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ALTERNATIVE GENERALIZED WOLFE TYPE AND
MOND-WEIR TYPE VECTOR DUALITY

SORIN-MIHAI GRAD* AND EMILIA-LOREDANA POP

ABSTRACT. Considering a general vector optimization problem, we attach to it
two new vector duals by means of perturbation theory. These vector duals are
constructed with the help of the recent Wolfe and Mond-Weir scalar duals for
general optimization problems proposed by R.I. Bot and S.-M. Grad, by exploit-
ing an idea due to W. Breckner and I. Kolumbédn. Constrained and unconstrained
vector optimization problems are seen as special cases of the initial primal vector
optimization problem and from the general case we obtain vector dual problems
of Wolfe type and Mond-Weir type for them by using different vector perturbation
functions.

1. INTRODUCTION AND PRELIMINARIES

Originally considered for scalar constrained optimization problems (see [12,14]),
the Wolfe and Mond-Weir duality approaches were quickly generalized for vector
optimization problems, too. Usually this was done in a direct way, by retaining the
objective functions of the primal problem into the objective function of the vector
duals to it (cf. [13], for instance). This approach was recently extended for general
vector optimization problems in [4], following the ideas from [2], where Wolfe and
Mond-Weir type duals were introduced for general scalar optimization problems.
However, in vector optimization it is possible to exploit the scalar duals from [2] in
a different manner, too, by introducing new Wolfe and Mond-Weir type vector duals
to a general vector optimization problem constructed following an idea considered
in [8,9,11] for Fenchel and respectively Langrange type vector duals. For Wolfe or
Mond-Weir type duality this way of constructing vector duals was considered mainly
for fractional programming problems. To the best of our knowledge, the only paper
where this approach was employed to construct a Mond-Weir type vector dual for
a constrained vector minimization problem was [10], where the involved functions
were considered quasidifferentiable.

The main scope of this paper is to introduce new Wolfe and Mond-Weir type vec-
tor duals achieved via the approach from [8,9,11] to a general vector minimization
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problem. They consist of vector maximizing a vector subject to some constraints
which contain the generalized Wolfe and respectively Mond-Weir scalar duals of the
scalarized problem attached to the primal vector optimization problem. We com-
pare these new vector duals with the vector duals from [4] and we deliver weak and
strong duality statements for them. Then we particularize the general problem to
be constrained and unconstrained, respectively. For different vector perturbation
functions we obtain new Wolfe and Mond-Weir type vector duals to these vector
problems, extending thus the classes of problems for which these duality approaches
can be applied to. We compare the image sets of the different vector duals attached
to the same vector optimization problem, delivering either inclusion relations be-
tween them, or counterexamples that prove that in general neither of them is a
subset of the other. We close the paper with a conclusive section, where some di-
rections to continue the research began in [2,4] and this paper are suggested.

Consider two separated locally convex spaces X and Y and their topological dual
spaces X* and Y*, respectively, endowed with the corresponding weak* topologies
and denote by (z*,z) = 2*(x) the value at x € X of the linear continuous functional
¥ € X*. A cone K C X is a nonempty set which fulfills A\K' C K for all A > 0. A
convexr cone is a cone which is a convex set. A cone K C X is called nontrivial if
K # {0} and K # X and pointed if K N (—K) = {0}.

On Y we consider the partial ordering “<s” induced by the convex cone C C Y,
defined by z <¢ y < y— 2z € C when z,y € Y. The notation z <¢ y is used
to write more compactly that 2 <o y and z # y, where z,y € Y. The dual cone
of Cis C* = {y* € Y* : (y*,y) > 0Vy € C}. A greatest element with respect
to “<¢” which does not belong to Y denoted by oo is attached to Y, and let
Y* =Y U{ococ}. Then for any y € Y*® one has y <¢ ooc and we consider on Y*
the operations y 4+ coc = ocog +y = oo¢ for all y € Y and ¢ - coc = oo¢ for all
t > 0. Moreover, consider by convention (v*,coc) = 400 for all v* € C*.

For a subset U of X, by cl(U), lin(U), ri(U), dim(U), éy and sqri(U) we denote
its closure, linear hull, relative interior, dimension, indicator function and strong
quast relative interior, respectively. In vector optimization it is used also the quasi
interior of the dual cone of K, K*0 = {z* € K* : (z*,x) > 0 for all z € K \ {0}}.
We consider the projection function Prxy : X x Y — X defined by Prx(z,y) = =
for all (z,y) € X x Y, too.

For the function f : X — R we use the classical notations for domain dom f =
{zr € X : f(z) < o0}, epigraph epi f = {(z,7) € X xR : f(x) < r} and conjugate
function f* : X* — R, f*(z*) = sup,ex{(z*,2) — f(z)}. We call f proper if
f(z) > —oo for all z € X and dom f # 0. If f(z) € R the (convex) subdifferential
of fat xis Of(x) = {z* € X* : f(y) — f(zx) > (z*,y — x) Vy € X}, while if
f(z) ¢ R we take by convention df(x) = 0. For U C X we have for all x € U that
00y (z) = Ny(z), where Ny (x) is the normal cone of U at x. Between a function
and its conjugate there is the Young-Fenchel inequality f*(z*) + f(x) > (z*,x) for
all x € X and x* € X*. This inequality is fulfilled as an equality if and only if
x* € df(x). For a linear continuous mapping A : X — Y we have its adjoint
A*:Y* — X* given by (A*y*, x) = (y*, Az) for any (x,y*) € X x Y*.
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A vector function F' : X — Y® is said to be proper if its domain dom F = {x €
X : F(z) € Y} isnonempty. It is C—convex if F(tx+(1—t)y) <¢ tF(x)+(1—t)F(y)
for all z,y € X and all ¢ € [0,1]. The vector function F is said to be C'—epi-closed
if C' is closed and its C'—epigraph epic F' = {(z,y) € X xY :y € F(z) + C} is
closed, and it is called C'—semicontinuous if for every = € X, each neighborhood W
of zero in Y and for any b € Y satisfying b <¢ F'(x), there exists a neighborhood U
of z in X such that F(U) Cb+ W +Y U {coc}.

