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equation problem (in short, GWHEP) and proved the equivalence between GMEP
and GWHEP. They gave a fixed point formulation of GWHEP and constructed
an iterative algorithm for solving GWHEP. They extended the notion of stability
given by Harder and Hicks [15], and discussed the existence of solution of GWHEP,
and convergence and stability analysis for the their proposed iterative algorithm.
One of the main motivations of this paper is to show that the paper [20] has some
fatal errors.

In this paper, we introduce a system of nonlinear generalized mixed implicit equi-
librium problems (in short, SNGMIEP) involving non-monotone set-valued map-
pings with non-compact values in q-uniformly smooth Banach spaces, which includes
GMEP, the problems of finding a zero of a maximal monotone operator, and Nash
equilibria problems as special cases. By using the Yosida approximation, we con-
sider a system of generalized Wiener-Hopf equations (in short, SGWHE) associated
with SNGMIEP. We prove that SNGMIEP and SGWHE have the same solution
set. We get fixed point formulations of SNGMIEP and SGWHE and construct two
new iterative algorithms with mixed errors for solving SNGMIEP and SGWHE. We
establish the existence theorems for solutions of the aforesaid systems and discuss
the convergence analysis of the sequences generated by the our proposed iterative
algorithms. Finally, we show that the verified theorem in related to stability of
the iterative algorithm introduced by Kazmi and Khan [20] is incorrect. The re-
sults presented in this paper improve and extend the corresponding results in the
literature.

2. Formulations and preliminaries

Let X be a real Banach space with its dual space X∗ and ⟨., .⟩ be the dual
pairing between X and X∗. Let K be a nonempty, closed and convex subset of X
and CB(X) be the family of all nonempty, closed and bounded subsets of X. The
Hausdorff metric H(., .) on CB(X) is defined by

H(A,B) = max

{
sup
a∈A

inf
b∈B

∥a− b∥, sup
b∈B

inf
a∈A

∥a− b∥
}
, ∀A,B ∈ CB(X).

The generalized duality mapping Jq : X ( X∗ is defined by

Jq(x) =
{
f∗ ∈ X∗ : ⟨x, f∗⟩ = ∥x∥q, ∥f∗∥ = ∥x∥q−1

}
, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping.
It is known that, in general, Jq(x) = ∥x∥q−2J2(x) for all x ̸= 0 and Jq is single-
valued if X∗ is strictly convex. In the sequel, we always assume that X is a real
Banach space such that Jq is single-valued. If X is a Hilbert space, then J2 becomes
the identity mapping on X.

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup

{
1

2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.
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X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. For further detail on the
geometry of Banach spaces, we refer to [2] and the references therein.

For each j ∈ {1, 2, . . . , l}, let Xj be a real reflexive qj-uniformly smooth Banach
space with norm ∥.∥j and its dual X∗

j , ⟨., .⟩j be the dual pairing of X∗
j and Xj , and

Kj be a nonempty closed convex subset of Xj . For each i ∈ {1, 2, . . . , p}, p ≤ l, let
Fi : Ki×Ki → R be a bifunction such that Fi(x, x) = 0, ∀x ∈ Ki. Further, for each

i ∈ {1, 2, . . . , p}, assume that gi : Ki → Ki, Ni :
∏l

j=1Xj → Xi, ηi : Xi ×Xi → X∗
i

are nonlinear single-valued mappings, and let Ti,1, Ti,2, . . . , Ti,l : Xi → CB(Xi) be
set-valued mappings. We consider the problem of finding (x̄1, . . . , x̄p) ∈

∏p
i=1Ki and

(ū1,1, . . . , ū1,l, ū2,1, . . . , ū2,l, . . . , ūp,1, ūp,2, . . . , ūp,l) ∈
∏p

i=1

∏l
j=1 Ti,j(x̄i) such that

for each i = 1, 2, . . . , p,

(2.1) Fi(gi(x̄i), yi) + ⟨Ni(ūi,1, ūi,2, . . . , ūi,l), ηi(yi, gi(x̄i))⟩ ≥ 0, ∀yi ∈ Ki.

Problem (2.1) is called a system of nonlinear generalized mixed implicit equilibrium
problems (in short, SNGMIEP) in uniformly smooth Banach spaces.

If p = 1, l = 2, X1 = H is a real Hilbert space, F1 = F , T1,1 = T , T1,2 = B, N1 =
N , η1 = η, K1 = K, then SNGMIEP (2.1) collapses to the following generalized
mixed implicit equilibrium problem considered and studied in [20].

(2.2)
Find x̄1 = x̄ ∈ K, ū1,1 = ū ∈ T (x̄), ū1,2 = v̄ ∈ B(x̄) such that
F (g(x̄), y) + ⟨N(ū, v̄), η(y, g(x̄))⟩ ≥ 0, ∀y ∈ K.

For different choices of the mappings, we obtain different problems considered
and studied in [10,16,22] and the references therein.

We present some definitions and results which will be used in the sequel.

Definition 2.1 ([24]). A set-valued mapping T : X → CB(X) is called H-Lipschitz
continuous if there exists a constant ξ > 0 such that

H(T (x), T (y)) ≤ ξ∥x− y∥, ∀x, y ∈ X,

where H is the Hausdorff metric on X.

Lemma 2.2 ([24]). Let T : X → CB(X) be a set-valued mapping. Then for any
given ϵ > 0, x, y ∈ X and u ∈ T (x), there exists v ∈ T (y) such that

(2.3) ∥u− v∥ ≤ (1 + ϵ)H(T (x), T (y)).

If T : X → C(X), then the above inequality holds for ϵ = 0, where C(X) denotes
the family of all nonempty compact subsets of X.

Xu [29] proved the following result concerning the characteristic inequalities in
q-uniformly smooth Banach spaces.

Lemma 2.3 ([29]). The real Banach space X is q-uniformly smooth if and only if
there exists a constant cq > 0 such that

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ cq∥y∥q, ∀x, y ∈ X.

Definition 2.4. Let X be a q-uniformly smooth Banach space. A nonlinear map-
ping g : X → X is said to be



888 Q. H. ANSARI AND J. BALOOEE

(a) accretive if

⟨g(x)− g(y), Jq(x− y)⟩ ≥ 0, ∀x, y ∈ X;

(b) δ-strongly accretive if there exists a constant δ > 0 such that

⟨g(x)− g(y), Jq(x− y)⟩ ≥ δ∥x− y∥q, ∀x, y ∈ X;

(c) σ-Lipschitz continuous if there exists a constant σ > 0 such that

∥g(x)− g(y)∥ ≤ σ∥x− y∥, ∀x, y ∈ X.

Definition 2.5. For each j = 1, 2, . . . , l, let Xj be a qj-uniformly smooth Banach

space with norm ∥.∥j , and for each i ∈ {1, 2, . . . , p}, p ≤ l, let Ni :
∏l

j=1Xj → Xi

be a single-valued mapping. The mapping Ni is said to be γi,j-Lipschitz continuous
in the jth argument, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, if there exists a
constant γi,j > 0 such that

∥Ni(x1, x2, . . . , xj−1, xj , xj+1, . . . , xl)−Ni(x1, x2, . . . , xj−1, x̂j , xj+1, . . . , xl)∥i
≤ γi,j∥xj − x̂j∥j , ∀xj , x̂j ∈ Xj .

