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2. Retractions. Retractible operators. Examples

In this section we shall present some notions, results and examples from the
retraction theory (see , [1], [2], [10], [11], [12], [13], [20], [22], [36], ...).

Let X be a nonempty set and Y ⊂ X a nonempty subset of X. An operator
r : X → Y is a set retraction if r(X) = Y and r

∣∣
Y
= 1Y .

If X is a structured set (partial ordered set, topological space,...) then r : X → Y
is a retraction with respect to that structure if r is a set retraction and r is a
morphism with respect to that structure (increasing, continuous,...). So, we can
have set retractions, ordered set retractions, topological retractions etc.

An operator f : Y → X is retractible with respect to a retraction r : X → Y if
Ff = Fr◦f , where Ff := {x ∈ Y : f(x) = x} denotes the set of fixed points of f .

Example 2.1 (The radial retraction). Let (X,+,R, ∥ · ∥) be a Banach space and
BR := {x ∈ X : ∥x∥ ≤ R}. The operator r : X → BR defined by

r(x) :=


x if ∥x∥ ≤ R,

R

∥x∥
x if ∥x∥ ≥ R,

is a set retraction.
Let f : BR → X be an operator such that:

(2.1) x ∈ X, ∥x∥ = R, λ ∈ R∗
+, f(x) = λx⇒ λ ≤ 1.

Then f is retractible with respect to the radial retraction r.
Condition (2.1) is called the Leray-Schauder boundary condition.
It is clear that the radial retraction is a continuous retraction, i.e., a topolog-

ical retraction. If X is a Hilbert space (see [19]), then the radial retraction is a
nonexpansive operator.

Example 2.2 (Ordered set retraction). Let (X,≤) be a partially ordered set with
the least element, 0. Let Y ⊂ X be a nonempty subset such that:

(i) 0 ∈ Y ;
(ii) (Y,≤) is conditionally complete, i.e., if Z ⊂ Y is a nonempty bounded subset,

then there exist supZ and inf Z.
Let r : X → Y be defined by

r(x) :=

{
x if x ∈ Y
supY ([0, x] ∩ Y ), if x ∈ X \ Y.

The operator r is an increasing set retraction, i.e., an ordered set retraction of X
onto Y .

Let f : Y → X be an operator such that:

x ∈ Y, f(x) ∈ X\Y ⇒ sup
Y

([0, f(x)] ∩ Y ) ̸= x.

Then the operator f is retractible with respect to the retraction r.

Example 2.3. Let (X,+,R) be a linear space and Y ⊂ X a nonempty subset. A
set retraction r : X → Y is by definition a sunny retraction if

r(r(x) + t(x− r(x))) = r(x), ∀x ∈ X and ∀t ∈ R+.
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(Note that this concept and term first appear in [12] and [29]). For example, if X
is a Banach space and Y := BR, then the radial retraction is a sunny retraction.

Example 2.4. If (X,→,≤) is an ordered L-space and f : X → X is a weakly
Picard operator, then f∞ : X → Ff , defined by

f∞(x) = x∗, where x∗ := lim
n→∞

fn(x),

is a set retraction. Moreover, if f is increasing, then f∞ is increasing, too, but if
f is continuous, then f∞ is not continuous, in general. (Recall, see [32], that f is
a weakly Picard operator if there exists lim

n→∞
fn(x) ∈ Ff , f

∞(x) := lim
n→∞

fn(x), for

all x ∈ X).

Problem 2.5. Let X be a structured set (e.g., partial ordered set, linear space,
topological space etc.), Y ⊂ X a nonempty subset of X and f : Y → X an operator.
Under which conditions there exists a retraction r : X → Y such that f is retractible
with respect to r ?

3. Admissible perturbations of an non-self operator

Let X be a nonempty set, Y ⊂ X a subset of X, G : Y × Y → Y an operator,
r : X → Y a set retraction and f : Y → X. We suppose that (see [35]):

(A1) G(x, x) = x, ∀x ∈ Y ;
(A2) G(x, y) = x⇒ y = x.

We consider the operator fG,r : Y → Y defined by

fG,r(x) := G(x, r ◦ f(x)),∀x ∈ Y.