For v* € C* the function (v*F) : X — R is defined by (v*F)(z) = (v*, F(x)),
x € X. If Fis C—lower semicontinuous then (v*F') is lower semicontinuous when-
ever v* € C*\ {0} and if C is closed, then every C— lower semicontinuous vec-
tor function is also C'—epi-closed, but, not all C'—epi-closed vector functions are
C'—lower semicontinuous. An example proving this can be found in [6].

In this paper the vector optimization problems consist of vector minimizing or
vector maximizing a vector function with respect to the partial ordering induced in
its image space by a pointed convex cone. For these vector optimization problems
we use the classical notions of efficient and properly efficient solutions, the latter
considered with respect to the linear scalarization.

2. NEW GENERAL WOLFE TYPE AND MOND-WEIR TYPE VECTOR DUALS

Let X, Y and V be separated locally convex vector spaces, with V partially
ordered by the nonempty pointed convex cone K C V. Let F': X — V*® be a proper
and K — convex function and consider the general vector optimization problem

(PVG) Min F(z).

For this vector optimization problem we consider the following solution concepts.

Definition 2.1. (i) An element T € X is called efficient solution to the vector
optimization problem (PVG) if Z € dom F' and for all z € dom F' from F(z) <k
F(z) follows F(z) = F(T).

(73) An element T € X is called properly efficient solution to the vector optimiza-
tion problem (PV Q) if there exists v* € K* such that (v*F)(Z) < (v*F)(z) for all
e X.

Remark 2.2. Every properly efficient solution to (PVG) belongs to dom F' and it
is also an efficient solution to the same vector optimization problem.

Using the K-convex vector perturbation function ® : X x Y — V*® which fulfills
0 € Pry(dom ®) and ®(x,0) = F(z) for all z € X, the primal vector optimization
problem introduced above can be reformulated as

PVG Min ®(z, 0).
(PVG) Min @z, 0)

To (PVG) we attach two vector dual problems. To construct them, we used the
scalar Wolfe type and Mond-Weir type duals introduced in [2], exploiting moreover
the vector duality approach from [8,9,11].

The Wolfe type vector dual to (PVG) we consider is
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(DVE?) (v*,y*%fﬁ)esg G (")
where
BY = {(v*y*,v,u,y) € KOXxY*xV x X xY:(0,y*) € 0(v*®)(u,y),
(v 0) < —(v*2)*(0,y")}
and

he! (V5" v, u,y) = v,
while the Mond-Weir type vector dual one is

DVGM Max hM (v*, y*, v, u
( ) (U*,y*,v,u)EBg G( 4 )
where
Bg = {(w"y%v,u) € KO XY* xV x X :(0,y") € 9(v*®)(u,0),
(v, 0) < (v*, (u,0))}
and

hg(v*7 y*7 ,U? u) = .

We study the connections between the properly efficient solutions for the vector
optimization problem (PVG) and the efficient solutions for these vector dual prob-
lems. The definition of the efficient solutions to the vector dual problem (DVGW)
is below and the one corresponding to the vector dual (DV G™) follows similarly.

Definition 2.3. An element (v*,7"%,7,u,y) € B‘C/‘f is called efficient solution to
the vector optimization problem (DVGWY) if (v*,7*,0,7,7) € B(V;V and for all
(v*,y*,v,u,y) € BY from A (v*,7%,0,u,y) =k h¥(v*,y*, v,u,y) follows
R (0%, 7%, 0,w,7) = h{ (v*,y*,v,u,y). The set containing all the values h} (v*,
¥, 0,1,7), when (0%, 7", 7, 4,7) is an efficient solution to (DVGW), is said to be the
mazimal set of (DVGW).

Lemma 2.4. One has hY (BY) C hlY (BY).

Proof. Whenever (v*,y*,v,u) € BY | it is easy to notice that (v*,y*,v,u,0) € BY
and h) (v*,y*,v,u) = A& (v*,y*,v,u,0). Therefore all the values taken by the
objective function of (DV G™) over its feasible set can be found also in ¢y (BfY). O

Remark 2.5. The sets h (BY) and h{¥ (BYY) do not coincide in general. A situa-
tion like this will be given later in Example 3.5.

Now we investigate the connections between the duals to (PVG) considered here
and other Wolfe and Mond-Weir type vector duals introduced in [4] to it, which are

(DVGw) Max hﬁ,(v*, v u,y,T)
(v*,y*,u,y,T)EB%
where
BS = {(vy*uyr) e KOXxY*x X xY x (K\{0}):
(0,y%) € 9(v* @) (u, )}
and

*

(y*,y)
(v*,7)

h%(v*ay*auayvr) = CI)(’U,,y) -
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and, respectively,

(DVGur) Max  h§, (v*,y*,u)
(v*,y*,u)EB’IGW M
where
B§, = {(v*y*u) € K*¥ xY* x X : (0,y*) € 9(v*®)(u,0)}
and

hS (v*, y* u) = ®(u, 0).

Unlike these vector duals, the ones we introduced above do not have the objective
function of (PV G) as objective functions. The newly introduced vector duals inherit
all the constraints of the vector duals from [4], having an additional one which
involves the vector that acts as an objective function and the corresponding dual
problem of the scalarized primal. Moreover, the image sets of the vector duals
introduced in this paper are larger than the ones of their counterparts of [4], as one
can see below, and this can prove to be useful in practice.

Theorem 2.6. One has h§,(BS,) C b (BY) and h§;(BS;) € hM (BY).
Proof. Whenever (v*,y*, u,y,r) € Bg/, one has (0,y*) € d(v*®)(u,y), which yields
(V@) (u,y) + (v*2)*(0,9") = (¥, ), ®(u,y) € V and
* * * * y*7 y *
(Uyhg/(v7yaU,y,7”)—(I)(Uay)>: Ua_< ¥ >T :_<y7y>7
(v*,7)

thus (v*, hG (v, y*, u,y, 7)) = (v*, ®(u,y)) — (y*,y) = —(v*®)*(0,y*). Then, it
follows that (v*,y*,h%(v*,y*,u,y,r),u,y) € Bg/ and h‘év(v*,y*,hgv(v*,y*,u, Y, ),
u,y) = hS, (v*, y*, u,y,r), therefore h§,(BS,) C h& (BY).

The inclusion h§;(B§;) € hl (BY) can be proven analogously. O

Remark 2.7. The inclusions proven in Theorem 2.6 are in general strict, as the
situation depicted in Example 4.4 shows.