Definition 2.6. Let K be a nonempty closed convex subset of a Hausdorff topo-
logical vector space E. A real-valued bifunction F : K ×K → R is said to be

(a) monotone if

F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ K;

(b) strictly monotone if

F (x, y) + F (y, x) < 0, ∀x, y ∈ K with x ̸= y;

(c) α-strongly monotone if E = X is a Banach space and there exists a constant
α > 0 such that

F (x, y) + F (y, x) ≤ −α∥x− y∥2, ∀x, y ∈ K;

(d) upper hemicontinuous in the first argument if

lim sup
t→0

F (tz + (1− t)x, y) ≤ F (x, y), ∀x, y, z ∈ K.

Obviously, the strong monotonicity of F implies the monotonicity of F .

Definition 2.7. A mapping η : X ×X → X∗ is said to be

(a) monotone if
⟨x− y, η(x, y)⟩ ≥ 0, ∀x, y ∈ X;

(b) κ-strongly monotone if there exists a constant κ > 0 such that

⟨x− y, η(x, y)⟩ ≥ κ∥x− y∥2, ∀x, y ∈ X;

(c) affine in the first argument if

η(βx+ (1− β)z, y) = βη(x, y) + (1− β)η(z, y), ∀β ∈ [0, 1], x, y ∈ X;

(d) γ-Lipschitz continuous if there exists a constant γ > 0 such that

∥η(x, y)∥ ≤ γ∥x− y∥, ∀x, y ∈ X.

In similar to part (c), we can define the affineness of the mapping η in the second
argument.
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3. Regularization, generalized Wiener-Hopf equations and iterative
algorithms

In this section, we recall some auxiliary results which will be used in the sequel.
Associated with SNGMIEP (2.1), we introduce a system of generalized Wiener-Hopf
equations and propose two algorithms to solve this system of generalized Wiener-
Hopf equations and the system of nonlinear generalized mixed implicit equilibrium
problems (2.1).

The following result is a special case of [9, Theorem 3.9.3].

Lemma 3.1. Let K be a closed convex subset of a Hausdorff topological vector space
E and F : K ×K → R be a bifunction such that the following conditions hold:

(a) F (x, x) ≥ 0, ∀x ∈ K;
(b) F is monotone and for each y ∈ K, x 7→ F (x, y) is upper hemicontinuous;
(c) For each x ∈ K, y 7→ F (x, y) is convex and lower-semicontinuous;
(d) There exists a compact subset C of E and there exists y0 ∈ C ∩K such that

F (x, y0) < 0 for each x ∈ K \ C.
Then the set of solutions to the following equilibrium problem (EP): Find x̂ ∈ K
such that

F (x̂, y) ≥ 0, ∀y ∈ K,

is nonempty, convex and compact.

By using Lemma 3.1, Ding [12] deduced the following result under some condi-
tions.

Lemma 3.2 ([12, Lemma 2.2]). Let K be a nonempty closed convex bounded subset
of a reflexive Banach space X. Let F : K × K → (−∞,+∞) be a function, η :
X × X → X∗ be a mapping and ρ > 0 be positive number. Suppose the following
conditions are satisfied:

(a) F satisfies conditions (a)–(c) of Lemma 3.1;
(b) η is monotone with η(x, y) + η(y, x) = 0, ∀x, y ∈ X;
(c) η is affine in the second argument and continuous from weak topology in X

to weak∗ topology in X∗ in the first argument.

Then for each x ∈ X, there exists a point z ∈ K such that

ρF (z, y) + ⟨z − x, η(y, z)⟩ ≥ 0, ∀y ∈ K.

Remark 3.3. By a careful reading of the proof of Lemma 3.2, we found that the
affineness in the first argument of η is needed. Moreover, we can also deduce the
conclusion of Lemma 3.2 with the assumption that the mapping η is sequentially
continuous in the first argument from the weak topology in X to the weak∗ topology
in X∗ instead of the assumption of continuity of the mapping η in the first argument
from the weak topology in X to the weak∗ topology in X∗.

We present the correct version of above lemma as follows:

Lemma 3.4. Let K be a nonempty closed convex bounded subset of a reflexive
Banach space X and ρ be a positive number. Let F : K ×K → R and η : X ×X →
X∗ satisfy conditions (a) and (b) of Lemma 3.2. Further, assume that η is affine in
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the both arguments and sequentially continuous in the first argument from the weak
topology in X to the weak∗ topology in X∗. Then for each x ∈ X, there exists a
point z ∈ K such that

(3.1) ρF (z, y) + ⟨z − x, η(y, z)⟩ ≥ 0, ∀y ∈ K.

Proof. For each fixed x ∈ X, define φ : K ×K → R by

(3.2) φ(z, y) = ρF (z, y) + ⟨z − x, η(y, z)⟩, ∀y, z ∈ K.

From the proof of [12, Lemma 2.2], we deduce that φ(z, z) ≥ 0 for all z ∈ K,
the mapping φ is monotone and for each y ∈ K, the mapping φ(., y) is upper
hemicontinuous. Now, we show that for each z ∈ K, the mapping φ(z, .) is convex
and lower semicontinuous. Since η is affine in the first argument and for each x ∈ K,
the mapping F (x, .) is convex, it follows that for each u, y, z ∈ K,

φ(z, tu+ (1− t)y)

= ρF (z, tu+ (1− t)y) + ⟨z − x, η(tu+ (1− t)y, z)⟩
≤ ρ(tF (z, u) + (1− t)F (z, y)) + ⟨z − x, tη(u, z) + (1− t)η(y, z)⟩
= tρF (z, u) + (1− t)ρF (z, y) + t⟨z − x, η(u, z)⟩
+ (1− t)⟨z − x, η(y, z)⟩
= t(ρF (z, u) + ⟨z − x, η(u, z)⟩) + (1− t)(ρF (z, y) + ⟨z − x, η(y, z)⟩)
= tφ(z, u) + (1− t)φ(z, y).

(3.3)

Therefore, for each z ∈ K, the mapping φ(z, .) is convex. Consider an arbitrary
point y0 ∈ K and an arbitrary sequence {yn} in K such that yn → y0 as n → ∞.
Since for each x ∈ K, F (x, .) is lower semicontinuous and η is sequentially continuous
in the first argument from the weak topology in X to the weak∗ topology in X∗,
for each z ∈ K, we have

lim
n→∞

φ(z, yn) = lim
n→∞

(ρF (z, yn) + ⟨z − x, η(yn, z)⟩

= ρ lim
n→∞

F (z, yn) + lim
n→∞

⟨z − x, η(yn, z)⟩

≥ ρF (z, y0) + ⟨z − x, η(y0, z)⟩
= φ(z, y0).

(3.4)

Accordingly, for each z ∈ K, φ(z, .) is lower semicontinuous. Since K is a nonempty
closed convex bounded subset of reflexive Banach spaceX, K is compact in the weak
topology, and thus, the condition (d) of Lemma 3.1 is satisfied. By Lemma 3.1, there
exists a point z ∈ K such that

φ(z, y) ≥ 0, ∀y ∈ K.

This completes the proof. �

If we write z = JF
ρ (x), then it follows that for each x ∈ X, there exists a point

JF
ρ (x) ∈ K such that

(3.5) ρF (JF
ρ (x), y) + ⟨JF

ρ (x)− x, η(y, JF
ρ (x))⟩ ≥ 0, ∀y ∈ K.
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Remark 3.5. If F is strictly accretive, then the solution of EP (3.1) is unique.
Thus, for each x ∈ X, there exists a unique point JF

ρ (x) ∈ K such that the inequality
(3.5) holds.