We have

Lemma 3.1. We suppose that:
(i) G satisfies (A1) and (A2);
(ii) f is retractible with respect to r.
Then

FfG,r
= Ff .

Proof. It is clear that Ff ⊂FfG,r
. Now, let x∈FfG,r

. We have G(x, r ◦ f(x))=x. By
(A2) it follows that r◦f(x) = x. Since f is retractible with respect to the retraction
r, i.e., Ff = Fr◦f ., we have f(x) = x. �

Definition 3.2. If G satisfies (A1) and (A2) and f is retractible with respect to r,
then by definition fG,r is called an admissible perturbation of f .

Example 3.3. Let (X,+,R) be a linear space, Y ⊂ X a nonempty convex subset,
λ ∈]0, 1[, f : Y → X an operator, r : X → Y a set retraction and G : Y × Y → Y
be defined by

G(x, y) := (1− λ)x+ λy.

If f is retractible with respect to r, then fG,r is an admissible perturbation of the
operator f .
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Example 3.4. Let (X, d) be a metric space and W : X × X × [0, 1] → X an
operator. If

d(u,W (x, y, λ) ≤ λd(u, x) + (1− λ)d(u, y), ∀x, y, u ∈ X,λ ∈ [0, 1],

then by definition (X, d) is said to be endowed with the Takahashi’s W -convex
structure. Moreover, we suppose that

λ ∈]0, 1[,W (x, y, λ) = x⇒ y = x.

Let λ ∈]0, 1[, Y ⊂ X be a W -convex subset, f : Y → X and G(x, y) := W (x, y, λ).
Let also r : Y → X be a set retraction such that f is retractible with respect to r.
Then the operator fG,r is an admissible perturbation of the operator f .

4. Iterative algorithms in terms of admissible perturbations

Let (X,→) be an L-space, Y ⊂ X a subset, r : X → Y a set retraction, and the
operators G, Gn : Y × Y → Y , n ∈ N. We suppose that fG,r, fGn,r , n ∈ N, are
admissible perturbations of f with respect to r.

In this section we present some examples of iterative algorithms in terms of
admissible perturbations. For the case of self operators see [35].

Example 4.1 (The GKr-algorithm). We consider the algorithm

(4.1) x0 ∈ Y, xn+1 = G(xn, r ◦ f(xn)), n ∈ N∗.

First of all, we note that

xn = fnG,r(x0), n ∈ N.
By definition, the algorithm (4.1) is convergent if and only if

xn → x∗(x0) ∈ Ff as n→ ∞, ∀x0 ∈ Y.

So, the algorithm (4.1) is convergent if and only if the operator fG is a WPO (see
[32] and [33] for the theory of weakly Picard operators). If fG,r is an admissible
perturbation of f and fG,r is a WPO, then

f∞G,r : X → Ff , f
∞
G,r(x) := x∗(x), ∀x ∈ Y,

is a set retraction.
The algorithm (4.1) is called the Krasnoselskij algorithm corresponding to G and

r or the GKr-algorithm.

Remark 4.2. For the classical Krasnoselskij algorithm see [5], [7], [14], [15], [24],
[28], [34] and [42].

Example 4.3 (GMr-algorithm). Let us consider the following algorithm

(4.2) x0 ∈ Y, xn+1 := fGn,r(xn) = Gn(xn, r ◦ f(xn)), n ∈ N.

By definition, the algorithm (4.2) is convergent if and only if

xn → x∗(x0) ∈ Ff as n→ ∞, ∀x0 ∈ Y.

If the algorithm (4.2) is convergent, then as in the previous example, the operator

f∞G,r : X → Ff , f
∞
G,r(x) := x∗(x), ∀x ∈ Y,
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is a set retraction.
The algorithm (4.2) is called the Mann algorithm corresponding to G = (Gn)n∈N∗

and r or the GMr-algorithm.

Remark 4.4. For the classical Mann algorithm see [5], [14] and [15].

Example 4.5 (GHr-algorithm). Let u ∈ X. We consider the operator fGn,r,u :
Y → Y defined by

fGn,r,u(x) := Gn(u, r ◦ f(x)), x ∈ Y, n ∈ N∗,

and the algorithm

(4.3) x0 ∈ Y, xn+1 = fGn,r,u(xn), n ∈ N∗.