Remark 2.8. If Bé\f # (), then there exists some element (v*,y* v,u) of this
set. Then (v*, y*, ®(u,0),u) € Bg, too. Moreover, it follows immediately that
(v*,y*,u) € B](\;/[ and by [4, Proposition 2.11], (v*,y*,u) is efficient to (DV Gjs) and
u properly efficient to (PVG). Consequently, (v*,y*, ®(u,0),u) turns out to be
efficient to (DVGM) and in this way it follows that the maximal set of (DVGy)
is a subset of the maximal set of (DVGM). Moreover, (v*,y*,u,0,r) € B‘?V for all
r € K\ {0} is an efficient solution to (DVGw) and (v*,y*, ®(u,0),u,0) € BY is
one to (DVGW).

For the newly introduced dual problems there is weak duality.

Theorem 2.9. There are no x € X and (v*,y*,v,u,y) € BY such that F(z) <
hg;v(v*,y*,v,u, Y).

Proof. Assume the contrary, namely that there are some = € X and (v*,7%,7, @, 7)
€ BY fulfilling F(z) <k h{¥ (v*,7*,0,%,y). Then T € dom F and it follows (v*,v —
®(7,0)) > 0. On the other hand, from the feasibility of (7*,7*,7,u,7) to (DVGW),
it follows (v*,7) < —(v*®)*(0,7*) and since —(v*®)*(0,7*) < (v*®)(7,0), one gets
(T*,7 — ®(7,0)) < 0, which contradicts the strict inequality obtained above. O
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Using Lemma 2.4 and the previous theorem, one can easily prove the following
weak duality statement.

Theorem 2.10. There are no x € X and (v*,y*,v,u) € BY such that F(z) <k
M (v*, y*, v, u).

Strong duality statements concerning the vector optimization problem (PVG)
and its two newly introduced vector dual problems will follow. In order to give
them, consider the following regularity conditions (cf. [1,4,7]). We begin with a
classical one involving continuity

(RCV') | 32’ € X such that (2/,0) € dom ® and ®(a',-) is continuous at 0;
followed by one that works when X and Y are Frechét spaces

(RCV?) | X and Y are Fréchet spaces, ® is K — lower semicontinuous and
0 € sqri(Pry (dom ®));
then in finite dimensional case

(RCV?) | dim(lin(Pry (dom ®))) < 400 and 0 € ri(Pry (dom ®));
and the closedness type regularity condition
(RCVH)

® is K—lower semicontinuous and Pry«yxr(epi(v*®)*) is closed in
the topology w(X*, X) x R for all v* € K*9.

Theorem 2.11. Assume that one of (RCV?), i € {1,2,3,4}, is fulfilled. If T €

X is a properly efficient solution to (PVG), then there are the efficient solu-

tions (v*,7*,0,1,7) to (DVGY) and (v*,5*,7,7) to (DVGM) such that F(T) =

he (04,7%,0,3,5) = hef (7,7, 7, 7).

Proof. Since T € X is properly efficient to (PVG), there exists 7* € K* such that
(", F(T)) < (", F(x)), for all z € X.

Let us consider the problem inf,cx(v*F)(z) and its Wolfe type dual (cf. [2])
sup{—(7*®)*(0,y*) : v e X, y €Y, y* € Y*, (0,y") € 9(v*®)(u,y)}. From the
above inequality and the hypotheses we obtain via [2, Theorem 2] that there exists
y* € Y* such that
—@ ) (0,7) = sup {—(T°®)"(0,y")} = inf (7%, F(x)) = (5", F(z)),
y*ey* zeX
and (0,7*) € 0(v*®)(,0). Letting v = F(T), one sees that (v*,7*,9,7,0) € BY.

Moreover, (v*,%*,0,%,0) is an efficient solution to (DVGY). Indeed, if
(v*,7*,7,T,0) were not an efficient solution to problem (DVG"Y) there would exist
an element (v*,y*,v,u,y) € BY such that b (v*,y*,v,u,y) = v >k D = F(T).
But this contradicts the weak duality statement Theorem 2.9.

In order to deal with problem (DVGM™) we consider the Mond-Weir type dual to
inf,cx (T*®)(x,0) given by sup{(v*, ®(z,0)) : v € X,y* € Y*,(0,y*) € 0(0*®)(u,0)}.
In the same manner as for problem (DVG") we obtain that (v*,7*,v,7) is an effi-
cient solution to problem (DVG™M). O

Remark 2.12. For the strong duality statement we can also use the regularity
condition mentioned in [7, Remark 4.3.2], namely that for all v* € K*O the problem
inf e x (v*, F(z)) is stable.
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Remark 2.13. In case V = R and K = R;, identifying V* with R U {400}
and oog, with 400, for the function F' : X — R U {400} proper and convex, we
rediscover the Wolfe and Mond-Weir type scalar duality scheme from [7], as the
problem (PVG) becomes the general scalar optimization problem (PG) and the
vector duals (DVGY) and (DVGM) turn out to coincide with the scalar Wolfe and
Mond-Weir type duals to (PG) introduced in that paper, i.e. (DGw ) and (DGy),
respectively.

In the next sections we consider some special instances of the vector optimization
problem (PVG), more exactly, constrained and unconstrained vector optimization
problems. To these problems we attach vector duals which are special cases of

the vector duals (DVGY) and (DVGM), obtained by using different perturbation
vector functions.

3. NEw WOLFE TYPE AND MOND-WEIR TYPE DUALS FOR PARTICULAR CLASSES
OF PROBLEMS

3.1. Constrained vector optimization problems. We begin with vector duality
of Wolfe type and Mond-Weir type via linear scalarization for constrained vector
optimization problems obtained by using different vector perturbation functions.
We use the same framework as in the previous section, with Y partially ordered by
the nonempty convex cone C' C Y, and we consider the nonempty convex set S C X,
the proper K— convex function f : X — V* and the proper C'— convex function
g : X — Y* fulfilling dom f N SN g1 (C) # 0. The primal vector optimization
problem with geometric and cone constraints we work with is

PV, Mi
(PVe) Min /(2)
where

A={zeS:g(x)e-C}.
To it we attach different pairs of vector duals obtained by making use of some

perturbation functions.
Consider the Lagrange vector perturbation function @gL : X XY — V* given by

z), x€S,g(zx)ey—C,
(I)KL (z,y) :{ £<§K), othervgi(se). ’

By construction, it is K-convex. Using it, (PV) can be seen as a special case of
(PV@G). Let us see what happens with the vector duals attached to it in Section 2.