Definition 3.6 ([12]). Let ρ be a positive number. For a given bifunction F , the
associated Yosida approximation, Fρ, over K and the corresponding regularized
operator, AF

ρ , are defined as follows:

Fρ(x, y) =
⟨1
ρ
(x− JF

ρ (x)), η(y, x)
⟩

and AF
ρ (x) =

1

ρ

(
x− JF

ρ (x)
)
,

in which JF
ρ (x) ∈ K is the unique solution of (3.1), that is,

ρF (JF
ρ (x), y) +

⟨
JF
ρ (x)− x, η(y, JF

ρ (x))
⟩
≥ 0, ∀y ∈ K.

Remark 3.7. If K = X = H is a Hilbert space and

F (x, y) = sup
ξ∈M(x)

⟨ξ, η(y, x)⟩, ∀x, y ∈ K,

where M is a maximal η-monotone operator (see [18]), then it directly yields
JF
ρ (x) = (I + ρM)−1(x) and AF

ρ (x) = Mρ(x), where Mρ := 1
ρ

(
I − (I + ρM)−1

)
is the Yosida approximation of M .

By using Lemma 3.2 and the Yosida approximation, Ding [12] derived Lipschitz
continuity of the mapping JF

ρ . In view of Remark 3.3 and Lemma 3.4, we state [12,
Theorem 2.1] as follows.

Theorem 3.8. Let K be a nonempty closed convex bounded subset of a reflexive
Banach space X and ρ be a positive number. Let F : K × K → (−∞,+∞) and
η : X ×X → X∗ satisfy the following conditions.

(a) F is α-strongly monotone and satisfies conditions (a)–(c) of Lemma 3.1;
(b) η is δ-strongly monotone and τ -Lipschitz continuous with η(x, y)+η(y, x) =

0, ∀x, y ∈ X;
(c) η is affine in both the arguments and sequentially continuous in first argu-

ment from weak topology in X to weak∗ topology in X∗.

Then the mapping JF
ρ is τ

δ+ρα -Lipschitz continuous.

Associated with the system of nonlinear generalized mixed implicit equilibrium
problems (2.1), we consider the following system of generalized Wiener-Hopf equa-
tions (in short, SGWHE):
(3.6)

Find (z1, z2, . . . , zp) ∈
∏p

i=1Xi and

(x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
∏p

i=1Ki ×
∏p

i=1

∏l
j=1 Ti,j(x̄i)

such that
Ni(ūi,1, ūi,2, . . . , ūi,l) +AFi

ρi (zi) = 0, gi(x̄i) = JFi
ρi (zi), i = 1, 2, . . . , p.

For a suitable and appropriate choice of the mappings Ti,j , Fi, Ni, gi, ηi, the
spaces Xi, the subsets Ki of Xi, and the constants ρi (i = 1, 2, . . . , p) (j = 1, 2, . . . l),
we obtain the generalized Wiener-Hopf equations (1.23) in [10], the generalized
Wiener-Hopf equation (10) in [22] and the generalized Wiener-Hopf equation prob-
lem (3.3) in [20] as special cases of the generalized Wiener-Hopf equations (3.6).
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Directly from the definition of AFi
ρi , we obtain the following result.

Lemma 3.9. (z1, . . . , zp, x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
∏p

i=1Xi ×∏p
i=1Ki ×

∏p
i=1

∏l
j=1 Ti,j(x̄i) is a solution of SGWHE (3.6) if and only if

(3.7) gi(x̄i) = JFi
ρi (zi), zi = gi(x̄i)− ρiNi(ūi,1, ūi,2, . . . , ūi,l), i = 1, 2, . . . , p.

The following equivalence between SGMIEP (2.1) and SGWHE (3.6) is derived
by using the definition of JFi

ρi .

Lemma 3.10. (x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
p∏

i=1
Ki ×

p∏
i=1

l∏
j=1

Ti,j(x̄i)

is a solution of SNGMIEP (2.1) if and only if

(z1, . . . , zp, x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l)

∈
p∏

i=1

Xi ×
p∏

i=1

Ki ×
p∏

i=1

l∏
j=1

Ti,j(x̄i)

is a solution of SGWHE (3.6) satisfying (3.7).

From Lemmas 3.9 and 3.10, we obtain the following result.

Lemma 3.11. (x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
p∏

i=1
Ki×

p∏
i=1

l∏
j=1

Ti,j(x̄i)

is a solution of SNGMIEP (2.1) if and only if

(3.8) gi(x̄i) = JFi
ρi (gi(x̄i)− ρiNi(ūi,1, ūi,2, . . . , ūi,l)), i = 1, 2, . . . , p.

Fixed point formulation (3.7) allows us to construct the following iterative algo-
rithm with mixed errors for computing a solution of SGWHE (3.6).

Algorithm 3.12. Suppose that Xj , Ki, Ti,j , Ni, Fi, gi and ηi (i = 1, 2, . . . , p)
(j = 1, 2, . . . , l), are the same as in system (2.1) and let for each i ∈ {1, 2, . . . , p}, the
mapping gi is onto. For arbitrary chosen initial point (z1,0, z2,0, . . . , zp,0) ∈

∏p
i=1Xi,

we take (x1,0, x2,0, . . . , xp,0) ∈
∏p

i=1Ki such that gi(xi,0) = JFi
ρi (zi,0). For each

i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we take ui,j,0 ∈ Ti,j(xi,0) and set

zi,1 = (1− λi)zi,0 + λi[gi(xi,0)− ρiNi(ui,1,0, ui,2,0, . . . , ui,l,0)] + λiei,0 + ri,0,

where for each i ∈ {1, 2, . . . , p}, ρi > 0 is a constant and λi ∈ (0, 1) is a relaxation
parameter.

For (z1,1, z2,1, . . . , zp,1), we take (x1,1, x2,1, . . . , xp,1) ∈
∏p

i=1Ki such that we have

gi(xi,1) = JFi
ρi (zi,1). By Lemma 2.2, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},

there exists ui,j,1 ∈ Ti,j(xi,1) such that

∥ui,j,1 − ui,j,0∥i ≤ (1 + (1 + 0)−1)Hi(Ti,j(xi,1), Ti,j(xi,0)).

For each i ∈ {1, 2, . . . , p}, let

zi,2 = (1− λi)zi,1 + λi
[
gi(xi,1)

−ρiNi (ui,1,1, ui,2,1, . . . , ui,l,1)
]
+ λiei,1 + ri,1.
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By induction, we can define the iterative sequences {zi,n}, {xi,n}, {ui,j,n} (i =
1, 2, . . . , p) (j = 1, 2, . . . , l) satisfying

(3.9)


gi(xi,n) = JFi

ρi (zi,n),
zi,n+1 = (1− λi)zi,n + λi

[
gi(xi,n)

−ρiNi(ui,1,n, ui,2,n, . . . , ui,l,n)
]
+ λiei,n + ri,n,

ui,j,n ∈ Ti,j(xi,n) : ∥ui,j,n+1 − ui,j,n∥i
≤ (1 + (1 + n)−1)Hi(Ti,j(xi,n+1), Ti,j(xi,n)),

where n = 0, 1, 2, . . . , and for each i ∈ {1, 2, . . . , p}, ρi > 0 is a constant, λi ∈ (0, 1)
is a relaxation parameter, and the sequences {ei,n} and {ri,n} are errors to take into
account a possible inexact computation of the resolvent mapping point satisfying
the following conditions:

lim
n→∞

∥ei,n∥i = lim
n→∞

∥ri,n∥i = 0;
∞∑
n=0

∥ei,n − ei,n−1∥i <∞;

∞∑
n=0

∥ri,n − ri,n−1∥i <∞.