We suppose that the algorithm (4.3) is convergent, i.e.,

xn → x∗(u, x0) ∈ Ff , as n→ ∞, ∀u, x0 ∈ Y.

In this case, we define the operator

f∞GHr
: Y → Ff , f

∞
GHr

(x) := x∗(x, x).

We remark that f∞GHr
is a set retraction.

The algorithm (4.3) is called the Halpern algorithm corresponding to G = (Gn)n∈N
and r, or the GHr-algorithm.

Remark 4.6. For the classical Halpern algorithm see [5], [14], [15].

Example 4.7 (G1G2Ir-algorithm). Let G1n, G2n : Y × Y → Y , n ∈ N be two
sequences of operators and r : X → Y a set retraction. We suppose that fG1n,r ,
fG2n,r are admissible perturbations with respect to r, for all n ∈ N∗ and that the
algorithm

(4.4) x0 ∈ Y, xn+1 = G2n (xn, r ◦ f (G1n(xn, r ◦ f(xn))) , n ∈ N
is convergent, i.e.,

xn → x∗(x0) ∈ Ff as n→ ∞, ∀x0 ∈ Y.

If we consider the operator

f∞G1G2r : X → Ff , f
∞
G1G2r(x) := x∗(x),

then we note that the operator f∞G1G2r
is a set retraction. Let us denote

fG1G2r(x) := G2n (x, r ◦ f (G1n(x, r ◦ f(x))) .
The algorithm (4.4) is called the Ishikawa algorithm corresponding to Gi = (Gin)n∈N,
i = 1, 2 and to retraction r, or the G1G2I-algorithm.

Remark 4.8. For the classical Ishikawa algorithm see [5], [14], [15].

Problem 4.9. Study the convergence of the above algorithms, in terms of Y ⊂ X,
f : Y → X and G(Gn, G1n, G2n), in the following cases for X:

• X is a Hilbert space;
• X is a Banach space;
• X is a metric space.

In what follow we shall study the following problem:
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Problem 4.10. Which properties have the solutions of a fixed point equation for
which a given iterative algorithm converges ?

5. Data dependence

Let (X, d) be a metric space, Y ⊂ X a subset of X and f, g : Y → X two
operators. Let fG,r and gG,r be the corresponding admissible perturbations with
respect to r associated to f and g, respectively.

Let us first remind, see [32], that a map T : X → X is a Picard operator (PO) if:
(i) FT = {x∗}; (ii) Tn(x) → x∗, as n→ ∞ for all x ∈ X. The PO T is called a ψ-PO
with respect to d if there exists an increasing function ψ : R+ → R+ continuous at
0 with ψ(0) = 0 and such that

(5.1) d(x, x∗) ≤ ψ(d(x, T (x))), ∀x ∈ X.

We have

Lemma 5.1. We suppose that:
(i) fG,r is a ψ − PO with respect to d;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, ∀x ∈ Y ;

(iii) there exists l2 > 0 such that

d(G(x, y), G(x, z)) ≤ l2d(y, z), ∀x, y, z ∈ Y ;

(iv) there exists lr > 0 such that

d(r(x), r(y)) ≤ lrd(x, y), ∀x, y ∈ Y ;

(v) Fg ̸= ∅.
If we denote by x∗f the unique fixed point of f , then

d(x∗f , x
∗
g) ≤ ψ(l2lrη), ∀x∗g ∈ Fg.

Proof. From (i) we have

d(x, x∗f ) ≤ ψ(d(x, fG,r(x)), ∀x ∈ Y.

For x = x∗g, we have

d(xg, x
∗
f ) ≤ ψ(d(x∗g, fG,r(x

∗
g))) = ψ(d(gG,r(x

∗
g), fG,r(x

∗
g))).

On the other hand, from (ii), (iii) and (iv) it follows that

d(gG,r(x), fG,r(x)) = d(G(x, r ◦ g(x)), G(x, r ◦ f(x)))
≤ l2d(r ◦ g(x), r ◦ f(x)) ≤ l2lrd(f(x), g(x)) ≤ l2lrη.

So,

d(x∗g, x
∗
f ) ≤ ψ(l2lrη).