Let v* € K* y* ¢ Y*, v € V,u € X and y € Y. We have (0,y") €
8(U*<I>gL)(u, y) if and only if (v*q)gL)*(O,y*) + (v*@gL)(u,y) = (y*,y), ie. ((v*f)—
(y*9) + 05)*(0) + o+ (—y*) + (v f)(u) + ds(u) + d-c(g(u) —y) = (y*,y). Using
that 6" = dc+, we can rewrite the last relation as ((v*f) — (y*g) + 05)*(0) +
(0" f) = (y"9) +0s)(u) +6* o (—y*) +d-_c(g(u) —y) — (—y*, g(u) —y) = 0. Using the
Young-Fenchel inequality and the characterization of the subdifferential by its equal-
ity case, it follows that (0,y*) € O(U*fbgL)(u,y) is equivalent with 0 € 9((v*f) —
(y*g)+ds)(u), y* € —C* and d_c(g(u) —y) — (—y*, g(u) —y) = 0. On the other hand
(v*,v) < —(U*Q%L)*(O,y*) can be rewritten as (v*,v) < —((v*f)+(y*g)+3s)*(0, y*)
and y* € —C*, which is equivalent, by using the definition of the conjugate, with
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(v*,v—f(u)) < —(y*g)(u) and y* € —C*. Thus from (DVG") we obtain the Wolfe
vector dual of Lagrange type

(DVE) Max hgi (0", y*, v, u, )
(v*,y*,v,u,y)EBgVL
where
BE, = {0,y 0,u,y) € K x (—C*) x V X § x ¥ 1 (v, 0 = f(u)) <
—(y*9)(w),0 € O((v* f) — (y*g) + ds)(u),
o—c(g(u) —y) — (y*,g9(u) —y) =0}
and

hgf; (U*u y*a v, U, y) =1,

which can be equivalently rewritten as (cf. [2,4])

(DVCWL/) (v*,y*l}gi})(el%g; hIéVL W)
where
B&VL = {5y v,u) € KV xC* xV xS (wv— f(u) < (y*9)(u),
0€0((v'f) + (y*g) + 0s)(u)}
and

h‘gL(v*,y*,v,u) = .

As seen above, for v* € K*0 y* € Y* v € V and u € X we have that (0,y*)
8(v*<I>gL)(u, 0) means actually 0 € 9((v*f) — (y*g) + ds)(u), y* € —C*, g(u) € —
and —(y*g)(u) > 0. On the other hand, (v*,v) < <v*,<1>gL (u,0)) means (v*,v)
(v*f)(u), w € S and g(u) € —C.

Consequently, the vector dual problem (DVGM) turns into

IN Qm

(DVC]{) (v*,y*l}g,i})(eBgfL hg‘; (v*7 y*, 0, U)
where
BCML = {(*y*v,u) € K xC*xV xS:(y*g)(u) >0,9(u) € —C,
(v*,0) < (v f)(u),0 € I((v"f) + (y*g) + d5)(u)}
and

h%(v*,y*,v,u) = 0.
Note that in the constraints of this dual one can replace (y*g)(u) > 0 by (y*g)(u) =
0 without altering anything since g(u) € —C and y* € C*. Like in [2,4,7], from
(DVC{VL' ) we remove the constraint g(u) € —C, obtaining a new vector dual to (PV¢),
further referred to as the Mond-Weir vector dual of Lagrange type

MW MW (, % %
(DVCL ) (v* y*lyq?))éBCMW h‘CL (U 'Y 5 U, u)
b 1 L

where
BCMLW = {(v*,y*,v,u) € KO x C* xV xS :(y*g)(u) >0,
(v,0) < (W f)(u),0 € (v f) + (y*9) + ds)(u)
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and
MW x %
he, " (v 9%, v,u) = v.

Remark 3.1. Denote Ays = {(z,z,z) : x € X}. If one of the following conditions
(see [7])

(i) f and g are continuous at a point in dom f Ndomg N S;

(#4) dom fNint(S)Ndom g # @) and f or g is continuous at a point in dom fNdom g;

(7i1) X is a Fréchet space, S is closed, f is K —lower semicontinuous, g is C'—lower
semicontinuous and 0 € sqri(dom f x S X domg — Axs);

(tv) dim(lin(dom f x .S xdom g—As)) < 400 and ri(dom f)Nri(S)Nri(dom g) #
0; is satisfied, then, for all v* € K*9 and all y* € C*, it holds

A(v" )+ (y79) + 0) (@) = D" f) () + Ay’ 9) () + Ns(x) for all 2 € X.

Consequently, when one of these situations occurs the constraint involving the sub-
differential in (DVgg ), (DVC]VL[ ) and (DVC]{ W) can be modified correspondingly.

Remark 3.2. A vector dual similar to (DV(}/IL/ ), but with respect to weakly efficient
solutions, was introduced in [10], under quasidifferentiability hypotheses for the
functions involved. Later, it was mentioned also in [13], where the functions were
taken differentiable.

Let us compare now the image sets of these vector duals.
Proposition 3.3. One has th (BCML) - hAC/[LW(BCMLW) C hIéVL(BgVL)

Proof. The first inclusion is a consequence of the way (DVC]‘fW) is constructed,

while the second one follows since (v*,v — (v*f)(u)) < 0 < (y*g)(u) yields (v*,v —
O

(0" f)(u) < (y*g)(u).

Remark 3.4. The inclusions in Proposition 3.3 are in general strict, as the following
examples show.

Example 3.5. Let X = R, Y =R, V = R? C = R, K = ]Ri, S = Ry,
f:R—=R2 f(z)=(2,2)" and g: X — RU {+o0},
-, ifz >0
g(z) =4 1, ifx=0
400, ifxz<O0.

Then g(x) # 0 for all z € R and to obtain (y*g)(u) = 0 for some feasible u > 0 it
is binding to have y* = 0. Since when u > 0 and v* = (vf,v3)T the subdifferential
of the function (v*f 4 0g 4 d5)(-) = (v] +v3)(-) + 0r, (-) at w is the set {v] + v3},
the only eligible element for BCA{: would be u = 0, as g(u) = 400 when u < 0. But
g9(0) =1¢ —C, thus BML = 0.

