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SOME PROBLEMS IN OPTIMAL CONTROL GOVERNED BY
THE SWEEPING PROCESS

C. CASTAING, M. D. P. MONTEIRO MARQUES", AND P. RAYNAUD DE FITTE

ABSTRACT. We present several results on Bolza, Relaxation and Viscosity prob-
lems governed by the sweeping process with Young measure controls in the frame-
work of Optimal Control Theory.

1. INTRODUCTION

Pioneering work concerning the existence of continuous and bounded variation
(BVC) solutions for the perturbation of sweeping process (Moreau’s process)[22] of
the form

(1.1) dDu

_m(t) S NC(t) (u(t)) + F(t,u(t))

where C' is a closed convex valued continuous multifunction from [0,7] to R¢ and
F:[0,T] x R? — R% is a convex compact valued upper semicontinuous multifunc-
tion, goes back to [7]. In a series of papers [5, 9, 10] the authors study some Bolza
type and viscosity problems governed by ordinary differential equations (ODE) and
evolution inclusions with fixed domain governed by a subdifferential operator with
perturbations containing Young measure controls.

In the present paper we treat a Bolza and a Relaxation problem for the pertur-
bation of the sweeping process (PSW) of the form (1.1) in a new setting. As an
application we show the viscosity property of the value function associated with the
problem (PSW). We refer to [8, 9, 10] for Young measures and their applications.
The paper is organized as follows. In Section 2, we recall some basic results on
sweeping processes and Young measures, in particular, we focus on some stability
results for the sweeping process with application to some bang-bang type theorems.
Several results on the dependence of the solution with respect to the control measure
are stated here, in both the BV and the Lipschitz case for the (PSW) with applica-
tion to Bolza and Relaxation problems. In this new framework we also prove that
the value function related to the (PSW) satisfies the dynamic programming princi-
ple. Section 3 is devoted to the viscosity property of the value function associated
with the (PSW). In section 4 we present further extensions and applications. This
paper sheds a new light in the theory of Optimal Control and leads to further de-
velopments in differential games theory involving the sweeping process with various
control spaces and also to the stochastic perturbation of the sweeping process.
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2. RELAXATION PROBLEM IN THE SWEEPING PROCESS: THE BVC CASE

For the sake of completeness, we recall the notation and summarize some useful
facts concerning Young measures. Let (2, F, P) be a complete probability space.
Let X be a Polish space and let C’(X) be the space of all bounded continuous
functions defined on X. Let M}F(X ) be the set of all Borel probability measures
on X equipped with the narrow topology. A Young measure A : € — MEF(X )
is, by definition, a scalarly measurable mapping from Q into M}r(X ), that is, for
every f € C*(X), the mapping w — (f, Ay) = [ f( »(7) is F-measurable. A
sequence (A") in the space of Young measures y(Q ]: P M1 (X)) stably converges
to a Young measure A € Y(Q, F, P; M} (X)) if the following holds:

Jim /f ) A" (2)] dP(w //f ) dho(2)] dP(w)

for every A € F and for every f € C°(X).

Theorem 2.1 ([10, Theorem 3.3.1]). Assume that S and T are Polish spaces.
Let (") be a sequence in Y(Q,F,P; ML(S)) and let (v™) be a sequence in
Y(Q,F, Py ML(T)). Assume that

(i) (u™) converges in probability to u™ € Y(Q,F, P; MYL(9)),

(ii) (v™) stably converges to v™ € Y(Q, F, P; ML(T)).
Then (u™ ® V™) stably converges to p> @ v> in Y(Q, F, P; ML (S x T)).

Theorem 2.2 ([10, Theorem 6.3.5]). Assume that X and Z are Polish spaces. Let
(u™) be sequence of F-measurable mappings from Q2 into X such that (u™) converges
in probability to a F-measurable mapping u> from Q into X, and let (v") be a
sequence of F-measurable mappings from Q into Z such that (v") stably converges
tov> € Y(Q,F,P;M(Z)). Let h: Q x X x Z — R be a Carathéodory integrand
such that the sequence (h(.,un(.),vn(.)) is uniformly integrable. Then the following
holds:

Jm [ b ) @) d //hw W (W), 2) dv(2)] dP(w).

In the remainder Z is a compact metric space, /\/lfr(Z ) is the space of all prob-
ability Radon measures on Z. We will endow MY (Z) with the narrow topology
so that M’ (Z) is a compact metrizable space. Let us denote by Y([0, T]; M1 (2))
the space of all Young measures (alias relaxzed controls) defined on [0,7] endowed
with the stable topology so that Y([0,T]; M1 (Z)) is a compact metrizable space
with respect to this topology. By the Portmanteau Theorem for Young mea-
sures [10, Theorem 2.1.3], a sequence (v") in Y([0,T]; M} (Z)) stably converges
to v € Y([0,T]; ML (2)) if

T T
dm [ /Z h(2)dv? ()] dt = /0 [ /Z ha(2)dva ()] dt

for all h € Lé(z)([O,T 1), here C(Z) denotes the space of all continuous real valued
functions defined on Z endowed with the norm of uniform convergence. Finally let
us denote by Z the set of all Lebesgue measurable mappings (alias original controls)
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z:10,T] = Z and R := Y([0,T); M (Z)) the set of all relaxed controls (alias Young
measures) associated with Z.
Let us recall a fundamental result on sweeping process [21, 24].

Proposition 2.3. Let C : [0,T] — R be closed convex valued lower semicontinuous
multifunction. Assume that

(i) there exist 1o € R and ro > 0 such that Bgra(wo,r0) C C(t),Vt € [0,T],

(ii) the graph of C is closed with respect to the left topology on [0,T] and the usual
one on RY.

Let a € C(0). Then there exists a unique BVC solution to SW(C,a), that is,

_ dDu
d|Dul
u(0) = a € C(0).

(t) € Nog(u(t)), |Dul-ac,

Here Du is the differential vector measure associated with the BV function u and
|Du| is its variation measure, and Ng@(u(t)) denotes the normal cone of C(t) at
the point u(t) € C(t). Further, the solution u satisfies

T
1D = [ 1Dul < 1670 la = o)
where the function | : RT x RT — R is given by

(o) o [m0.55) i 22,
T Imax{0,S — s} if d=1.

Assumptions (*) and (**) :
We will consider a closed convex valued multifunction C' : [0,7] — R% and we
assume that C' is continuous for the Hausdorff distance dy, that is,

") Vs € 0,71, lim di(C (1), O(s)) = 0
and that there exists » > 0 such that

(**) Vt € [0,T], 2rBgra(0,1) C C(2).
Also E = R%, in the sequel.