(3.10)

Fixed point formulation (3.8) enables us to suggest the following iterative algo-
rithm with mixed errors for finding a solution of SNGMIEP (2.1).

Algorithm 3.13. LetXj , Ki, Ti,j , Ni, Fi, gi and ηi (i = 1, 2, . . . , p) (j = 1, 2, . . . , l),
be the same as in system (2.1). For arbitrary chosen initial point (x1,0, x2,0, . . . , xp,0)
∈
∏p

i=1Ki, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we take ui,j,0 ∈ Ti,j(xi,0)
and set

xi,1 = (1− λi)xi,0 + λi
[
xi,0 − gi(xi,0)

+JFi
ρi (gi(xi,0)− ρiNi(ui,1,0, ui,2,0, . . . , ui,l,0))

]
+λiei,0 + ri,0,

where for each i ∈ {1, 2, . . . , p}, ρi > 0 is a constant and λi ∈ (0, 1) is a relaxation
parameter. In view of Lemma 2.2, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},
there exists ui,j,1 ∈ Ti,j(xi,1) such that for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},

∥ui,j,1 − ui,j,0∥i ≤ (1 + (1 + 0)−1)Hi(Ti,j(xi,1), Ti,j(xi,0)).

For each i ∈ {1, 2, . . . , p}, let
xi,2 = (1− λi)xi,1 + λi

[
xi,1 − gi(xi,1)

+JFi
ρi (gi(xi,1)− ρiNi(ui,1,1, ui,2,1, . . . , ui,l,1))

]
+λiei,1 + ri,1.

By induction, we can define the iterative sequences {xi,n}, {ui,j,n} (i = 1, 2, . . . , p)
(j = 1, 2, . . . , l) satisfying

xi,n+1 = (1− λi)xi,n + λi
[
xi,n − gi(xi,n)

+JFi
ρi (gi(xi,n)− ρiNi(ui,1,n, ui,2,n, . . . , ui,l,n))

]
+λiei,n + ri,n,

ui,j,n ∈ Ti,j(xi,n) : ∥ui,j,n+1 − ui,j,n∥i
≤ (1 + (1 + n)−1)Hi(Ti,j(xi,n+1), Ti,j(xi,n)),

(3.11)
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where n = 0, 1, 2, . . . , and for each i ∈ {1, 2, . . . , p}, ρi > 0 is a constant, λi ∈
(0, 1) is a relaxation parameter and the sequences {ei,n} and {ri,n} are the same as
Algorithm 3.12 and satisfy (3.10).

Remark 3.14. If ei,n = ri,n = 0 for each n ∈ N ∪ {0} and i ∈ {1, 2, . . . , p}, then
Algorithms 3.12 and 3.13 reduce to the iterative methods without error. We note
that the Algorithm 3.1 in [20] is a special case of Algorithm 3.12.

4. Existence of solution and convergence analysis

In this section, we establish the existence theorems for solutions of SNGMIEP
(2.1) and SGWHE (3.6) and discuss the convergence analysis of the sequences gen-
erated by iterative Algorithms 3.12 and 3.13 under some suitable conditions.

Theorem 4.1. Let Xj, Ki, Ti,j, Ni, Fi, gi and ηi (i = 1, 2, . . . , p), (j = 1, 2, . . . , l),
be the same as in system (2.1) such that for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},

(a) Fi is αi-strongly monotone and satisfy conditions (a)–(c) of Lemma 3.1;
(b) ηi is δi-strongly monotone and τi-Lipschitz continuous with ηi(x, y)+ηi(y, x) =

0, ∀x, y ∈ Xi;
(c) ηi is affine in the both arguments and sequentially continuous from the weak

topology in Xi to the weak∗ topology in X∗
i ;

(d) Ni is νi,j-Lipschitz continuous in the jth argument;
(e) gi is κi-strongly accretive and σi-Lipschitz continuous;
(f) Ti,j is µi,j-Hi-Lipschitz continuous;
(g) there exists the constant ρi > 0 such that

ρi <
θi(δi−τi)

τi
l∑

j=1
νi,jµi,j−αiθi

,

θi = 1− qi
√

1− qiκi + cqiσ
qi
i > 0,

τi
l∑

j=1
νi,jµi,j > αiθi,

(4.1)

where cqi is the same as in Lemma 2.3.

Then, the sequences {zi,n}, {xi,n}, {ui,j,n} (i = 1, 2, . . . , p) (j = 1, 2, . . . , l), gen-
erated by Algorithm 3.12 converge strongly to zi ∈ Xi, x̄i ∈ Ki, ūi,j ∈ Ti,j(x̄i),
respectively, and (z1, . . . , zp, x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈

∏p
i=1Xi ×∏p

i=1Ki ×
∏p

i=1

∏l
j=1 Ti,j(x̄i) is a solution of SGWHE (3.6).

Proof. For each i ∈ {1, 2, . . . , p}, it follows from (3.9) that

(4.2)

∥zi,n+1 − zi,n∥i
≤ (1− λi)∥zi,n − zi,n−1∥i + λi∥gi(xi,n)− gi(xi,n−1)∥i

+λiρi∥Ni(ui,1,n, ui,2,n, . . . , ui,l,n)−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,l,n−1)∥i
+λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i

≤ (1− λi)∥zi,n − zi,n−1∥i + λi∥gi(xi,n)− gi(xi,n−1)∥i

+λiρi
l∑

j=1
∥Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n, ui,j+1,n, . . . , ui,l,n)

−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n−1, ui,j+1,n, . . . , ui,l,n)∥i
+λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i.
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By using (3.9) and Theorem 3.8, for each i ∈ {1, 2, . . . , p}, we have

∥gi(xi,n)− gi(xi,n−1)∥i =
∥∥JFi

ρi (zi,n)− JFi
ρi (zi,n−1)

∥∥
i

≤ τi
δi + ρiαi

∥zi,n − zi,n−1∥i.
(4.3)

Since Ni is νi,j-Lipschitz continuous in the jth argument and Ti,j is µi,j-Hi-Lipschitz
continuous, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we conclude that

∥Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n, ui,j+1,n, . . . , ui,l,n)

−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n−1, ui,j+1,n, . . . , ui,l,n)∥i
≤ νi,j∥ui,j,n − ui,j,n−1∥i ≤ (1 + (1 + n)−1)νi,jHi(Ti,j(xi,n), Ti,j(xi,n−1))

≤ (1 + n−1)νi,jµi,j∥xi,n − xi,n−1∥i.