On the other hand, for v* = (1/2,1/2)7 we have 0 € d((v*f) + (y*g) + 65)(0) =
(=00, 1], (¥*g)(u) = 0 and for v = (0, —1) we obtain that (v*,v)—(v*f)(u) = —1/2 <
0. Thus ((1/2,1/2)7,0,(0,—1),0) € BYW and ((1/2,1/2)", 0,(0,—1),0) € BY .
Therefore (0,—1) € h%LW(BgLW) N hzyL(B(V/yL)

Consequently, thL (BCWL) # h]\C/[L (BCML) and hé/[LW(Bcj‘?LW) # hCML (BCML)
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Example 3.6. Let X =R, Y = R>, V =R? C =R?, K = R?, § = Ry,
fiR— (R,
(1,1)Tz, ifz<o0,
flx) = { OOR? otherwise,
and g: R = R? g(z) = (z —1,—2)T.

Like in [2, Example 2] one can show that BgLW = (). On the other hand, for v* =
(1/2,1/2)T, y* = (0,0), u = 0 and v = (0,0)T the conditions involving them in BCWL
are satisfied, therefore ((1/2,1/2)7,(0,0),(0,0)T,0) € BCWL and (0,0)T € hg/L(BCWL)

Consequently, hZV‘L (BCWL) ¢ hé/[,LW(BCMLW).

In order to achieve strong duality for the vector duals of Lagrange type we at-
tached to (PV(), we need the fulfillment of some sufficient conditions. Particular-
izing (RCV"), i1 € {1,2,3,4} one gets the following regularity conditions

(RCV{,) | 32’ € dom f N S such that g(z') € —int(C);
(RCVC%L) X and Y are Fréchet spaces, S is closed, f is K— lower
semicontinuous, g is C'—epi closed and
0 € sqri(g(dom f NS Ndomg) + C);
(RC’VC%L) dim (lin(g(dom f N S Ndomg) + C)) < 400 and
0 € ri(g(dom f N S Ndomg) 4+ C);

and
(RCVéL) S is closed, f is K —lower semicontinuous, g is C'—epi closed and

U epi((v*f) + (y*g) + ds)* is closed in the topology
cCC*
Z}(X*,X) x R for all v* € K*0.

Particularizing the results from the general case, we obtain the following duality
statements.

Theorem 3.7 (weak and strong duality for (PV¢) and (DV(}/Z)) (a) There are no
x € A and (v*,y*,v,u) € BCWL such that f(x) <k thL(v*,y*, v,u).

(b) If T € A is a properly efficient solution to (PV¢) and one of the reqularity
conditions (RCVéL), i€{1,2,3,4} is fulfilled, then there exists (v*,y*,0,u) € BCWL
efficient solution to (DVCL/‘L/) such that f(z) = hIéVL (v*,y*, v, ).

Theorem 3.8 (weak and strong duality for (PV¢) and (DVC]‘f)) (a) There are no
x € A and (v*,y*,v,u) € BCML such that f(x) <k h%L(v*,y*, v, u).

(b) If T € A is a properly efficient solution to (PVg) and one of the reqularity
conditions (RCV&L), i€ {1,2,3,4} is fulfilled, then there exists (v*,y*,v,u) € BCML
efficient solution to (DVC]VVL[) such that f(T) = hé/[L (T*, 7%, v, ).

Analogously one can prove similar duality assertions for (DVCJ{ W), too.

Theorem 3.9 (weak and strong duality for (PV¢) and (DV(%W)). (a) There are
nox € A and (v*,y*,v,u) € BCMLW such that f(x) <k h]\C/ILW(v*,y*,v,u).

(b) If T € A is a properly efficient solution to (PV¢) and one of the reqularity
conditions (RCVéL), i €{1,2,3,4} is fulfilled, then there exists (v*,y*,0,u) € B%LW
efficient solution to (DV(%W) such that f(Z) = thLW (v*, 7%, v,).
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Remark 3.10. The regularity condition in Theorems 3.7(b), 3.8(b) and 3.9(b) can
be replaced by any condition which guarantees the stability of the optimization
problem inf,c 4(7* f)(x) with respect to its Lagrange dual.

Remark 3.11. If V = R and K = Ry, then the duals (DV/), (DVA!) and
(DV(% W) are nothing else than the scalar Wolfe and Mond-Weir dual problems
of Lagrange type corresponding to (PV¢) considered in [2], respectively. They

extend the classical Wolfe and Mond-Weir scalar dual problems from the literature
(see [2, Remark 4]).

Another vector perturbation function we consider is the Fenchel-Lagrange type
vector perturbation function @% . X x X xY = V?* given by
r+1t), x€ S gx)ey—C
e = { LoD eSa o

(I)V
0K, otherwise.

CrrL
By construction, it is K-convex, too. Let v* € K* t* € X* y* € Y*, v € V,
ueSCX,te X and y € Y. Following [4], we have (0,t*,y*) € a(v*‘bgm)(u,t,y)
if and only if u € S, g(u) —y € —=C, y* € =C*, t* € I(v*f)(u+1t) N (-0(—(y*g) +
ds)(u)) and (y*g)(u) = (t*,t). On the other hand, (v*,v) < —(U*Cbgn)*(o,t*,y*) is
equivalent to (v*,v) < (t*,u) — (v*f)*(t*) — (—y*¢)(u) and g(u) —y € —C. Noticing
that the variable y € Y can be omitted and changing the sign of y*, we obtain like
in [2,4] from (DVG") the following Wolfe vector dual of Fenchel-Lagrange type to
(PVo)

DVW MaX hW ’U*7t*7 *71}7 uyt

( CFL) (U*’t*@*vvvuvt)eBgFL CFL( Yy )

where

By, = {Wt5y50,u,t) € K x X* x C* x V x §x X : (v*,0) < (t*,u)

=" )" (") + (¥ g)(u), t* € O(v" f)(u+t) N (=0((y"g) + bs)(u))}
and
hg;L(v*,t*,y*,v,u,t) = .
Similarly with the Lagrange case, we obtain the vector dual problem that is a
special case of (DVGM), namely

DVM Max hM U*7 *; v, u
( CFL) (U*7y*7v,u)€BgIFL CFL( y )
where
o (u) € =C,

= {(*y*v,u) € KO xC*xV xS:(y*g)(u) > 0,9
(v*,0) < (0" f)(u),0 € O™ f)(u) + O((y"g) + ds)(u) }
and
h]\C/[FL(v*,y*,v,u) = .
Note that in its constraints one can replace (y*g)(u) > 0 by (y*g)(u) = 0 without
altering anything since g(u) € —C and y* € C*. Like in the other case, removing
the constraint g(u) € —C, one obtains another vector dual to (PV¢), further called

the Fenchel-Lagrange vector dual of Mond-Weir type
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(DVAIW) - %3};5% W (v 4, 0, u)
where
Bl = {(v*,y*,v,u) € K x C* x V x S: (y*g)(u) >0,
(v*,0) < (v f)(w),0 € O(v* f)(u) + 0((y"g) + ds)(u)
and
Rt (v*, g, v, u) = v.