Assumptions on f :
Let us consider a mapping f : [0,7] X E x Z — E satisfying:
(i) for every fixed ¢t € [0,T7, f(¢,.,.) is continuous on E X Z,
(ii) for every (z,z) € E x Z, f(.,x, z) is Lebesgue-measurable on [0, 7],
(iii) there is a nonnegative Lebesgue integrable function g such that
f(t,@,z) € g(t)(1 + ||z][) Be(0,1)

for all (t,z,2) in [0,T] x E x Z,
(iv) there exists v € Ly.[0,T]) such that

[t 21, 2) = f(t, 22, 2)|] < a(t)||z1 — 22|
for all (t,z1,2), (t,x2,2) € [0,T] x E x Z.
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Let C : [0,T] — ck(E) be a convex compact valued continuous mapping satisfying
(*) and (**). We consider the sets of BVC solutions of the following two ”perturbed
sweeping process” problems (PSW)(C;(,x) and (PSW)(C; A, z), namely

N m(” € Nog) (¢ () + f(t e ¢ (1), C(2))

uz ¢(0) =z € C(0)

and D
Ug X
" 1dDug| A|()€N(J(t ug £\ (t /ftuz)\ z) dXi(2)

uz 2 (0) =2 € C(0)
where ¢ belongs to the set Z of all original controls and A belongs to the set R of all
relaxed controls. Taking [7, Theorem 4.4] into account, for each (z,() € C(0) x Z
(resp. (x,A) € C(0) x R), there exists a unique BVC solution u, ¢ (resp. ug ) to
(PSW)(C; ¢, x) (resp. (PSW)(C; A, x)), that is, for every positive Radon measure
dv on [0,T] such that |Du,¢| << dv, |Du, )| << dv and dt << dv, the densities
Duy ¢ /dv, Dug »/dv and dt/dv satisfy

_%(ﬂ - f(t,uz,g(t),C(t));lZ( t) € Nog )(Ux,g(t)), .

and respectively

dDUa:A / St ug \(t), 2) dAe(2 )ji( t) € Ney(up (1)), v-ace.

We aim to present some relaxation problems in the framework of Optimal Control
Theory for the above (PSW). In particular, we state a viscosity property of the
value function associated with these evolution inclusions. Similar problems governed
by evolution inclusion with perturbation containing Young measures were initiated
by [3, 4, 9, 10]. Before going further, we recall first a fundamental result in [7,
Theorem 4.4] for the existence of BVC solutions to (PSW).

Proposition 2.4. Let C : [0,T] — ck(E) be a convexr compact valued continuous
mapping satisfying (*) and (**). Let us consider a mapping f : [0,T) x E — E
satisfying:
(i) for every fixzed t € [0,T], f(t,.) is continuous on E,
(ii) for every x € E, f(.,x) is Lebesque-measurable on [0,T],
(iii) there is a nonnegative Lebesgue integrable function g such that f(t,x) €
g(t) (1 +||z||)Bg(0,1) for all (t,z) in [0,T] x E,
(iv) there exists a € Ly [0,T]) such that
Lf(t, 1) = [t z2)|] < alt) ||z — 2|
for all (t,x1), (t,z2) € [0,T] x E.
Then there exists a unique BVC solution uy : [0,T] — E with uz(0) = x € C(0) to

the (PSW)(C; f;x), that is, for every positive Radon measure v on [0,T] such that
Du, and dt are absolutely continuous with respect to v, we have

D ) () (1) € N(CW): (1), v-net € [0.7]
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Briefly u, is the unique BVC solution of the inclusion
—Duy € Neoy(uz(t)) + f(t,ue(t)), ug(0) = 2.
For the convenience of the reader we recall and summarize some results.

Proposition 2.5. The set of original controls Z is dense in the set R with respect
to the stable topology.

Proof. See [10, Lemma 7.1.1, page 197]. O

Let us recall the following denseness result based on Lyapunov’s theorem. See
e.g. [12, 25].

Proposition 2.6. Let I' : [0,T] — ck(E) be a convex compact valued measurable
and integrably bounded mapping. Let ext(T") : t — ext(I'(t)) where ext(I'(t)) is the
set of extreme points of T'(t)(t € [0,T]). Then the set St of all integrable selections
of I' is conver and J(L}E, L%) compact and the set of all integrable selections Selxt(r)

of ext(T') is dense in S} with respect to this topology.
The following stability result in the sweeping process is useful for our purposes.

Proposition 2.7. Let (Cpn)peNu(oo} be a sequence of lower semicontinuous mul-
tifunctions from [0,T] to the set cc(E) of nonempty closed conver subsets of E.
Assume that the following assumptions are fulfilled:
(i) for any sequence (ty) in [0,T] converging to t, Coo(t) C Li(Cy(ty)),
(i) for any t € [0,T], Ls(Cy(t)) C Coo(t),
(iii) for every n € N U{oo}, the graph of C,, is left-closed,
(iv) there exists v > 0 such that Bg(0,7) C Cy(t),Vt € [0,T],Vn € N.
Let (up)nen be the BVC solution of the sweeping process
dDu,,
~ d|Duy|
If (ap)nen converges to ax € E, then (up)neN pointwise converges to the unique
BVC continuous solution us of the sweeping process
dDuso
 d|Dus|

Proof. See [2, Theorem 4.4]. O

(t) € Ney, @y (un(t)), [Dupl-ae., un(0) = an € Cp(0).

(t) € New (1) (U (1)), [Ducol-ace., usx(0) = ao € Co(0).

For simplicity we begin with some particular results on relaxation associated with
the above sweeping process which are based on the continuity of the solution with
respect to the control and the stability result for sweeping process.

Theorem 2.8. Let C : [0,T] — cc(E) be a closed convex valued continuous mapping

satisfying (*) and (**). Let hy,h € L([0,T] with ||hy(t)|| < g(t) for alln € N and

for allt € [0,T], for some positive integrable function g, and let us consider the two
following (PSW)

dDuMln

- m(ﬂ — hn(t) € Ny (ug,p, (1))

Uz b, (0) =z € C(0)
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dDug p,
- m(t) h(t) € Ne) (uen(t))

uz 1(0) =z € C(0)
where uy p, and uy p, are the BVC solutions to (PSW)(C'; hy; x) and (PSW)(C; h; x),

respectively. Assuming that (hy) converges o(LL, L) to h, then ugp, pointwise
converges to Ug .

Proof. Let us consider the closed convex valued continuous mappings

Cr(t) :=C(t) + /Ot h(s)ds, ¥t € [0,T]

Ch, (t) :=C(t) + /Ot hn(s)ds, ¥t € [0,T].