�
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In order to state and prove the next Lemma we shall need the following condition
that appears in the WPO theory [32]: let (X, d) be a metric space and let f : X → X
be a ψ-WPO, i.e., a mapping f which satisfies

(5.2) d(x, f∞(x)) ≤ ψ(d(x, f(x)), ∀x ∈ X,

where ψ : R+ → R+ is increasing, continuous at 0 and ψ(0) = 0.

Lemma 5.2. We suppose that:
(i) fG,r and gG,r are ψ-WPOs;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, ∀x ∈ Y ;

(iii) there exists l2 > 0 such that

d(G(x, y), G(x, z)) ≤ l2d(y, z), ∀x, y, z ∈ Y ;

(iv) there exists lr > 0 such that

d(r(x), r(y)) ≤ lrd(x, y), ∀x, y ∈ Y.

Then,

Hd(Ff , Fg) ≤ ψ(l2lrη).

Proof. We have

d(gG,r(x), fG,r(x)) ≤ l2lrη.

Now the proof follows from the corresponding data dependence lemma for ψ-WPOs,
see [32]. �

Now we give some applications of the above lemmas.

Example 5.3. Let X be a real Hilbert space, Y ⊂ X a closed convex subset of X
and f : Y → X a contraction with contraction coefficient c.

Let r : X → Y be the metric projection of X onto Y , defined by

∥x− r(x)∥ := min
y∈Y

∥x− y∥ , for all x ∈ X.

It is known, see for example [26], that r is a nonexpansive set retraction. Consider
now the Krasnoselskij averaged mapping

G(x, y) = λx+ (1− λ)y, x, y ∈ Y,

with λ ∈ (0, 1). Then the admissible perturbation associated to f and G with respect
to r, given by

fG,r(x) = λx+ (1− λ)r(f(x)), x ∈ X,

is a ψ-PO with ψ(t) =
1

(1− c)(1− λ)
t, t ∈ R+.

Indeed, since r is nonexpansive and f is a c-contraction, we have

∥fG,r(x)− fG,r(y)∥ = ∥λ(x− y) + (1− λ) [r(f(x))− r(f(y))]∥

≤ λ ∥x− y∥+ (1− λ) ∥f(x)− f(y)∥ ≤ (λ+ c− cλ) ∥x− y∥ .
If we also assume that

f(∂K) ⊂ K
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then f is retractible with respect to r. Since r◦f is c-contraction, it follows that f has
a unique fixed point in Y , say x∗f , and that the GKr-algorithm {xn}, xn = fnG,r(x0),
converges strongly to x∗f , for any x0 ∈ Y .

Now, let g : Y → X be a mapping with Fg ̸= ∅ for which there exists η > 0 such
that (ii) in Lemma 5.1 is satisfied.

Then we have the following data dependence result:∥∥x∗f − x∗g
∥∥ ≤ λη

(1− c)(1− λ)
, ∀x∗g ∈ Fg.

To prove the previous assertion we apply Lemma 5.1 and use the fact that in this
case l2 = λ and lr = 1.

Example 5.4. Using the same setting and notations as in the previous example
and based on a theorem due to Browder and Petryshyn (see [5], Theorem 3.3), we
can similarly deduce a data dependence result for the case of nonself mappings.

Here we shall have a bounded closed convex subset Y ⊂ X, f : Y → X is a
nonexpansive operator with a unique fixed point in Y and the convergence of the
GKr-algorithm is only weak.

Example 5.5. Let X be a real Hilbert space, Y ⊂ X a nonempty closed convex
subset of X and f : Y → X a generalized pseudo-contraction with contraction
coefficient c ∈ (0, 1), see [4], that is, a mapping satisfying

∥f(x)− f(y)∥2 ≤ c2 ∥x− y∥2 + ∥f(x)− f(y)− c(x− y)∥2

for all x, y ∈ Y . Also suppose that f is Lipschitzian with constant L > 0, and c ≤ L.
If we consider now the Krasnoselskij averaged mapping

G(x, y) = λx+ (1− λ)y, x, y ∈ Y,

with λ ∈ (0, 1), then the admissible perturbation associated to f and G with respect
to the metric projection r of X onto Y ,

fG,r(x) = λx+ (1− λ)r(f(x)), x ∈ X,

is a ψ-PO with ψ(t) =
1

1− θ
t, t ∈ R+, where θ =

2(1− c)

1− 2L+ L2
(see [4] for details).