Remark 3.12. Like in Remark 3.1 we can formulate some conditions for separating
the functions that appear together in the subdifferentials from the constraint sets
of the Fenchel-Lagrange vector duals to (PV¢) (see [7, Section 3.5]).

Using the way these vector duals to (PV) are constructed, one gets the following
inclusions, which turn out to be strict for the problems presented in Example 3.5
and, respectively, Example 3.6.

Proposition 3.13. One has !

e (By,) € by (BEy) € by, (BE,,)-

CrrL Crr Crr
In order to guarantee strong duality, one can particularize the regularity condi-
tions (RCV?), i € {1,2,3,4}. For instance, (RCV!) becomes
(RCV{,, ) | 32’ € dom f NS such that f is continuous at 2’ and
g(z") € —int(C)
and the others can be analogously obtained (see [4]).
From the general case we obtain the following weak and strong duality statements.

Theorem 3.14 (weak and strong duality for (PV¢) and (DVC‘Y"; )+ (a) There are
nox € A and (v*,t*,y*,v,u,t) € BgV,FL such that f(x) <g hg;L(v*,t*,y*,v,u,t).

(b) If 7 € A is a properly efficient solution to (PVc) and one of the regularity
conditions (RCV¢, ), i € {1,2,3,4} is fulfilled, then there exists (@, ", 7%, 0,u,1) €
B&L efficient solution to (DV(E/‘;L) such that f(z) = hc‘/‘y;L (T, t,7%,70,0,1).

Theorem 3.15 (weak and strong duality for (PV¢) and (DVé\iL)). (a) There are
nox € A and (v*,y*,v,u) € BCMFL such that f(x) <k hé/[FL(U*,y*,v,u).

(b) If T € A is a properly efficient solution to (PVc) and one of the regularity
conditions (RCV(, ), i € {1,2,3,4} is fulfilled, then there exists (V*,y*,v,u) €
B(]}/;L efficient solution to (DV(%L) such that f(Z) = WM (v, 7*,7,7).

Crr

Analogously one can prove the following duality statements for (DVC]‘I{ EV)

Theorem 3.16 (weak and strong duality for (PV¢) and (DVC%ZV)) (a) There are
nox € A and (v*,y*,v,u) € BC]‘?FVZ such that f(x) <k h%p‘f(v*,y*,v,u).

(b) If T € A is a properly efficient solution to (PVc) and one of the regularity
conditions (RCV(, ), i € {1,2,3,4} is fulfilled, then there exists (v*,y",v,u) €
Bé\fgf efficient solution to (DVC%EV) such that f(Z) = hé‘@f (v*, ¥, 0,).

Remark 3.17. The regularity condition in Theorems 3.14(b), 3.15(b) and 3.16(b)

can be replaced by any condition which guarantees the stability of the optimization
problem inf,c 4(v* f)(x) with respect to its Fenchel-Lagrange dual.
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Remark 3.18. If V = R and K = R, then the duals (DVCEZL), (DVC]‘iL) and
(DVC{\;{ ZV) are nothing else than the scalar Wolfe and Mond-Weir dual problems of
Fenchel-Lagrange type corresponding to (PV¢) considered in [2], respectively.

3.2. Unconstrained vector optimization problems. Using the same frame-
work as in Section 2, we consider the proper K — convex vector functions f : X —
Veand h : Y — V® and A : X — Y a linear continuous mapping such that
dom f N A~'(dom h) # 0. The primal unconstrained vector optimization problem

(PVa) Minlf(z) + h(Ax)

is a special case of (PVG) for F' = f+ho A and we consider the vector perturbation
function ®% : X x Y — V* defined by ®Y(z,y) = f(x) + h(Az + y), which is K-
convex by construction, too.

Using @Y, we obtain vector duals to (PV,4) which are special cases of (DVG")
and (DVGM), namely

(DVYV) Max Y (v*, y*, v, u, )
A (v*,y*,v,u,y)GBzV 4
where
BY = {(v*y*,v,u,y) e KOXxY*xV x X xY :y* € (A*) " H-0(v*f)(u))
NO(v*h)*(Au +y) and (v*,v) < —(v*f)*(=A*y") + (v*h)*(y*)}
and

Ry (v, g% 0,u,y) = v
and, respectively,

(DV) Max A (v* v, u)
(v*,v,u)eB]X[
where
B = {(v*v,u) € K¥xV xX:0€ (A)L(=0(w*f)(u)) — (v*h)(Au)
and (v*,v) < (v*, f(u) + h(Au))}
and

AL (0%, v, 1) = v.
For the primal vector problem (PVy) and its Wolfe and Mond-Weir vector duals,
namely (DV}V) and (DV}) the weak and strong duality statements follow from
the general case.

Back to (PV¢), seeing it as an unconstrained vector optimization problem, we
can attach to it two vector dual problems generated by (DVGY) and (DVG™) by
considering the Fenchel type vector perturbation function

0K, otherwise,

B, X x ¥ 5V @) = { [EFV T

which turns out to be K-convex, too. Thus, we get a Wolfe vector dual of Fenchel
type to (PV¢)
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(DVCW;) (v*,y*,%{[u%;()GBEYVF hIéVF Wty
where
BCVE; = {5y vuy) E KO XxY*xV x X x X: (v',v) < (y,u)—
W ) (y),y" € (v f)(u+y) N (=Na(u))}
and

hEV'F (’U*, y*a v, U, y) =v
and a Mond-Weir vector dual of Fenchel type to it

V) o iy P
where
Bé/; = {(w*v,u) € KO xV x X : (v*,0) < (v*f)(u),
0 € 0" f)(u) + Na(u)}
and

th (v*,v,u) = v.