Then the sweeping processes (SW)(Ch;z) and (SW)(C},, ;x) with initial value z
have unique BVC solutions respectively wy j, and w5, with wy ,(0) = wyp, (0) =
x, wyp(t) € Cp(t), and wyp, (t) € Ch, (t) for all t € [0,T]. Since h, converges
o(L, L) to h, we have

t t
Sh,, (t) = /0 hn(s)ds — Sp(t) := /0 h(s)ds, vVt € [0,T]

so that

(1) Jim du(Ch, (), Ch(t) = lim [1Sh, (1) = Sh(e)]| =0, Ve € 0.7].
Further if ¢, — ¢, then using (2.1)

tn
(2.2)  lim du(Ch,(tn), Cp(t)) < lim [du(C( +|/ [1hn(s)]] ds|]
ln
< lim \/ s)ds| = 0.
n—oo

Then (2.1) and (2.2) imply the following conditions involving the well-known Ku-
ratowski limits of sets:
(i) for any sequence (t,,) in [0, 7] converging to ¢, Cy(t) C LiCp,, (t,)
(ii) for any t € [0,T], Ls Ch, (t) C Cr(t).
Since for every n, the graph of Cj, is left closed, then by (i) and (ii) we may apply
the stability result for sweeping process in Proposition 2.7 which shows that the
solutions wy 5, to the sweeping process (SW)(C}, ;) pointwise converge to the
unique solution wy j, to the sweeping process (SW)(Ch; z). Hence we deduce that,
for all t € [0,T]
im uyp, (t) = lim wyp, (t) — Sha(t) = wy p(t) — Sh(t) = uy 4 (t).
n—oo

n—oo

g

Remark. In further applications, we will consider the BVC solution u,, p, to

(PSW)(C; hy; ) and ug p, to (PSW)(C; h;x). Then if (hy,) o (LY, L) converges

to h and (z,) converges to = in C(0), then w,, , pointwise converges to ug .
Now we provide some applications of the sweeping process in Control Theory.
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Theorem 2.9. Let C : [0,T] — ck(E) be a convex compact valued continuous
mapping satisfying (*) and (**). Let T : [0,T] — ck(E) be a convex compact valued
measurable and integrably bounded mapping. Let ext(L') : t — ext(T'(t)) where
ext(D(t)) is the set of extreme points of T'(t)(t € [0,T)). Let St and Selxt(l“) be the set

of all integrable selections of T' and ext(T"), respectively. Let us consider the control
problems governed by the two following sweeping processes

dDuyg p,

d|Dum,h‘

uz 1(0) =z € C(0)

(t) = h(t) € N (uan(t)), h € Sp

dDuxyh 1
- m(t) = h(t) € Newy(uen(t)), h € Sepyr

uz p(0) =z € C(0).
Then the following hold:
(a) For each t € [0,T), the mapping h + uy p(t) € E is continuous on S; here
SL is endowed with the o(LY,, L) topology.
(b) For each t € [0,T), the set {uzp(t) : h € S}

ext(F)} is dense in the compact
set {upp(t) : h € SL}.

Proof. (a) Observe that St is compact metrizable with respect to the o(LL, L)
topology. Let h,, € St o(LL, LY) converge to h € St. Then by Theorem 2.8, u p,
pointwise converges to u, , which proves (a).

(b) is consequence of this continuity property and the denseness property in Propo-
sition 2.6. O

The following shows the continuous dependence of the solution with respect to
the control in the sweeping process (PSW).

Theorem 2.10. Let C' : [0,T] — ck(E) be a conver compact valued continuous

mapping satisfying (*) and (**) and let Z be a compact subset of E. Let us consider
the control problem governed by the sweeping process (PSW)(C';v; )

dDuyg

d|Duy |

uz,(0) =z € C(0)

(t) —bar(1y) € No)(uzu(t)), v € R

where bar(v;) denotes the barycenter of the measure v, € ML (Z). Then, for each
t € [0,T], the mapping v — uy,(t) is continuous on R, where R is endowed with
the stable topology.

Proof. (a) Let v € R and let bar(v) : t — bar(i4), t € [0,T]. It is easy to check
that v — bar(v) from R into LL([0,7]) is continuous with respect to the stable
topology and the O'(LlE, L%), respectively. Note that R is compact metrizable for
the stable topology. Now let (¢™) be a sequence in R which stably converges to
v € R. Then bar(v") o(L};, L) converges to bar(). By Theorem 2.8 we see that
Uz, pointwise converges to ug . O



1050 C. CASTAING, M. D. P. MONTEIRO MARQUES, AND P. RAYNAUD DE FITTE

Remark Taking into account the remark of Theorem 2.8, it is not difficult to show
that, for each ¢ € [0, 77, the mapping (x,v) — u,,(t) is continuous on C'(0) x R.

We are now able to relate the Bolza type problems associated with sweeping
processes, as follows:

Theorem 2.11. With the hypotheses and notations of Theorem 2.10, assume that
J:[0,T] x E x Z — R is a Carathéodory integrand, that is, J(t,.,.) is continuous
on E x Z for every t € [0,T] and J(.,x,z) is Lebesgue-measurable on [0,T] for
every (z,z) € E x Z, which satisfies the condition (C): for every sequence ((,) in
Z, the sequence (J(.,uzcn(.),C"(.)) is uniformly integrable in Ly ([0,T), dt); here
ug,cn denotes the unique BVC solution to (PSW)(C;(™; x)

dDuw cn
- () =" N, n "eZ
Dy () = () € N e r(1).C" €
uzn(0) =2 € C(0)
Let us consider the control problems
T
inf(Pz) := C116127/0 J(t, ug c(t),C(t))dt

and

T

inf(PR) = inf / [ / Tt wa (1), 2) Me(dz)] dt
AER Jo A

where uy ¢ (resp. ugx) is the unique BVC solution to (PSW)(C;(;x) and

(PSW)(C; \; ), respectively. Then one has

Proof. Take a control A € R. By virtue of Proposition 2.5, there is a sequence
((")nen in Z such that the sequence (d¢n)nen of Young measures associated with
((")nen stably converges to A. By Theorem 2.8, the sequence (ugy¢n) where ug ¢n
is the unique BVC solution to (PSW)(C;(™; x) pointwise converges to the unique
BVC solution uy ) to (PSW)(C;A;z). As (J(t, ugen(t),¢"(t))) is uniformly inte-
grable by assumption (C), using Theorem 2.2 (or [10, Theorem 6.3.5]), we get

T

T
im [ J(uen (£), C(E)) dt = / [ / (s wgrs 2)dN(2)] dt.
T
| s ente).¢ 0 de = int(P2)
0
for all n € N, so is
T
/ [/ J(t,up x, 2)dAi(2)] dt > inf(Pz);
0 Z
by taking the infimum on R in this inequality we get
inf(Pgr) > inf(Pp)
As inf(Pp) > inf(Pg), the proof is complete. O
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In the framework of Optimal Control, the above considerations lead to the study
of the value function associated with the (PSW). The following shows that the
value function satisfies the dynamic programming principle (DPP).

Theorem 2.12 (of dynamic programming principle). Assume the hypothesis and
notations of Theorem 2.10, and let x € E, T <T and o > 0 such that T+ o0 < T.
Assume that J : [0,T] x Ex Z — R is bounded and continuous. Let us consider
the value function

Vi(r,z) = sup/ / J(t,Ur g0 (t), 2)11(d2)]dt, (1,2) € [0,T] x E
veER

where Uy, is the BVC solution to the (PSW)(C;v;x) defined on [1,T] associated
the control v € R starting from x at time T

dDur
" dIDu ] B = bar() € Neg(ures (1)
UT,J:,V(T) =T c C(T)

Then the following holds:

Vi(r,z) = Slelg{ / J(t, Ur g0 (1), 2)1e(d2)]dt + V(T 4+ 0, Ur g (T +0)) }

with

T
V(T + o, u‘r,z,u(T +0)) = sup / [/ J(t, vT+U,u773¢7y(T+G'),}L(t)? z)p(dz)] dt
HER J140 JZ

where v7+0,u7,z,y(r+a),u1 is the BVC solution to (PSW)(C; p; ur 5, (T + o)) defined
on [T+ 0,T] associated with the control j € R starting from ur ., (7 + o) at time
T+o

dDUT—i—a u (T+0),n
_ yUT, T,V b t _ bar e N UT o - o t
(2.3) d|Dvr o, ©) (1) € Now (Vrtour o (r+0).u (1))
Vrtouran(ro)ulT +0) = Uz (T +0) € C(T +0)
Proof. Let

Wy(r, x) = Sgg{ / J(t, Ur gz (), 2)11(d2)]dt + Vi(T + 0, Ur 20 (T + 0)) }.