(4.4)

For each i ∈ {1, 2, . . . , p}, we make an estimation for ∥xi,n − xi,n−1∥i.
Applying (3.9) and (4.3), for each i ∈ {1, 2, . . . , p}, we get

∥xi,n − xi,n−1∥i ≤ ∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥i + ∥gi(xi,n)− gi(xi,n−1)∥i

≤ ∥xi,n− xi,n−1− (gi(xi,n)− gi(xi,n−1))∥i +
τi

δi + ρiαi
∥zi,n− zi,n−1∥i.(4.5)

Lemma 2.3 guarantees that for each i ∈ {1, 2, . . . , p}, there exists cqi > 0 such that

∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥qii
≤ ∥xi,n − xi,n−1∥qii − qi⟨gi(xi,n)− gi(xi,n−1), Jqi(xi,n − xi,n−1)⟩
+ cqi∥gi(xi,n)− gi(xi,n−1)∥qii .

(4.6)

Since gi is κi-strongly accretive and σi-Lipschitz continuous, by using (4.6), for
i ∈ {1, 2, . . . , p}, we have

∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥qii
≤ (1− qiκi)∥xi,n − xi,n−1∥qii + cqi∥gi(xi,n)− gi(xi,n−1)∥qii
≤ (1− qiκi + cqiσ

qi
i )∥xi,n − xi,n−1∥qii .

(4.7)

From (4.5) and (4.7), it follows that for each i ∈ {1, 2, . . . , p},

∥xi,n − xi,n−1∥i ≤ qi

√
1− qiκi + cqiσ

qi
i ∥xi,n − xi,n−1∥i

+
τi

δi + ρiαi
∥zi,n − zi,n−1∥i,

which leads to

∥xi,n − xi,n−1∥i ≤
τi

(1− qi
√

1− qiκi + cqiσ
qi
i )(δi + ρiαi)

∥zi,n − zi,n−1∥i.(4.8)

Substituting (4.3), (4.4) and (4.8) in (4.2), for i ∈ {1, 2, . . . , p}, we obtain

∥zi,n+1 − zi,n∥i ≤ (1− λi)∥zi,n − zi,n−1∥i +
λiτi

δi + ρiαi
∥zi,n − zi,n−1∥i

+
λiρiτi(1 + n−1)

(1− qi
√

1− qiκi + cqiσ
qi
i )(δi + ρiαi)

l∑
j=1

νi,jµi,j∥zi,n − zi,n−1∥i

+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i(4.9)
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= (1− λi + λiωi(n))∥zi,n − zi,n−1∥i + λi∥ei,n − ei,n−1∥i
+ ∥ri,n − ri,n−1∥i,

where for each i ∈ {1, 2, . . . , p},

ωi(n) =
τi

δi + ρiαi

1 +

ρi(1 + n−1)
l∑

j=1
νi,jµi,j

1− qi
√

1− qiκi + cqiσ
qi
i

 .

Letting ϑi(n) = 1 − λi + λiωi(n), for each i ∈ {1, 2, . . . , p}, we know that ϑi(n) →
ϑi = 1− λi + λiωi, as n→ ∞, where for each i ∈ {1, 2, . . . , p},

ωi =
τi

δi + ρiαi

1 +

ρi
l∑

j=1
νi,jµi,j

1− qi
√
1− qiκi + cqiσ

qi
i

 .

In view of condition (4.1), ωi ∈ (0, 1) for each i ∈ {1, 2, . . . , p}, and so ϑi ∈ (0, 1) for
each i ∈ {1, 2, . . . , p}. Hence, there exists n0 ∈ N such that for each i ∈ {1, 2, . . . , p},
ϑi(n) ≤ ϑ̂i for all n ≥ n0. Accordingly, for each i ∈ {1, 2, . . . , p} and for all n > n0,
by (4.9), we have

∥zi,n+1 − zi,n∥i
≤ ϑ̂i∥zi,n − zi,n−1∥i + λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i
≤ ϑ̂i[ϑ̂i∥zi,n−1 − zi,n−2∥i + λi∥ei,n−1 − ei,n−2∥i + ∥ri,n−1 − ri,n−2∥i]
+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i

= ϑ̂2i ∥zi,n−1 − zi,n−2∥i + λi[ϑ̂i∥ei,n−1 − ei,n−2∥i
+ ∥ei,n − ei,n−1∥i] + ϑ̂i∥ri,n−1 − ri,n−2∥i + ∥ri,n − ri,n−1∥i

≤
...

≤ ϑ̂n−n0
i ∥zi,n0+1 − zi,n0∥i +

n−n0∑
s=1

λiϑ̂
s−1
i ∥ei,n−(s−1) − ei,n−s∥i

+

n−n0∑
s=1

ϑ̂s−1
i ∥ri,n−(s−1) − ri,n−s∥i.

(4.10)
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By using inequality (4.10), it follows that for each i ∈ {1, 2, . . . , p}, and for any
m ≥ n > n0,

∥zi,m − zi,n∥i ≤
m−1∑
t=n

∥zi,t+1 − zi,t∥i ≤
m−1∑
t=n

ϑ̂t−n0
i ∥zi,n0+1 − zi,n0∥i

+

m−1∑
t=n

t−n0∑
s=1

λiϑ̂
s−1
i ∥ei,n−(s−1) − ei,n−s∥i

+
m−1∑
t=n

t−n0∑
s=1

ϑ̂s−1
i ∥ri,n−(s−1) − ri,n−s∥i.

(4.11)

Since ϑ̂i < 1 for each i ∈ {1, 2, . . . , p}, it follows from (3.10) and (4.11) that for each
i ∈ {1, 2, . . . , p}, ∥zi,m−zi,n∥i → 0, as n→ ∞ and so for each i ∈ {1, 2, . . . , p}, {zi,n}
is a Cauchy sequence in Xi. In view of completeness of Xi for each i ∈ {1, 2, . . . , p},
there exists zi ∈ Xi such that zi,n → zi, as n → ∞. By using (3.9) and µi,j-
Hi-Lipschitz continuity of Ti,j for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we
have

∥ui,j,n+1 − ui,j,n∥i ≤ (1 + (1 + n)−1)Hi(Ti,j(xi,n+1), Ti,j(xi,n))

≤ (1 + (1 + n)−1)µi,j∥xi,n+1 − xi,n∥i

≤ (1 + (1 + n)−1)µi,jτi

(1− qi
√

1− qiκi + cqiσ
qi
i )(δi + ρiαi)

∥zi,n+1 − zi,n∥i.
(4.12)

Similarly, since for each i ∈ {1, 2, . . . , p}, {zi,n} is a Cauchy sequence in Xi, (4.8)
and (4.12) imply that {xi,n} and {ui,j,n} are also Cauchy sequences in Ki ⊆ Xi

and Xi, respectively, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}. Since Ki

is closed for each i ∈ {1, 2, . . . , p}, it follows that for each i ∈ {1, 2, . . . , p} and
j ∈ {1, 2, . . . , l}, there exists x̄i ∈ Ki and ūi,j ∈ Ti,j(x̄i) such that xi,n → x̄i and
ui,j,n → ūi,j , as n → ∞. Further, by using µi,j-Hi-Lipschitz continuity of Ti,j for
each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we have

d(ūi,j , Ti,j(x̄i)) = inf{∥ūi,j − u∥i : u ∈ Ti,j(x̄i)}
≤ ∥ūi,j − ui,j,n∥i + d(ui,j,n, Ti,j(x̄i))

≤ ∥ūi,j − ui,j,n∥i +Hi(Ti,j(xi,n), Ti,j(x̄i))

≤ ∥ūi,j − ui,j,n∥i + µi,j∥xi,n − x̄i∥i.