Remark 3.19. In the definition of (DVé\ﬁ), the condition g(u) € —C' does not
appear explicitly. Thus we will not consider another Mond-Weir vector dual of
Fenchel type to (PV¢) in this case.

From Lemma 2.4 one can derive the following statement.
Proposition 3.20. One has h¥ (BCF) Chy (BCF)

From the general case one can quickly obtain the weak and strong duality theo-
rems.

Remark 3.21. If V = R and K = Ry, then the duals (DVZ) and (DVZ!) are
nothing else than the scalar Wolfe and Mond-Weir dual problems of Fenchel type
corresponding to (PV¢) considered in [2], respectively.

4. COMPARISONS BETWEEN DUALS

In this section we compare the image sets of some of the Wolfe type and Mond-
Weir type vector duals to (PV¢) with respect to the Lagrange, Fenchel and Fenchel-
Lagrange type vector perturbation functions.

Theorem 4.1. One has thL (BC%L) - hé\CIL (BCML) and hM (BCA@L) -y (BCF)

Crr
Proof. As the objective functions of the three vector maximization dual problems
are the same, being all equal to v, we show that the sets this vector can be taken
from fulfill the desired inclusions.

Let (v*,y*,v,u) be feasible to (DVCM ). Then 0 € O(v* f)(u) +9((y*g)+6s)(u) C
(") + (y°9) + 65)(w), (v*,v) < (W F)(w), (y"9)(u) > 0 and g(u) € ~C. This
yields that (v*,y*,v,u) is feasible to (DVCL)7 therefore the first inclusion we have
to show works.

Since Uy+cc+0((y*g) + 0s)(u) € N4(u), taking into consideration the way A is
defined it also follows that (v*, v, u) is feasible to (DVC]}I{ ). Consequently, the second
desired inclusion holds, too. O
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Concerning the “MW?” vector duals, one can easily prove, like above, the following
statement.

Theorem 4.2. One always has hMW (BMW) C hM (BCA{:W).

Crp \~CFrrL

However, the question if similar inclusions are valid also for the Wolfe type vector
duals to (PV¢) has, like in the scalar case (see [2]), a negative answer, as the
following examples show.

Example 4.3. LetX:R,Y:R,V:RQ,C:R+,K:R1,S:R,f:R—>
(R?)*,
)T, ifxz >0,
fla) = OOR2 otherwise,

and
—Z, 1f x S 07
g:R—=R, g(z) = { 0, otherwise.

Note that for all v* = (v}, v3)T € int(R%) and y* > 0 one has

o0 ) + (57 + d9)w) = o)) = { §11 T3k T2

otherwise.
Consequently, BCWL = 0.
On the other hand it can be shown that ((1/2,1/2)7,1,1,(0,0)%,0,1) € BCWFL,
thus (0,0)" € k¢ (B,,). Indeed, for v* = (1/2,1/2)T, ¢* = 1,y* = 1, v = (0,0)”,
u = 0 and ¢t = 1, the validity of the subdifferential constraint was proven in [4,

Example 4.22], While the inequality constraint means (v*, v) — (t*,u) + (v* f)*(t*) +
(y"g)(u) = ((1/2,1/2)" (0, 0)* A (1, 0) + ((1/2 1/2)7 £)*(1) + (19)(0) = 0, which
is true. Consequently, hCFL(BCFL SZ hey BCL)

Example 4.4. Let X =R?> Y =R, V=R? C=R,, K :Ra_,

3<x9<4, ifzx;=0
T 1<a9<4, ifx€(0,2] [’

™2 2ve ()T, ifa <0,
PR @ S = { ) e

and g : R? = R, g(xl,xg)zo

S:{(xl,xg)T€R2:0<x1<2

For v* :(1/2 1/2)T, y* € Ry, v = (2,3)T and u = (0,3) we have (0,0) €
(" f) + (y*9) + ds)(u) < (0,0) € ((((1/2, 1/2)T) f)+ (g) + 05)(0,3) = R x
(=00, 1] and (", v—f(u)) +(y"g)(u) = ((1/2, 1/2)%,(2, 3)T—f(073)>+(y*g)(0a3) <
0. It follows that ((1/2,1/2)7,y*, (2 3)T ( 3)) € BY ¢, and (2,3)7 ¢ hg/L( EVL)
Analogously it can be shown that (2,3)7 (BM ), too.

Trying to find an element from BW - Such that (2,3)” € hCFL (BO ), leads to a
contradiction (cf. [4, Example 4.21]). Consequently, hW BW ¢ hCFL (BY ).

C
On the other hand, due to the fact that g is everywhere equal to 0, tﬂé image
sets of the the Lagrange type vector duals to (PV¢) obtained from (DVGW) and
(DVGy) take as values only vectors with equal entries, so (2,3)7 cannot belong

there. Consequently, in general, h (BY) # hM (BYM) and ¥ (BYY) # h$, (BS,).
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Example 4.5. Consider again the situation from Example 3.5. Here A = (0, +00),
Na(u) = {0} for all u € A, d(v*f)(u) = {vi + v}} for all v* = (v},v3)T € int(R%)
and v € R, thus d(v*f)(u + y) N (—N4(u)) = 0 for all w € S and all y € R.
Consequently, BCVE; =

On the other hand, it can be shown that ((1/2,1/2)7,0,0,(0,0)7,0,0) € B&‘L’
thus (0,0)" € hgl (B ). Indeed, for v* = (1/2,1/2)", ¢* =0, y* = 0, v = (0,0)",
u = 0 and ¢t = 0, the subdifferential inclusion t* € d(v*f)(u + t) N (=9((y*g) +
ds)(u)) = [0,1] is fulfilled. Then, the inequality constraint means (v*,v) — (t*,u) +
(W) (") +(y"g)(u) = ((1/2, 1/2) (0, 0) ) 10,00+ +((1/2,1/2)7 £)*(0)+(09)(0) =

0, which is true. Therefore, h¢¥ (B ) € hir (BE.).