For any v € R, we have

/T il /Z J(t g (£), 2 (d2)]dt = / 7 /Z (st (1), 2)n(d2)]

T
+/r+a[/z J(t, urz0(t), 2)11(dz)]dt.

1t is necessary to write completely the expression of the trajectory vryo u, ., (r+0),. that de-
pends on (v,u) € R X R in order to get the continuous dependence with respect to v € R of
V(T + 0, Ur e (T + 7).
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By the definition of V(7 + 0, ur 4, (7 + o)) we have

T

Vit + 0, Ur g (T +0)) > /
T+

a[/Z J(t7 uT,m,u(t), Z)Vt(dz)]dt.

It follows that

T T4+0
/ [ /Z Tt 0 (8), 2)0a(d2)]dt < / [ /Z Tt ran (1), 2)0(d2)]
+ Vit 4 0, Uur gz (T + 0)).

By taking the supremum on v € R in this inequality, we get

T+0o
Vi(r,z) < sup{ [/ J(t,urz (), 2)ve(dz)]dt + V(T + 0, Ur g (T + 0)) }
veER Jr Z

= WJ(T,.%').

Let us prove the converse inequality.

Main fact : v +— V(7 + 0,ur,,(7 + 0)) is continuous on R.
Let us focus on the expression of V(7 + 0, ur 4, (7 + 0)):

T
Vit + 0, tur g (T +0)) = sup/ [/ J(t Vs our g (o) () 2) e (d2)] di
HER Jr+0 JZ

where v ;4. . (r40),, denotes the trajectory solution on [T+ o, T] associated with
the control p € R starting from wu,,,(7 + o) at time 7 4+ ¢ in (2.3). Using
the remark of Theorem 2.10 concerning the continuous dependence of the solu-
tion with respect to the state and the control, it is readily seen that the map-
ping (v, 1) = Vriou, ., (r+o)u(t) is continuous on R x R for each ¢t € [r,T],
namely if " stably converges to v € R and p" stably converges to p € R, then
Vr oy 5y (7-+0) un POINEWISE cONVErges t0 Vr 5w, (r40) - By using the fiber prod-
uct of Young measure (see Theorem 2.1 or [10, Theorem 3.3.1]), we deduce that
(v, p) — ng[fz J(t Vst 0ur g (r40)u(t)s 2) e (dz)] dit is continuous on R x R. Con-
sequently v — V(7 + 0,ur ., (7 + 0)) is continuous on R. Hence the mapping
v [T, Tt ur i (t), 2)vi(dz)]dt + V(T + 0, tr g (T + ) is continuous on R.
By compactness of R, there is a maximum point ' € R such that

T+0o
Wy(r,x) = / [/Z J(t, s o1 (1), 2)vi(dz)]dt + V(T + o, U g 1 (T +0)).

Similarly there is 4% € R such that

T

VJ(T + o, U 1 (T + 0)) = /

N [/Z J(t7UT—i—o‘,uT’m’ul(T—&-o‘),;ﬂ(t%Z):U’z%(dz)]dt

where

Vrtou 1(T+0),u2 (t)

T,T,V
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denotes the trajectory solution associated with the control y? € R starting from
Uy 1 (T+0) at time 7+ o to the (PSW)(C; 4?5 uy 1 (T4 0)) defined on |7+ 0, T

dDUT-‘rU,uT w1 (TH0),p2
d"DvT+O',u

(t) - bar(p’?) € NC(t) (UT—i-U,u 1(740),u2 (t) ) :

T,2,V

it () 2|
Let us set

V= 1[T,T+U]V1 + 1[T+U,T}ﬂ2'
Then 7 € R. Let w;,p be the trajectory solution on [7,T] associated with 7 € R,
that is,
dDwT,m,ﬁ

 d|Dw, 5]
Wrpw(T) =2 € C(7).
By uniqueness of the solution, we have
Wr o p(t) = umwl(t), Vt € [, T+ o],
w'r,x,ﬁ(t) = UT+07“T,x,u1 (T40),u2 (t), vVt € [T + o, T]

Coming back to the expression of V; and W; we have

(t) = bar(vr) € Now) (wrap(t)), t € [1,T]

T+0
W(r,x) = / [ /Z T(t 7 g 1 (1), 2)(d2)]

T
+/+ [/Z J(t, UT+U,UT@7V1(T+U)’#2(t),z),u?(dz)] dt

— /T 1[ /Z J(t, we 2 5(t), 2)V4(dz)] dt

1
< sup{ [/ J(t,urz0(t), 2)vi(dz)] dt = Vy(T,x).
veR Jr JZ

O

In the above results we have considered the sweeping process with control Young
measure (PSW)(C;v;x)

dDursy

B d|D uT,x,V|

Urz(T) =2 € C(T)

(t) —bar(1y) € Now)(urap(t)), t € [1,T]

with v € R, using the continuity of the solution with respect to the control v € R.
In this case the perturbation bar(r;) is of simple nature. Now we will treat a more
general case. Namely we consider a mapping f : [0,7] x E — E satisfying:

(i) for every fixed ¢t € [0,T7, f(¢,.) is continuous on F,

(ii) for every = € E, f(.,x) is Lebesgue-measurable on [0, 77,

(iii) there is a nonnegative Lebesgue integrable function g such that f(t,z) € g(¢t)(1+
||z|[)BEg(0,1) for all (¢t,z) in [0,T] x E,

(iv) there exists v € L. [0,T]) such that

Lt @1) = f(t,22)|] < a(t) |1 — 22|
for all (t,z1), (t,x2) € [0,T] x E.
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We consider the sweeping process (PSW) on [0, 7]

d,Duz’)\
B d|Du“| / f(t uraa(t), 2)Ai(d2) € Nog)(uaa(t))

uzA(0) =2 € C(0

where C' : [0,T] — ck(E) is a convex compact valued mapping satisfying (*) and
(**), Z is a compact subset of E and R is the space of relaxed controls associated
with Z. By virtue of Proposition 2.3 or [5, Theorem 4.4], for each A € R there is
a unique BVC solution u, ) for this inclusion. Further, arguing as in the proof of
[7, Theorems 4.2-4.3], it is not difficult to see that (u, x)rer is uniformly bounded
and uniformly bounded in variation, that is, sup;cjo 7] Supaer l[uza(#)|] < R < o0

T
and supyer || Duga|| := supyer [; [Dug | < K < co.
Here is a main result in this section dealing with the continuous dependence of
the solution with respect to the control Young measure in the above (PSW).