If we also assume that

f(∂K) ⊂ K

then by the main theorem in [18], it follows that f has a unique fixed point in Y ,
say x∗f , and that the GKr-algorithm {xn}, xn = fnG,r(x0), converges strongly to x∗f ,

for any x0 ∈ Y and any λ ∈
(
0,

2(1− c)

1− 2L+ L2

)
.

Let g : Y → X be a mapping with Fg ̸= ∅ for which there exists η > 0 such that
(ii) in Lemma 5.1 is satisfied.

Then, similarly to Example 5.3, we have the following data dependence result:∥∥x∗f − x∗g
∥∥ ≤ λη

(1− c)(1− λ)
, ∀x∗g ∈ Fg.
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Remark 5.6. In the iterative approximation of fixed point the following condition
appears (named condition (D) in [5], condition (A) in [40], [16], and condition I in
[34]; see also [39]).

Condition (D) : Ff ̸= ∅ and there exists an increasing function θ : R+ → R+

with θ(0) = 0, θ(t) > 0 for t > 0 such that

(5.3) d(x, f(x)) ≥ θ(d(x, Ff )), ∀x ∈ X.

Clearly, (5.2) is related to the ψ-PO and ψ-WPO conditions (5.1) and (5.2). For
example, if the function θ is a bijection and Ff = {x∗}, then by (D) we get exactly
the ψ-PO condition (5.1) with ψ := θ−1.

Problem 5.7. Study the data dependence in the case of: (i) GMr-algorithm; (ii)
GHr-algorithm; (iii) G1G2Ir-algorithm.

6. Stability of an iterative algorithm

Taking into account the various notions of stability in Difference equations, Dy-
namical systems, Differential equations, Operator theory and Numerical analysis,
in this section we try to unify these notions (see [4], [25], [35], ...).

Let (X, d) be a metric space, Y ⊂ X a subset of X, f : Y → X an operator,
r : X → Y a set retraction and G,Gn, G1n, G2n : Y × Y → Y be such that fG, fGn ,
fG1n and fG2n , n ∈ N, are admissible perturbations of f .

Definition 6.1. The operator f has a stable GKr-sequence at x0 ∈ Y if for every
ε > 0, there exists δ(ε) > 0 such that:

x0 ∈ Y, xn+1 = G(xn, r ◦ f(xn)), n ∈ N,
y0 ∈ Y, yn+1 = G(yn, r ◦ f(yn)), n ∈ N,

and

d(x0, y0) < δ(ε) implies that d(xn, yn) < ε, for all n ∈ N.
The operator f has stable GKr-sequences on Y if it has a stable GKr-sequence at
each x0 ∈ Y .

The operator f has attractive GKr-sequence at x0 if there exists δ > 0 such that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→ ∞.

Definition 6.2. The operator f has a stable GMr-sequence at x0 ∈ Y if for every
ε < 0, there exists δ(ε) > 0 such that:

x0 ∈ Y, xn+1 = f(xn), n ∈ N; y0 ∈ Y, yn+1 = fGn,r(yn), n ∈ N,

and

d(x0, y0) < δ(ε) implies that d(xn, yn) < ε, for all n ∈ N.
The operator f has stable GMr-sequences on Y if it has stable GMr-sequence at
each x0 ∈ Y .

The operator f has attractive GMr-sequence at x0 if there exists δ > 0 such that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→ ∞.
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Definition 6.3. The operator f has a stable GHr-sequence at x0 ∈ Y if for every
ε > 0, there exists δ(ε) > 0 such that:

x0 ∈ Y, xn+1 = Gn(x0, f(xn)), n ∈ N,
y0 ∈ Y, yn+1 = Gn(y0, f(yn)), n ∈ N,

and
d(x0, y0) < δ(ε) implies that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable GHr-sequences on Y if is has a stable GHr-sequence at
each x0 ∈ Y .

The operator f has attractive GHr-sequence at x0 if there exists δ > 0 such that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→ ∞.