(4.13)

The right-hand side of the above inequality tends to zero as n→ ∞. Since Ti,j(x̄i) ∈
CB(Xi), for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, deduce that ūi,j ∈ Ti,j(x̄i).
Since the mappings JFi

ρi , Ni and gi (i = 1, 2, . . . , p) are continuous, it follows from
(3.9) and (3.10) that for i ∈ {1, 2, . . . , p},

gi(x̄i) = JFi
ρi (zi), zi = gi(x̄i)− ρiNi(ūi,1, ūi,2, . . . , ūi,l).

Lemma 3.9 guarantees that (z1, . . . , zp, x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈∏p
i=1Xi ×

∏p
i=1Ki ×

∏p
i=1

∏l
j=1 Ti,j(x̄i) is a solution of SGWHE (3.6). This com-

pletes the proof. �
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Theorem 4.2. Let Xj, Ki, Ti,j, Ni, Fi, gi and ηi (i = 1, 2, . . . , p), (j = 1, 2, . . . , l),
be the same as in Theorem 4.1 and let for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},
conditions (a)–(f) in Theorem 4.1 hold. If for each i ∈ {1, 2, . . . , p}, there exists the
constant ρi > 0 such that

ρi <
θiδi−τiσi

τi
l∑

j=1
νi,jµi,j−αiθi

,

θi = 1− qi
√

1− qiκi + cqiσ
qi
i > 0,

τi
l∑

j=1
νi,jµi,j > αiθi,

(4.14)

where cqi is the same as in Lemma 2.3, then the sequences {xi,n} and {ui,j,n} (i =
1, 2, . . . , p) (j = 1, 2, . . . , l), generated by Algorithm 3.13 converge strongly to x̄i ∈ Ki

and ūi,j ∈ Ti,j(x̄i), respectively, and

(x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
p∏

i=1

Ki ×
p∏

i=1

l∏
j=1

Ti,j(x̄i)

is a solution of SNGMIEP (2.1).

Proof. For each i ∈ {1, 2, . . . , p}, by using (3.11) and Theorem 3.8, we get

∥xi,n+1 − xi,n∥i
≤ (1− λi)∥xi,n − xi,n−1∥i + λi∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥i
+ λi∥JFi

ρi (gi(xi,n)− ρiNi(ui,1,n, ui,2,n, . . . , ui,l,n))

− JFi
ρi (gi(xi,n−1)− ρiNi(ui,1,n−1, ui,2,n−1, . . . , ui,l,n−1))∥i

+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i
≤ (1− λi)∥xi,n − xi,n−1∥i + λi∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥i

+
λiτi

δi + ρiαi

(
∥gi(xi,n)− gi(xi,n−1)∥i + ρi∥Ni(ui,1,n, ui,2,n, . . . , ui,l,n)

−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,l,n−1)∥i
)

+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i
≤ (1− λi)∥xi,n − xi,n−1∥i + λi∥xi,n − xi,n−1 − (gi(xi,n)− gi(xi,n−1))∥i

+
λiτi

δi + ρiαi

(
∥gi(xi,n)− gi(xi,n−1)∥i

+ ρi

l∑
j=1

∥Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n, ui,j+1,n, . . . , ui,l,n)

−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n−1, ui,j+1,n, . . . , ui,l,n)∥i
)

+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i.

(4.15)

Since for each i ∈ {1, 2, . . . , p}, gi is κi-strongly accretive and σi-Lipschitz contin-
uous, in a similar way to the proofs of (4.6) and (4.7), for i ∈ {1, 2, . . . , p}, we
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get

(4.16) ∥xi,n−xi,n−1−(gi(xi,n)−gi(xi,n−1))∥i ≤ qi

√
1− qiκi + cqiσ

qi
i ∥xi,n−xi,n−1∥i.

From σi-Lipschitz continuity of gi for each i ∈ {1, 2, . . . , p}, it follows that
(4.17) ∥gi(xi,n)− gi(xi,n−1)∥i ≤ σi∥xi,n − xi,n−1∥i.
Since for each i ∈ {1, 2, . . . , p}, Ni is νi,j-Lipschitz continuous in the jth argument
and Ti,j is µi,j-Hi-Lipschitz continuous for each j ∈ {1, 2, . . . , l}, in a similar way
to the proof of (4.4), for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we obtain

∥Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n, ui,j+1,n, . . . , ui,l,n)

−Ni(ui,1,n−1, ui,2,n−1, . . . , ui,j−1,n−1, ui,j,n−1, ui,j+1,n, . . . , ui,l,n)∥i
≤ (1 + n−1)νi,jµi,j∥xi,n − xi,n−1∥i.

(4.18)

Combining (4.15)–(4.18), we deduce that

∥xi,n+1 − xi,n∥i

≤ (1− λi)∥xi,n − xi,n−1∥i + λi

(
qi

√
1− qiκi + cqiσ

qi
i

+
τi

δi + ρiαi
(σi + ρi(1 + n−1)

l∑
j=1

νi,jµi,j

)
∥xi,n − xi,n−1∥i

+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i
= (1− λi + λiψi(n))∥xi,n − xi,n−1∥i + λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i,

(4.19)

where for each i ∈ {1, 2, . . . , p},

(4.20) ψi(n) =
qi

√
1− qiκi + cqiσ

qi
i +

τi
δi + ρiαi

σi + ρi(1 + n−1)

l∑
j=1

νi,jµi,j

 .

Letting γi(n) = 1 − λi + λiψi(n), for each i ∈ {1, 2, . . . , p}, we know that γi(n) →
γi = 1− λi + λiψi, as n→ ∞, where for each i ∈ {1, 2, . . . , p},

ψi =
qi

√
1− qiκi + cqiσ

qi
i +

τi
δi + ρiαi

(σi + ρi

l∑
j=1

νi,jµi,j).

Condition (4.14) implies that ψi ∈ (0, 1) for each i ∈ {1, 2, . . . , p}, and so, γi ∈ (0, 1)
for each i ∈ {1, 2, . . . , p}. Accordingly, there exists n0 ∈ N such that for each
i ∈ {1, 2, . . . , p}, γi(n) ≤ γ̂i for all n ≥ n0. Hence, for each i ∈ {1, 2, . . . , p} and for
all n > n0, by (4.19), we conclude that

∥xi,n+1 − xi,n∥i ≤ γ̂i∥xi,n − xi,n−1∥i + λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i
≤ γ̂i[γ̂i∥xi,n−1 − xi,n−2∥i + λi∥ei,n−1 − ei,n−2∥i + ∥ri,n−1 − ri,n−2∥i]
+ λi∥ei,n − ei,n−1∥i + ∥ri,n − ri,n−1∥i

= γ̂2i ∥xi,n−1 − xi,n−2∥i + λi[γ̂i∥ei,n−1 − ei,n−2∥i
+ ∥ei,n − ei,n−1∥i] + γ̂i∥ri,n−1 − ri,n−2∥i + ∥ri,n − ri,n−1∥i(4.21)

≤
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...

≤ γ̂n−n0
i ∥xi,n0+1 − xi,n0∥i +

n−n0∑
s=1

λiγ̂
s−1
i ∥ei,n−(s−1) − ei,n−s∥i

+

n−n0∑
s=1

γ̂s−1
i ∥ri,n−(s−1) − ri,n−s∥i.

