) There exists a unique isometry fx,y : [0, d(x, y)] → E such that fx,y(0) = x
and fx,y(d(x, y)) = y.

(ii) If q : [0, 1] → E is continuous and injective, with q(0) = x and q(1) = y,
then q([0, 1]) = fx,y([0, d(x, y)]).

Let E be a locally compact real tree (see e.g. [6]). Then a random closed set in E
which is a tree is a random subtree of E.

Example 6.5. Discrete spaces. Any set E with its discrete topology is locally
compact and Hausdorff. In that case, Theorem 3.2 states that the probabilities
P(X ⊂ A) for all A ∈ P(E) determine uniquely the probabilities P(X ∈ A) for all
A ∈ P(P(E)).

7. Concluding remarks

Since the method of proof is new, it is interesting to remark what it looks like
in the LCSH case. Apart from minor language changes (e.g. every upper semicon-
tinuous function is Baire, discussion of neighbourhoods can be done with balls, and
so on), the only significant difference is that the transfinite recursion argument in
Step 2 of the proof of Theorem 4.3 can be replaced by a much simpler, standard
argument of compactness and subsequencing in a metric space.
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