Example 4.6. Let X =R? Y =R,V =R? C =R, K:Ra_,

3§l‘2§4, lfl‘l:O
" 1<aa<4, ifa;€(0,2 [’
A={0}x[3,4], f: R* - R, f(3017$2) = (z2,22)" and g : R? — R, g(x1,22) = 1.
For v* = (1/2,1/2)T, y* = (0,1)T, v = (3,3)", u = (0,3) and y = (0,0) one
can see that y* € d(v*f)(u +y) N (— A(u)) 0,1)7 € 9((1/2,1/2)T £)(0,3) N
v) —

(=Na(0,3)) = {0} x (—o0,1] and (v* (" u) + (0 f)*(y*) = ((1/2,1/2)"
(3,3)7) — {((0,)T, (0,3)) + ((1/2,1/2)Tf) (0,1) = 0. It follows that ((1/2,1/2)7,

S:{(xl,xg)T€R2:0§x1§2

(0,1)7,(3,3)7,(0,3),(0,0)) € BgVF and (3, ) € hir (BZ). On the other hand,
assuming that (3 3) E hCFL (BC ,) leads to a contradlctlon cf. [4, Example 4.23].
Consequently, h ;(_ hCFL BCVE; ;

Remark 4.7. From the examples given above one can construct situations which
demonstrate that in general no inclusion holds between the image sets of (DVCYZ )

and (DVCY‘;).

5. CONCLUSIONS AND FURTHER CHALLENGES

Following the investigations from [2,4], we propose two new duality schemes for
general vector optimization problems for which properly efficient solutions are con-
sidered, based on the generalized scalar Wolfe and Mond-Weir duality schemes,
by exploiting the vector duality approach from [8,9,11]. The new vector duals
we propose to a general vector minimization problem have larger images than their
counterparts introduced in [4] and we show for them weak and strong vector duality.
Then, after particularizing the primal problem to be constrained, respectively un-
constrained, we obtain as special cases new vector duals for each of these problems,
via different vector perturbation functions. We also investigate which inclusions
can be established between the vector duals assigned to the constrained vector min-
imization problem. Examples to illustrate that the newly introduced vector duals
do not coincide and they are actually different to the ones from [4] are also given.

However, our investigations are far from being complete, some open questions
remaining left for future research. For instance, it would be interesting to find weak
sufficient conditions that guarantee the coincidence of some of the different vector
dual problems we assigned to a primal vector optimization problem. The hypothe-
ses that guarantee strong duality for the Fenchel-Lagrange type duals ensure their
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coincidence with the Fenchel and Lagrange corresponding duals, respectively, but
they may be actually too strong. Another interesting question refers to the maximal
sets of the vector duals we introduced in this paper. Do they always coincide with
their counterparts from [4]7? So far, we could not find any counterexamples to con-
tradict this fact, but unfortunately neither a proof for it. Moreover, the approach
we employ opens the gate towards further developing the Wolfe and Mond-Weir
vector duality concepts towards using other scalarization functions than the linear
ones, as has been done for the Fenchel-Lagrange duality in [3,5,7]. Last but not
least, in the spirit of the classical Wolfe and Mond-Weir duality investigations, a
legitimate question is how should one modify the hypotheses of the weak and strong
duality statements when the convexity assumptions imposed on the involved func-
tions are weakened to some generalized convexity notions like pseudoconvexity or
quasiconvexity.

Analogously to the investigations in this paper one can introduce a similar vector
duality scheme for a general vector optimization problem for which weakly efficient
elements are considered and, consequently, for its special cases. We did not include
them here since everything works in the same manner, the only changes consisting
in reformulating the vector duals by taking the variable v* from K*\ {0} and dealing
only with weakly efficient solutions.

REFERENCES

[1] R. L Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Math-
ematical Systems 637, Springer-Verlag, Berlin Heidelberg, 2010.

[2] R. L. Bot and S.-M. Grad, Wolfe duality and Mond-Weir duality via perturbations, Nonlinear
Analysis: Theory, Methods & Applications 73 (2010), 374-384.

[3] R. I Bot and S.-M. Grad, Duality for vector optimization problems via a general scalarization,
Optimization 60 (2010), 1269-1290.

[4] R. I Bot and S.-M. Grad, Extending the classical vector Wolfe and Mond-Weir duality concepts
via perturbations, Journal of Nonlinear and Convex Analysis 12 (2011), 81-101.

[5] R. I Bot, S.-M. Grad and G. Wanka, A general approach for studying duality in multiobjective
optimization, Mathematical Methods of Operations Research 65 (2007), 417-444.

[6] R. I. Bot, S.-M. Grad and G. Wanka, A new constraint qualification for the formula of the
subdifferential of composed convex functions in infinite dimensional spaces, Mathematische
Nachrichten 281 (2008), 1088-1107.

[7] R. I Bot, S.-M. Grad and G. Wanka, Duality in Vector Optimization, Springer-Verlag, Berlin
Heidelberg, 2009.

[8] W. Breckner and I. Kolumbdn, Dualitat bei Optimierungsaugaben in Topologischen Vek-
torraumen, Mathematica 10 (1968), 229-244.

[9] W. Breckner and I. Kolumbén Konveze Optimierungsaufgaben in Topologischen Vektorrdaumen,
Mathematica Scandinavica 25 (1969), 227-247.

[10] T. Q. Chien, Nondifferentiable and quasidifferentiable duality in vector optimization theory,
Kybernetika 21 (1985), 298-312.

[11] J. Jahn, Vector Optimization - Theory, Applications, and Extensions, Springer-Verlag, Berlin-
Heidelberg, 2004.

[12] B. Mond and T. Weir, Generalized concavity and duality, in Generalized concavity in opti-
mization and economics, S. Schaible, W.T. Zemba (eds.), Proceedings of the NATO Advanced
Study Institute, University of British Columbia, Vancouver, 1980, Academic Press, New York,
1981, pp. 263-279.

[13] T. Weir, B. Mond and B. D. Craven On duality for weakly minimized vector valued optimization
problems, Optimization 17 (1986), 711-721.



884 S.-M. GRAD AND E.-L. POP

[14] P. Wolfe A duality theorem for non-linear programming, Quarterly of Applied Mathematics
19 (1961), 239-244.

Manuscript received November 23, 2011
revised October 18, 2012

SORIN-MIHAI GRAD
Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
FE-mail address: sorin-mihai.grad@mathematik.tu-chemnitz.de

EMILIA-LOREDANA POP
Faculty of Mathematics and Computer Science, Babeg-Bolyai University, 1 Mihail Kogalniceanu,
400084 Cluj-Napoca, Romania

E-mail address: pop_emilia_loredana@yahoo.com