Theorem 2.13. Let C : [0,T] — ck(E) be a convex compact valued continuous
mapping satisfying (*) and (**). Let ugz be the BVC solution to the following
(PSW) on [0,T]

dD’LLxM\
D ® = [ F(6 @), () € Neg (e ®9)
ugy 2 (0) =z € C(0)
Then the following hold:

(a) For each t € [0,T], the mapping X — uy \(t) is continuous on R, here R is
endowed with the stable topology.
(b) Let J: [0, T|x ExZ — E be bounded continuous mapping, then the mapping

A »—>/ / J(t, ug (1), 2)Ae(dz)]dt

s continuous on R with respect to the stable topology. Consequently

inf/ J(t, ug c(t),C(t))dt mm/ / J(t, ug A(t), 2)Me(d2)]dt.

tez AER

Proof. (a) Let A™ € R stably converge to A>* € R. We need to show that (uz \n)
pointwise converges to uy ye. Since (uyan) is uniformly bounded and uniformly
bounded in variation, by Banach-Helly Theorem [21, Theorem 2.1], the sequence
(ug an) is relatively sequentially compact for the topology of pointwise convergence.
Hence we may assume, by extracting a subsequence that (u, y») pointwise converges
to a BV function u™ with ©*°(0) = z. Let us set

ha(t,z) = /Zf(t,x,z))\t(dz) V(t,z,\) € [0,T] x E X R.

Then we have

dDux,)\n ‘
_ aﬂiiiéiilT(t) hoxn (t, g an (t)) € N(C(t); g an (t))

g (0) = z € C(0).
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Let us consider a positive Radon measure dv such that |Duyn |+ |[Duyee|+dt << dv
for all n € N. Then |Duyn| << dv,|Duy~| << dv and dt << dv. In view of the
characterization of the solution to (PSW) in [7, Theorem 4.1], we have

dDuw,)\n dt
IRt () B (1) € N (e (1), v

Since z — Ng(y)(z) is monotone, (2.4) implies

< <_dD;5’M — fan (g an Gﬂ)jﬁ(t})

(2.4)

dD’le \© dt
_ R M — 0o 2.\ —_— s Ugp \n t) — 2. A\ t
(=222 et () G 1))t (1) = e (1))
>0, r-a.e.
Equivalently,
dD (g xn — Ug roo
(2.5) < ( ’/\dz/ 2 )7Um,)\n(t)_um,)\0°(t)>

< —<h,\n (s xn () — Poxoe (£ oo (), (1t (£) — g 100 (t))jz>, Ve,

Integrating (2.5) over [0,¢] (¢ € [0,T]) with respect to the measure dv yields
t
(26) / <ux7)\" - ux,)\oovD(u:c,/\" - Ux,/\oo»
0
t
< —/ (han (s, ug3n(8)) — hyoo (8, Uz a0 (8)), Uz An(S) — Ug roo(8)) ds.
0
By (2.6) and [23], it follows that
1 9 t
(27) §||UI7)\7L (t) — ux7)\oo (t)” = / <U$7)\n — Ux7)\oo,D(Ux7)\n — U.I7)\oo)>
0

t
< [ (110 (5) = e (5t ().t (5) = e () .
0

Let us set
t
L,(t) = / (Ug an (8) = Ug roo (8), —han (8, Uz An(8)) + hao (S, Uy 2o (5))) ds.
0

Then L, (t) = L} (t) + L2(t) + L3(t) where
Ly (1) :/0 (g \n(8) = Uz roo (8), —han (8, U an (8)) + han (s, Uz x (5))) ds,
L3(t) :/0 (g an(5) = u™(5), —han (s, ug a0 () + hase (5, ug 2 (5))) ds,

Ly() :/0 (u™(s8) — Uz noo (8), —han (s, g roe (8)) + hace (5, up a0 (5))) ds.
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As ug yn(s) = u>(s) for every fixed s € [0,77], and, by (iii),

[xn (s, waan (5)]] < g(s) (1 + [[uzan (s))]]) < g(s)(1 + R)
for all n € N U {oo}, we see that L2(t) — 0 when n — oo for each t € [[0,T]. By
(iii), the integrand

h(s,z) := (u(s) — ugr=(5), (s, ugr=(s),2))
is Carathéodory integrable and is estimated by
1A (s, 2)| < g(s)(1 4+ R)[[u™ — ug x|

for all (s,z) € [0,T] x Z. Hence h € L}J(Z ([0,77]). As A" stably converges to A\*°,
for every t € [0,T], we have

lim

Jm [ /Z (s, () dt = | | /Z h(s, )\ (dz)] dt.

So lim, e L3(t) = 0, for every t € [0,7]. By (iv) we have that |L1(¢)| <
fg a(s)||ug an (8) — ug r(s)||? ds. Finally by (2.7) we get

1 t
gl xn (8) =z, xee (O[> < L) + Ly(t) +/ a(s)[[ugan (8) = ugzo0 (5)| | ds.
0

As L2(t) — 0 and L3(t) — 0, for all ¢ € [0, 1], by Gronwall’s lemma we have that
Uz an () = gy (t), for all t € [0,1], and hence ug yo = u™

(b) Let A" stably converge to A in R. By (a), uz z» pointwise converges to uy yeo 50
that

)

lim / J(t, ug an (), 2)A) (dz)] d / / J(t, ug a0 )(t), 2)A°(dz)] dt

n—oo

using the ﬁber product for Young measures in Theorem 2.1 or [10, Theorem 3.3.1].
Again by compactness of R and by continuity of the solutions with respect to the
controls in (a), we conclude that

T
1nf/ T(t gt ())dt—min/ [/ZJ(t,uxy,\(t),z))\t(dz)]dt.

ez AER 0

Remarks. (1) It is worth to mention that the condition
(**) vt €[0,7], 2rB(0,1)C C(t)
can be replaced by the following more general condition
() Vvt € [0,T], IntC(t) #0.

We would like to mention that, in the above dynamic models, we need some new
techniques, because the closed convex moving set C(t) is only assumed to be con-
tinuous with Int C'(t) # 0, by contrast to earlier problems considered in the above
mentioned works.

(2) The stability for the sweeping process [2] with continuous moving sets is of
importance. This allows to obtain a general Skohorod problem and is decisive in
the solvability of the Skorohod differential equation.
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3. VISCOSITY PROBLEM IN THE SWEEPING PROCESS: THE LIPSCHITZEAN CASE

In this section we present several viscosity problems for the (PSW) when E = R?
and C : [0,T] = FE is a convex compact valued L-Lipschitzean mapping;:

ld(x, C(£)) — d(y, C(7)| < LIt — | + |l — ||, Y,y € E x BV, 7 € [0,T] x [0,T].