Definition 6.4. The operator f has a stable G1G2Ir-sequence at x0 ∈ Y for every
ε > 0 there exists δ(ε) > 0 such that:

x0 ∈ Y, xn+1 = fG2n,r ◦ fG1n,r(xn), n ∈ N,
y0 ∈ Y, yn+1 = fG2n,r ◦ fG1n,r(yn), n ∈ N,

and
d(x0, y0) < δ(ε), imply that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable G1G2Ir-sequences on Y if it has a stable G1G2Ir-sequence
at each x0 ∈ Y .

The operator f has attractive G1G2Ir-sequence at x0 if there exists δ > 0 such
that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→ ∞.

By definition, the operator f has asymptotically stable sequence at x0 generated by
an algorithm if this sequence is both stable and attractive.

Definition 6.5. The operator f has the limit shadowing property with respect to
GKr-algorithm if

yn ∈ Y, n ∈ N, d(yn+1, fGr(yn)) → 0 as n→ ∞
implies that there exists x0 ∈ Y such that

d(yn, f
n
Gr

(x0)) → 0 as n→ ∞.

Definition 6.6. The operator f has the limit shadowing property with respect to
GMr-algorithm if

yn ∈ Y, n ∈ N, d(yn+1, fGn,r(yn)) → 0 as n→ ∞
implies that there exists x0 ∈ Y such that

d(yn, fGn,r ◦ fGn−1,r ◦ · · · ◦ fG0,r(x0)) → 0 as n→ ∞.

Definition 6.7. The operator f has the limit shadowing property with respect to
GHr– algorithm if

yn ∈ Y, n ∈ N, d(yn+1, Gn(y0, r ◦ f(yn)) → 0 as n→ ∞
implies that there exists x0 ∈ Y such that

d(yn, Gn(x0, r ◦ f(·)) ◦ . . . G0(x0, r ◦ f(x0)) → 0 as n→ ∞.



AN ABSTRACT POINT OF VIEW ON ITERATIVE APPROXIMATION OF FIXED POINTS 861

Definition 6.8. The operator f has the limit shadowing property with respect to
G1G2Ir-algorithm if

yn ∈ Y, n ∈ N, d(yn+1, fG2nG1nr(yn)) → 0 as n→ ∞
implies that there exists x0 ∈ Y such that

d(yn, fG2nG1nr ◦ · · · ◦ fG2nG1nr(x0)) → 0 as n→ ∞.

Definition 6.9. An iterative algorithm (Picard-retraction algorithm, GKr-algorithm,
GMr-algorithm, GHr-algorithm, GG2Ir- algorithm) is stable with respect to an op-
erator f : Y → X if it is convergent with respect to f and the operator f has the
limit shadowing property with respect to this algorithm.

For a better understanding of the above definitions see the remarks and examples
in section 6 of the paper [35].

Problem 6.10. Study the stability of: (i) GKr-algorithm; (ii) GMr-algorithm;
(iii) GHr-algorithm; (iv) G1G2Ir-algorithm.

7. Gronwall lemmas

We begin our considerations with the GKr-algorithm.
Let (X,→,≤) be an ordered L-space, Y ⊂ X a subset of X, f : Y → X an

operator and fG,r an admissible perturbation of f with respect to the set retraction
r : X → Y , where . We have

Lemma 7.1. We suppose that:
(i) fG,r is PO;
(ii) G, r and f are increasing.

Then, Ff = {x∗} and
(a) x ∈ Y , x ≤ f(x) ⇒ x ≤ x∗;
(b) x ∈ Y , x ≥ f(x) ⇒ x ≥ x∗.

Proof. The fact that fG,r is an admissible perturbation of f implies that ffG,r
= Ff .

From (i) it follows that ffG,r
= {x∗}. So, Ff = {x∗}. Now, let us prove (a). The

condition (ii) implies that fG,r is increasing.
Let x ∈ Y be such that x ≤ f(x). From (ii) and (A1) we have x ≤ r ◦ f(x) and

hence x = G(x, x) ≤ G(x, r ◦ f(x)) = fG,r(x).
The proof follows from Gronwall lemma for POs ([32], [33]). �
In a similar way we have

Lemma 7.2. We suppose that:
(i) fG,r is a WPO;
(ii) G, r and f are increasing.

Then:
(a) x ∈ Y , x ≤ f(x) ⇒ x ≤ f∞G,r(x);

(b) x ∈ Y , x ≥ f(x) ⇒ x ≥ f∞G,r(x).