From inequality (4.21), it follows that for each i ∈ {1, 2, . . . , p}, and for any m ≥
n > n0,

∥xi,m − xi,n∥i ≤
m−1∑
t=n

∥xi,t+1 − xi,t∥i ≤
m−1∑
t=n

γ̂t−n0
i ∥xi,n0+1 − xi,n0∥i

+

m−1∑
t=n

t−n0∑
s=1

λiγ̂
s−1
i ∥ei,n−(s−1) − ei,n−s∥i

+

m−1∑
t=n

t−n0∑
s=1

γ̂s−1
i ∥ri,n−(s−1) − ri,n−s∥i.

(4.22)

Since γ̂i < 1 for each i ∈ {1, 2, . . . , p}, from (3.10) and (4.22), it follows that for
each i ∈ {1, 2, . . . , p}, ∥xi,m−xi,n∥i → 0, as n→ ∞ and so for each i ∈ {1, 2, . . . , p},
{xi,n} is a Cauchy sequence in Ki ⊆ Xi. Since Ki is closed and Xi is complete for
each i ∈ {1, 2, . . . , p}, it follows that for each i ∈ {1, 2, . . . , p}, there exists x̄i ∈ Ki

such that xi,n → x̄i, as n→ ∞. Applying (3.11) and µi,j-Hi-Lipschitz continuity of
Ti,j for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, we obtain

∥ui,j,n+1 − ui,j,n∥i ≤ (1 + (1 + n)−1)Hi(Ti,j(xi,n+1), Ti,j(xi,n))

≤ (1 + (1 + n)−1)µi,j∥xi,n+1 − xi,n∥i.(4.23)

Similarly, since for each i ∈ {1, 2, . . . , p}, {xi,n} is a Cauchy sequence in Ki ⊆ Xi,
inequality (4.23) implies that for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}, {ui,j,n}
is also a Cauchy sequence in Xi and so for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l},
there exists ūi,j ∈ Ti,j(x̄i) such that ui,j,n → ūi,j , as n → ∞. In a similar way to
the proof of (4.13), conclude that ūi,j ∈ Ti,j(x̄i), for each i ∈ {1, 2, . . . , p} and
j ∈ {1, 2, . . . , l}. From continuity of the mappings JFi

ρi , Ni and gi (i = 1, 2, . . . , p),
(3.10) and (3.11), it follows that for i ∈ {1, 2, . . . , p},

gi(x̄i) = JFi
ρi (gi(x̄i)− ρiNi(ūi,1, ūi,2, . . . , ūi,l)).

Lemma 3.11 implies that (x̄1, . . . , x̄p, ū1,1, . . . , ū1,l, . . . , ūp,1, . . . , ūp,l) ∈
∏p

i=1Ki ×∏p
i=1

∏l
j=1 Ti,j(x̄i) is a solution of SNGMIEP (2.1). This completes the proof. �
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Remark 4.3. (a) If for each i ∈ {1, 2, . . . , p}, Xi be a 2-uniformly smooth
Banach space and there exists the constant ρi > 0 such that

ρi <
θi(δi−τi)

τi
l∑

j=1
νi,jµi,j−αiθi

, θi = 1−
√

1− 2κi + c2σ2i > 0,

τi
l∑

j=1
νi,jµi,j > αiθi, 2κi ≤ 1 + c2σ

2
i ,

then (4.1) holds.
(b) If for each i ∈ {1, 2, . . . , p}, Xi be a 2-uniformly smooth Banach space and

there exists the constant ρi > 0 such that
ρi <

θiδi−τiσi

τi
l∑

j=1
νi,jµi,j−αiθi

, θi = 1−
√

1− 2κi + c2σ2i > 0,

τi
l∑

j=1
νi,jµi,j > αiθi, 2κi ≤ 1 + c2σ

2
i ,

then (4.14) holds.

5. Some comments

Kazmi and Khan [20] studied the convergence analysis of the sequences generated
by Algorithm 3.1 in [20]. We show that the conditions in the statement of Theorem
4.1 of [20] should be corrected. For this end, we rewrite the statement of Theorem
4.1 of [20].

Theorem 5.1 ([20, Theorem 4.1]). Let K be a nonempty, closed and convex subset
of H; let the mapping η : H × H → H be δ-strongly monotone and τ -Lipschitz
continuous with η(x, y) + η(y, x) = 0, ∀x, y ∈ H; let the bifunction F : K ×K → R
be α-strongly monotone and satisfy the assumptions of Theorem 2.2 in [20]; let
the mapping N : H × H → H be (σ1, σ2)-Lipschitz continuous; let the mappings
T,B : H → CB(H) be µ1-H-Lipschitz continuous and µ2-H-Lipschitz continuous,
respectively, and the mapping g : K → K be γ-strongly monotone and ξ-Lipschitz
continuous. If the following conditions hold for ρ > 0:

ρ <
b(δ − τ)

eτ − αb
;(5.1)

eτ < αb; b > 0,(5.2)

where e := σ1µ1 + σ2µ2 and b = 1−
√

1− 2γ + ξ2, then the sequences {zn}, {xn},
{un}, {vn} generated by Algorithm 3.1 strongly converge to z ∈ H, x ∈ H, u ∈ T (x),
v ∈ B(x), respectively, and (z, x, u, v) is a solution of GWHE (3.3).

By reviewing the proof of Theorem 5.1, we note that the authors concluded

θ :=
τ

δ + ρα

[
1 +

ρ(σ1µ1 + σ2µ2)

1−
√

1− 2γ + ξ2

]
< 1,

by using conditions (5.1) and (5.2) (conditions (4.1) and (4.2) in [20]). However, it
is easy to check that the conditions (5.1) and (5.2) do not guarantee that θ < 1.
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For this aim, condition (5.1) should be replaced by the condition eτ > αb, b > 0.
Further, condition 2γ ≤ 1 + ξ2 should be added to the conditions (5.1) and (5.2).

In view of the above facts, the correct version of above Theorem 4.1 in [20] is the
following.

Theorem 5.2. Let K be a nonempty, closed and convex subset of H and let the
mapping η : H ×H → H be δ-strongly monotone and τ -Lipschitz continuous with
η(x, y) + η(y, x) = 0, ∀x, y ∈ H. Let the bifunction F : K ×K → R be α-strongly
monotone and satisfy the assumptions of Theorem 2.2 in [20] and suppose that the
mapping N : H×H → H is (σ1, σ2)-Lipschitz continuous. Further, let the mappings
T,B : H → CB(H) be µ1-H-Lipschitz continuous and µ2-H-Lipschitz continuous,
respectively, and the mapping g : K → K be γ-strongly monotone and ξ-Lipschitz
continuous. If the constant ρ > 0 satisfies following condition:

ρ < b(δ−τ)
eτ−αb ,

eτ > αb, where e = σ1µ1 + σ2µ2,

b = 1−
√
1− 2γ + ξ2 > 0,

2γ ≤ 1 + ξ2,

then the sequences {zn}, {xn}, {un}, {vn} generated by Algorithm 3.1 in [20]
strongly converge to z ∈ H, x ∈ H, u ∈ T (x), v ∈ B(x), respectively, and (z, x, u, v)
is a solution of GWHE (3.3).

Remark 5.3. In view of the above arguments, Theorems 4.1 and 4.2 generalize
and improve Theorem 5.2.

Kazmi and Khan [20] presented the following definition which can be viewed as
an extension of the concept of stability of the iteration procedure given by Harder
and Hicks [15].