Given a closed convex valued L-Lipschitzean mapping, then, from a classical result
in the sweeping process [22], given z € C(0), there is a unique L-Lipschitzean
function u : [0,7] — E with ||u(t)|| < L a.e. such that

— u(t) € NC(t) (u(t)), te [0, T]
u(0) =z € C(0).

Now we state and summarize a stability result in (PSW) for the Lipschitzean
case.

Theorem 3.1. Let (Cy,),n € NU{oo} be a sequence of ck(E)-valued L-Lipschitzean
mappings. Assume that the following assumptions are fulfilled:

(i) for any sequence (ty) in [0,T] converging to t, Coo(t) C Li(Cy(trn))
(ii) for anyt € [0,T], Ls(Cy(t)) C Cuao(t).

Let (u)ren be the L-Lipschitzean solutions of the sweeping processes
—u(t) € Ney ey () (un(t)), ur(0) = a € C(0).

If (ak)ken converges to ax € E, then (ug)ren converges uniformly to the unique
L-Lipschitzean solution us, of the sweeping process

—loo(t) € Neo (1) () (Uoo (), Uoo(0) = ao € Coo(0).

Proof. Here one can adapt the proof of the stability result for the sweeping process
in the BVC case [2](Theorem 4.4). For convenience we provide the proof in the
Lipschitzean case that is based on an epi-lower convergence result of integral convex
functional on the space of vector measures and the definition of normal cone for
closed convex set in the sense of Convex Analysis. Since (ug)gen is equi-lipschitzean,
it is relatively compact in Cg([0,T7]), therefore (uj)ren converges uniformly to an L-
Lipschitzean function us, € Cg([0, T]) with 1y, — 1o With respect to the o(LL, L)
topology and us(0) = aos € Cs(0). It remains to check that

oo (t) € New (1) (oo (1)) ace.

Main fact: liminfy, [ 6*(—ig(t), k(1)) dt > [i 6*(—tioo(t), Coo(t)) dt.

Let 6*(z,Ck(t)) denote the support function of Cy. From (i) and (ii), it is not
difficult to check that 0*(.,Ck(.)) lower epiconverges to §*(.,Cx(.)), that is, for
any sequence (tp,xy) in [0,7] x E converging to (¢,z) € [0,T] x E we have that
liminfy, 6*(zk, Cr(tx)) > 0*(x,Coo(t)). Let ¢oo be a continuous selection of Cu.
By [2, Proposition 3.9], there are continuous selections ¢y of Cj which converge
uniformly to @o. Let us set I'y = Cy — ¢, & € N U {oc}. Then 6*(.,T'x(.)) is
positive and lower epiconverges to 6*(.,I's(.)). Now let my = —y dt be the vector
measure of density —uy (kK € N). Then my converges weakly to meo = —tlioo dt
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in the space of bounded vector measure M?([0,T], E). Hence by invoking a lower
epi-convergence version of Reshetnyak Theorem [2, Theorem 3.4], we have

T
nmmf/ 5*(dmk (t),l“k(t))d|mk](t)2/ 5*(dm°° Too()), dlmeol (2).

k 0 d|my| 0 dimeo|’
This gives
(3.1) liminf/T(S*( D) () dlmal () > /T 5+ (Mo 1y o () dlmao ()
Since my, = —1y, dt, we have, for a.e. t € [0,7] and for all kK € N,
3.2 dmy, = dt = dt.
(32) R

Hence (3.2) yields

F (R 0).Cu(0) = (T 00 Cult)

dmk

= 1 ®110" (G (0, Ci().
By integrating we get
% dmk « dmk .
I at= [5G 0, e lino
(33) = [5G 0.0

Using (3.3) (also for k = 0o) and coming back to (3.1.1) we finally obtain

hmmf/ 8" (—ug(t), Cr(t)) dt >/ 0 (—io (1), Coo (t)) dt.
From —1y(t) € N, 1) (t)(ux(t)) we have
5% (—in(£), Cr(1)) + (ug(8), i (£)) < 0.

Integrating on [0, 7] yields

]
(3.4) /OT 5 (—iup(t), C(8)) dt + /[)T<uk(t),uk(t)> it < 0.

It is clear that
T T
lim (ug(t), ug(t)) dt = /0 (Uoo(t), Too(t)) dt.

k—o00 0

Taking the liminf in (3.4) and using the main fact gives

T
/ 5 (—tio (1 (t))dt+/ (oo (1), o (£)) i < 0.
0

Whence
0" (—Too (1), Coo(t)) + (Uoo(t), o (t)) < 0 ace.
thus proving the desired inclusion

oo (t) € N ) (oo (1)) avce.
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g

Theorem 3.1 allows to get a stability result in the (PSW) when C'is Lipschitzean
that is useful for further applications.

Theorem 3.2. Let C : [0,T] — ck(E) be a convex compact valued L-Lipschitzean
mapping. Let hy, hoo € LE([0,T] with ||hy(t)|| < M for alln € NU{oo} and for all
t € [0, T] for some positive constant M and let us consider the (PSW)(C’; hy; xy,)

- /I:an:hn - hn (t) € NC(t) (u$n7hn (t))
umn,hn (0) =In € C(O)

where Uy, p, denotes the Lipschitzean solution for this sweeping process. If x, — Too
and if h, — hs with respect to the U(L%E,L‘?EO) topology, then ug, p, converges
uniformly to the Lipschitzean solution uy_ 1. of the (PSW)(C; hoo; Too)

~TUigg hoo — Noo(t) € Neg) (U hae (1))
Uz hoo (0) = 2o € C(0)

Proof. The proof follows the same lines as in Theorem 2.8 by applying the stability
result for Lipschitzean process in Theorem 3.1. O

Similarly we have a useful variant:

Theorem 3.3. Let C : [0,T] — ck(E) be a convex compact valued L-Lipschitzean
mapping. Let Z be a compact subset in 2 an R the space of relaxed controls asso-
ciated with Z. Let v™,v>° € R (n € N and let us consider the (PSW)(C;v™; xy,)
process

— g, o — bar(yy') € NC(t) (U, (1))
Uz, n(0) =z, € C(0)

where Uy, ,n s the Lipschitzean solution for this sweeping process. If x, — o
and if vy — Voo stably, then u,, ,» converges uniformly to the Lipschitzean solution
Uy poo Of the (PSW)(C;v™°; 25) process

— Ugo v — bar(1;°) € NC(t) (Uxoo,u‘” ()
Ugp oo (0) = 200 € C(0)

From Theorem 3.2, it is now possible to show that the value function associated
with (PSW) when C' is Lipschitzean satisfies the dynamic programming principle
(DPP), namely

Theorem 3.4 (of dynamic programming principle). Let C' : [0,T] — ck(E) be a
convex compact valued L-Lipschitzean mapping. Let Z be a conver compact subset
in B an R the space of relaxed controls associated with Z. Let x € E, 7 < T and
o > 0 such that T+ o < T. Assume that J : [0,T] x E x Z — R is bounded and
continuous. Let us consider the value function

T
Vi(r.a) = sup / [ /Z Tt s 0 (8), 2J0r(d2)] dE, () € [0, T[XE
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where s g, 15 the Lipschitzean solution to the (PSW)(C;v;x) defined on [1,T)]
associated with the control v € R starting from x at time T

- ’I:LT,LE,Z/ - bar(Vt) € NC(t) (uT,m,V(t))
Urzu(T) =2 € C(T)

Then the following holds:

Vi(r,z) = 516171% [/TT+U[/Z J(t, wr g0 (1), 2)ve(d2)]dt + V(T 4+ 0, Ur g (T + 0))]

with

T
Vilr 4 0t +0) =50 [ [ It oy (8) ()
HER J1+0 JZ

where Vrygu, ., (r+o)u 18 the Lipschitzean solution to (PSW)(C; p;ur 20 (T + 0))
defined on [T + 0,T] associated with the control p € R starting from ur (T + o)
at titme T + 0.