Remark 7.3. In the above lemmas, instead of condition (ii) we can put the condi-
tion:

(ii’) G, f and r ◦ f are increasing.
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Remark 7.4. The above results are partial answers to Problem 1 and Problem 2
in [33], which are presented for convenience in the following.

Let (X,≤) be an ordered set and let f : X → X be an operator.

Problem 1 ([33]). If Ff = {x∗}, in which conditions we have that :
(a) x ∈ X, x ≤ f(x) ⇒ x ≤ x∗?
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ x∗?

Problem 2 ([33]). If Ff ̸= ∅, in which conditions there exists a set retraction
r : X → Ff such that

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ r(x)?
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ r(x)?

Remark 7.5. We have similar results in the cases of the algorithms: GMr, GHr

and G1G2I.

Remark 7.6. In some particular cases there are conditions which imply condition
(i) in Lemma 7.1 and Lemma 7.2 (see [5], [14], [15], [3], [16], [21], [39], [44], [31], ...).

Example 7.7. The following convergence result is well known:

Theorem 7.8 (Browder-Petryshyn [9]). Let X be a Hilbert space, Y := {x ∈ X :
∥x∥ ≤ 1}, G(x, y) := λx+(1−λ)y, with 0 < λ < 1, r : X → Y the radial retraction
and f : Y → X an operator. We suppose that:

(i) f is nonexpansive;
(ii) f satisfies the Leray-Schauder boundary condition.
Then the GKr-algorithm associated to f is convergent.

Corresponding to this convergence result we have the following Gronwall type
result.

Lemma 7.9. Let X be an ordered Hilbert space in the sense that the ordered rela-
tion, ≤, and X are such that the set {(x, y) ∈ X ×X : x ≤ y} is weakly closed. Let
f : Y → X be such that:

(i) f is as in Theorem 7.8;
(ii) G, f and r ◦ f are increasing.
Then
(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞G,r(x);

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞G,r(x).

8. Comparison lemmas

Let (X,→,≤) be an ordered L-space, Y ⊂ X, f, g, h : Y → X be three operators
and r : X → Y a set retraction. Let fG,r, gG,r and hG,r be the corresponding
admissible perturbations associated to f, g and h, respectively.

We have

Lemma 8.1. We suppose that:
(i) fG,r, gG,r and hG,r are POs;
(ii) G, r and g are increasing;
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(iii) f ≤ g ≤ h.
Then:

(a) Ff = {x∗f}, Fg = {x∗g} and Fh = {x∗h};
(b) x∗f ≤ x∗g ≤ x∗h.

Proof. From (i) it follows that

FfG,r
= {x∗f}, FgG,r = {x∗g} and FhG,r

= {x∗h},
so,

Ff = {x∗f}, Fg = {x∗g} and Fh = {x∗h}.
The condition implies that gG,r is increasing. From condition (iii) and (ii) we have
that

fG,r ≤ gG,r ≤ hG,r.

Now, the proof follows from the comparison lemma for WPOs ([32]). �

In a similar way we have

Lemma 8.2. We suppose that:
(i) fG,r, gG,r and hG,r are WPOs;
(ii) G, r and g are increasing;
(iii) f ≤ g ≤ h.

Then

x, y, z ∈ Y, x ≤ y ≤ z ⇒ f∞G,r(x) ≤ g∞G,r(y) ≤ h∞G,r(z).

Remark 8.3. In the above lemmas, instead of condition (ii) we can put the follow-
ing condition:

(ii’) G, g and r ◦ g are increasing.

Remark 8.4. In the case of the convergence result of Browder-Petryshyn (Theorem
7.8) we have the following comparison result:

Lemma 8.5. Let X, Y and f, g, h : Y → X be as f in Theorem 7.8. We suppose
that:

(i) G, g and r ◦ g are increasing;
(ii) f ≤ g ≤ h.
Then
x, y, z ∈ Y , x ≤ y ≤ z ⇒ f∞G,r(x) ≤ g∞G,r(y) ≤ h∞G,r(z).
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[17] A. Chiş-Novac, R. Precup and I. A. Rus, I. Data dependence of fixed points for non-self
generalized contractions, Fixed Point Theory 10 (2009), 73–87
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