Definition 5.4 ([20, Definition 4.1]). Let G : H → 2H be a set-valued mapping and
x0 ∈ H. Assume that xn+1 ∈ f(G, xn) defines an iteration procedure which yields
a sequence of points {xn} in H. Suppose that F(G) = {x ∈ H : x ∈ G(x)} ̸= ∅ and
{xn} converges to some x ∈ G(x). Let {yn} be an arbitrary sequence in H, and
ϵn = ∥yn+1 − xn+1∥, xn+1 ∈ f(G, xn).

(a) If lim
n→∞

ϵn = 0 implies that lim
n→∞

yn = x, then the iteration procedure xn+1 ∈
f(G, xn) is said to be G-stable.

(b) If
∑∞

n=0 ϵn < ∞ implies that lim
n→∞

yn = x, then the iteration procedure

xn+1 ∈ f(G, xn) is said to be almost G-stable.

They have stated the following stability result for Algorithm 3.1 in [20].

Theorem 5.5 ([20, Theorem 4.2]). Let the mappings η, F , N , T , B, g be the same
as in Theorem 4.1 in [20] and conditions (4.1) and (4.2) in Theorem 4.1 hold with
e = (1 + ϵ)(σ1µ1 + σ2µ2). Let {qn} be any sequence in H and define {an} ⊂ [0,∞)
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by

g(yn) = JF
ρ (qn),

ūn ∈ T (yn) : ∥ūn+1 − ūn∥ ≤ (1 + (1 + n)−1)H(T (yn+1), T (yn)),

v̄n ∈ B(yn) : ∥v̄n+1 − v̄n∥ ≤ (1 + (1 + n)−1)H(B(yn+1), B(yn)),

an = ∥qn+1 − (1− λ)qn − λ[g(yn)− ρN(ūn, v̄n)]∥,

(5.3)

where n = 0, 1, 2, . . . ; ρ > 0 is a constant and 0 < λ < 1 is a relaxation parameter.
Then lim

n→∞
(qn, yn, ūn, v̄n) = (z, x, u, v) if and only if lim

n→∞
an = 0, where (z, x, u, v)

is a solution of GWHE (3.3) in [20].

By a careful reading, we found that there is a fatal in the proof of Theorem 4.2
in [20] (Page 1320 line 9 from the bottom). In the proof of Theorem 4.2, authors
deduced the following inequality by using the assumptions of Theorem 4.2:

∥qn+1 − z∥ ≤ ∥(1− λ)qn + λ[g(yn)− ρN(ūn, v̄n)]− z∥
+ ∥qn+1 − (1− λ)qn − λ[g(yn)− ρN(ūn, v̄n)]∥

≤ (1− λ)∥qn − z∥+ λ∥g(yn)− g(x)∥
+ ρλ∥N(ūn, v̄n)−N(u, v)∥+ an.

Then by using Theorems 2.1 and 3.1 in [20], they claimed that the preceding in-
equality reduces to the following inequality (see inequality (4.13) in [20]):

∥qn+1 − z∥ ≤ (1− λ)∥qn − z∥+ λ
τ

δ + ρα
∥qn − z∥+ ρλ(σ1(1 + ϵ)H(T (yn), T (x))

+ σ2(1 + ϵ)H(B(yn), B(x)))

≤ (1− λ)∥qn − z∥+ λ
τ

δ + ρα
∥qn − z∥(5.4)

+ λρ(1 + ϵ)(σ1µ1 + σ2µ2)∥yn − x∥+ an.

In fact, they claimed that Lemma 3.1 (Theorem 2.1 in [20]) implies that

∥N(ūn, v̄n)−N(u, v)∥ ≤ σ1∥ūn − u∥+ σ2∥v̄n − v∥
≤ σ1(1 + ϵ)H(T (yn), T (x)) + σ2(1 + ϵ)H(B(yn), B(x))

≤ (1 + ϵ)(σ1µ1 + σ2µ2)∥yn − x∥.

There is a fatal error in the above inequalities. Since (z, x, u, v) is a solution GWHE
(3.3) in [20], we have u ∈ T (x) and v ∈ B(x). On the other hand, in view of (5.3),
for each n ∈ N ∪ {0}, we have ūn ∈ T (yn) and v̄n ∈ B(yn). But, for any given
ϵ > 0, we cannot deduce that ∥ūn − u∥ ≤ (1 + ϵ)H(T (yn), T (x)) and ∥v̄n − v∥ ≤
(1+ ϵ)H(B(yn), B(x)). In other words, under the assumptions of Theorem 4.2, one
cannot deduce inequality (4.13) in [20]. However, we cannot verify Theorem 4.2
without the inequality (5.4) (inequality (4.13) of [20]).

The following example shows that for any given x, y ∈ X, u ∈ T (x), v ∈ T (y)
and ϵ > 0, inequality (2.3) in Lemma 2.2 does not hold necessarily.
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Example 5.6. Let X = R be the set of real numbers with the usual metric and let
T : X → CB(X) be a set-valued mapping defined as follows:

T (x) =

{ {
1
γ ,

1
δ

}
, if x ≤ 0,{

0, 1κ
}
, if x > 0,

where γ, δ, κ ∈ R are arbitrary and fixed such that 0 < γ < δ < κ < δγ
δ−γ . Take

x = α ≤ 0, y = β > 0, u = 1
γ , v = 0 and ϵ < δ−γ

γ . If a = 1
γ , then from γ > 0, it

follows that

d(a, T (y)) = inf

{
d(

1

γ
, 0), d(

1

γ
,
1

κ
)

}
= inf

{
1

γ
,
κ− γ

γκ

}
=
κ− γ

γκ
.

For the case, a = 1
δ , by using δ > 0, we have

d(a, T (y)) = inf

{
d

(
1

δ
, 0

)
, d

(
1

δ
,
1

κ

)}
= inf

{
1

δ
,
κ− δ

δκ

}
=
κ− δ

δκ
.

Since γ < δ, it follows that

sup
a∈T (x)

d(a, T (y)) = max

{
κ− γ

γκ
,
κ− δ

δκ

}
=
κ− γ

γκ
.

Taking b = 0 and using the fact that γ < δ, we obtain

d(T (x), b) = inf

{
d

(
1

γ
, 0

)
, d

(
1

δ
, 0

)}
= inf

{
1

γ
,
1

δ

}
=

1

δ
.

If b = 1
κ , then from γ < δ, it follows that

d(T (x), b) = inf

{
d

(
1

γ
,
1

κ

)
, d

(
1

δ
,
1

κ

)}
= inf

{
κ− γ

γκ
,
κ− δ

δκ

}
=
κ− δ

δκ
.

Since δ > 0, we deduce that

sup
b∈T (y)

d(T (x), b) = max

{
1

δ
,
κ− δ

δκ

}
=

1

δ
.

Because κ < δγ
δ−γ , one has

H(T (x), T (y)) = max

{
sup

a∈T (x)
d(a, T (y)), sup

b∈T (y)
d(T (x), b)

}

= max

{
κ− γ

γκ
,
1

δ

}
=

1

δ
.

Now, ϵ < δ−γ
γ implies that

(1 + ϵ)H(T (x), T (y)) =
1 + ϵ

δ
<

1

δ
+
δ − γ

δγ
=

1

γ
= |u− v| = d(u, v).
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