Proof. We omit the proof since it follows the lines of the proof of Theorem 2.12 using
the dependence of the solution with respect to the state x € E and the controls
veER. O

The viscosity property of the value function associated to the (PSW) in the
Lipschitz case is now within reach. Let us mention a useful lemma that is borrowed
from [3, Lemma 4.1]. See also [5, 9, 10, 11] for related results.

Lemma 3.5. Let Z be a convex compact subset in E, M} (Z) is endowed with the
vague topology and R the space of relaxed controls associated with Z. Let A : [0, T] x
E x M}F(Z) — R be an upper semicontinuous function such that the restriction of
A to [0,T)x Bx M'(Z) is bounded on any bounded subset B of E. Let C : [0,T] —
ck(E) be a convex compact valued L-Lipschitzean mapping. Let (to,zo) € [0,T] % E.
If Max, e p1 () A(to, xo, ) < —m < 0 for some n > 0, then there exist o > 0 such
that
to+o on
sup/ A(t, wgy 0,0 (t), 1) dt < ——
VER Jtg 2
where Uty 5, 15 the trajectory solution of the sweeping process (PSW)(C;v;x),
associated with the control v € R and starting from xq at time tg

- atoyxow(t) - bar(yt) € NC(t) (utoﬂﬁoﬂf(t))v te [t07T]
uto,xo,l/(tﬂ) = Zo-

Proof. By our assumption Max,e \1 (2) A(tg, xo, ) < —nm < 0 for some n > 0. As

the function (¢, 2, u) — A(t,z, 1) is upper semicontinuous, so is the function

t,x)— max A(t,z,u).
(t, ) MeM#(Z)( 1)

Hence there exists ¢ > 0 such that

max A(t,z,p) < —=
peML(2)

N33
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for 0 <t —ty < ¢ and ||x — zo|| < . Thus, for small values of o, we have

Hutmxo,l/(t) - uto,wo,V(tO)H <¢
for all ¢ € [to,to + o] and for all v € R because ||t 2, (t)|] < L+ 2|Z| for all
v € R and for all ¢ € [0,T] ([1], Theorem 4.1’ yields a sharper estimate). Hence

t — A(t, Uty 20,0 (t), 1) is bounded and Lebesgue-measurable on [tg,tg + ¢]. Then
by integrating

to+o to+o on
/ AGt, ity mg (), 1) dt < / [ max A(tugg g (1), )] dt < 22,
to to NEM}F(Z) 2

g

Theorem 3.6 (of viscosity solution). Let C : [0,T] — ck(E) be a conver compact
valued L-Lipschitzean mapping. Let Z be a compact subset in 2 and R be the space
of relazed control associated with Z. Assume that J : [0,T] x Ex Z — R is bounded
and continuous. Let us consider the value function

T
Vi(r,z) = sup/ [/ J(t, ur 20 (), 2)11(dz)] dt, (1,2) € [0,T] x E
vER JT Z
where ur 5, is the trajectory solution on [1,T] of the sweeping process (PSW)(C;v; x)
associated with the control v € R and starting from x € E at time T
— Ur g0 (t) — bar(vy) € Neow)(Urew(t)), t € [7,T]
Urz(T) =2

and the Hamiltonian

H(t,z,p)

= sup [_<p7 ba‘r(lu’» + / J(ta Z, Z)/,L(dZ)] + 5*(p7 _(L + 3‘Z‘)8[d0(t)](x))7
peM? (2) Z

where (t,z,p) € [0,T] x E x E and Oldo))](z) denotes the subdifferential of the

distance functions x + dogyx. Then, Vj is a viscosity subsolution of the HJB

equation
E(t, CU) + H(t, Z, VU(t, x)) = 0,
that is, for any ¢ € C*([0,T]) x E) for which Vj — ¢ reaches a local mazimum at

(to,z0) € [0,T] x E, we have

0
H{(to, z0, Vip(to, 20)) + 5 (t0,20) 2 0.

Proof. Assume by contradiction that there exists a ¢ € C1([0,T] x F) and a point
(to,x0) € [0,T] x E for which

0
a—f(to,mo) + H(to, 0, Vo(to,z0)) < —n <0 for n>0.

Applying Lemma 3.5, by taking

here VU is the gradient of U with respect to the second variable
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A(t,z, 1) = —(Vip(t, ), bar(u)) + /Z J(t,z, 2)(dz)

8 (Vplt, ), ~ (L + 3121) Dldeqy () + S (1)

yields some o > 0 such that

to+o
(3.5) 816172 [/t [/Z J(t, Uty o0 (1), 2)1e(dz)] dt
v 0
to+o
—/t (Vep(t, uty z.0(t), bar(ry)) dt
0
to+o
+/t 5" (Veo(t, utg,zo,0 (1)), —(L + 3| Z]) Oldow) (utg,zo, (1)) di
0
to+o agp
+ L2t ug o (1)) di
L Gt
< _on
- 2

where uy, 4., is the trajectory solution of the sweeping process (PSW)(C;v;xo)
associated with the control v € R starting from zg at time %g

- uto,xo,l/(t) - bar(yt) € NC(t) (uto,xo,V(t))t € [tO’ T]
uto,wo,lj(to) = Z0

Applying the dynamic programming principle (Theorem 3.4) gives
(3.6)

to+o
Vittorao) =sup ([ 0ttt 0 0@t Vit 0,11 10 0) )
ve to Z
Since V; — ¢ has a local maximum at (g, zg), for small enough o

(3.7) Vy(to,xo) — (to,z0) > Vi(to + 0, Uty 0,0 (to + ) — @(to + 0, Uty 20,0 (to +0))
for all v € R. By (3.6) for each n € N, there exists v € R such that

to+o
(3.8) Vi(to,xo) < / [/ J(t, uty zo.0m (1)), 2)vf (d2)] dt
to Z
1
+ VJ(tO + ag, Ut07w07yn(t0 —+ O')) -+ g
From (3.7) and (3.8) we deduce that

Vi(to + 0, Uty zmo,0m (to + 0)) — ©(to + 0, Uty 20,0 (to + 7))

to+o 1
< / [ / T(t, gy agum (1)), 2V (d))dt +
to VA n

— @(to, zo) + Vi(to + 0, Uy o, (fo + 0)).

Therefore we have

to+o
(3.9) OS/ [/ J(t, Uty zo.0m (1)), 2)1] (d2)] dt

to Z
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1
+ SO(tO + O, Uty zq,0m (tO + U)) - go(to, ‘7:0) —+ E
As ¢ € CH([0,T] x E) we have

(3.10)  p(to + 0, Uty zoom (to + ) — @(to, xo)
to+o ) to+o ©
— [ (Veltsttgmgan Ot zgan ) e+ [ Dttt (0) .

to to

Since ug, z,,0» is the trajectory solution starting from g at time ¢y to the sweeping

process (PSW)(C;v"™; xo)
- uto,xo,l/" (t) - bar(’/?) € NC(t)(uto,wo,V" (t)), te [th T]
Uty zo.0m (t0) = To

and since ¢, 4, n (t) + bar(v)') € Br(0, L + 3|Z]), by the classical property of the
normal convex cone we get

— g,z () — bar(vy') € (L + 3|2)[) Olde )] (utg,zon ()
so that (3.10) yields the estimate

o(to + 0, Uty z9.0m (to + 7)) — @(to, z0)

to+o ) J 890
(3.11) - /to <v§0(t7uto,:voﬂln(t))auto@o,l/”(t» l+ /to E

to+o
(t7 Utg,o,v™ (t)) dt

to+o
< / (Vo(t, o 0. (1)), bax(vf) dt

to

to+o
+ / 5" (Vep(t, uto,ao.m (), —(L + 3| 2]) Olde ) (g o wm (¢))) di

to

to+o 8(,0
+/ 2 (t, Ut g o (1)) dt.
R ATC)

Inserting the estimate (3.11) into (3.9) we get

to+o
(3.12) 0< / [ / J(t, Uty mowm (1)), 2)10 (d2)]dt

to Z

to+o
- / (V(t, g g 0 (1)), bax (") dt

to

to+o
+ / 5" (Vep(t, ttto wo,0m (1)), = (L + 3| Z]) Dldc ) (to w9,0m (1)) dt

to

toto 9 1
P
— (¢ n(t)) dt + —.
L St ) de
Then (3.5) and (3.12) yield 0 < —%! 4+ L for all n € N. By passing to the limit
when n goes to oo in this inequality, we get a contradiction: 0 < —%!. The proof is
therefore complete. O



1064 C. CASTAING, M. D. P. MONTEIRO MARQUES, AND P. RAYNAUD DE FITTE

4. FURTHER EXTENSIONS AND APPLICATIONS

This study leads to several variants and the techniques developed here can be ap-
plied in other situations in differential games and also to the stochastic perturbation
of the sweeping process. At this point, compare with earlier results dealing with
ordinary differential equations (ODE) and evolution inclusions [3, 4, 5, 8, 9, 13, 14].
See also [11] dealing with the viscosity property of value function in second or-
der (ODE). In this context, we assume along this section that £ = R? and that
C :[0,T] = E is a convex compact valued mapping satisfying the Lipschitz condi-
tion

d(z, C(t)) — dly, C(7)| < LIt — | + ||z — y|
for all z,y € E and for all ¢,7 € [0,T] where L > 0 is the Lipschitz constant. Now
we will study the DPP property of the value function

T
Vil o) = sup / [ /Z Tt tra (1), (d2)] dt,  (r,2) € [0, T[XE

where ;4 , is the Lipschitz solution to the (PSW)(C;v;x) defined on [1,T] asso-
ciated to the control v € R starting from x at time 7

- 'ar,azu / f t uTxV )Vt(dz) € NC(t)(uT,:&V(t))
Urzu(T) =2 € C(T)

where f:[0,T] x E x Z — E satisfies
(i) for every fixed t € [0,T7], f(¢,.,.) is continuous on E X Z,
(i) for every (z,2) € E x Z, f(.,x, z) is Lebesgue-measurable on [0, 77,
(iii) there is a constant R > 0 such that ||f(¢t,z,2)|| < R for all (¢,z,2) in
[0,T) x E x Z,
(iv) there exists v € L4 [0,77) such that
Lf (21, 2) = f(E, 22, 2)[| < at)]|z1 — 22
for all (t,x1,2), (t,x2,2) € [0,T] x E.
Note that, for v € R, the mapping

hy : (t,z) — /Zf(t,m,z)ut(dz)

inherits the properties
(1) for every fixed t € [0,T], hy(t,.) is continuous on E,
(2) for every x € E, h,(.,z) is Lebesgue-measurable on [0, T,
(3) there is a constant R > 0 such that ||k, (t,z)|| < R for all (t,z) in [0,T] X E,
(4) there exists a € Lg [0,T]) such that
Ao (8, 21) = ho (8, 22) | < a(t)]|21 — 22|
for all (t,z1), (t,z2) € [0,T] x E.
Consequently, by Theorem 4.1’ in [1] the sweeping process

— Ur g (t) = hu(t,urz o (t)) € NC(t) (Urzp(t))
Urzp(T) =2 € C(T)
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admits a unique Lipschitz solution ur 4, with ||ir 4, (¢)|| < L + R a.e. Now using
the tools developed here we will provide the following viscosity solution for the value
function associated with the sweeping process. A series of lemmas will be needed.

Lemma 4.1. Let ur g n be the trajectory solution on [1,T] associated the control
V" € R starting from x™ € E at time T to the sweeping process (PSW)(C;v"™; z™)

— U gn yn (£) / F(t, uran o (t), 2)1 (d2) € NC(t)(uT,:L’",V”(t))
UT’InVVn( )_.Z' S C )

(a) If (2™) converges to x> and v™ stably converges to v>°, then s zn ,n converges
uniformly to Urgoo yoo, which is the Lipschitzean solution of the sweeping process

(PSW)(C; 1% 2)

- ’L.L‘,-’xooﬂjoo (t) — /Zf(t,uf’zoo,yoo (t), Z)I/fo(dz) S NC(t) (uﬂxoo’l,oo (t))

Uy goo oo (T) = 2°° € C(T)

(b) Let J : [0,1] x (E x E) =] — 00, +00| be a normal integrand such that J(t,x,.)
is convex on E for all (t,z) € [0,T] x E and that

J(t, Ug gn pr (t)v uT,ivnﬁ/n (t)) > 6” (t)
for alln € N and for all t € [0,T] for some uniformly integrable sequence (Bn)neN
mn Lh([O,T]), then we have

T T
llIIlnlnf / J(t, u7—7$n7yn (t), 1.147—75,;717”71 (t)) dt 2 / J(t, UT,xooJ/oo (t), /I:[/T7moo7yoo (t)) dt.
T T
Proof. (a) As ||ty (t)|] < L+ R a.e. we may extract a subsequence still denoted
by (tirzm,m) which converges weakly in LL[r,T]. For every t and for every n,
Urgnn(t) € C(t). Then, by Ascoli’s theorem, there is a subsequence still denoted
by (trgn ) which converges uniformly to an absolutely continuous function u*
with ||a>°(t)|| < L+ R a.e. Clearly
(1) = lim Urgn yn(7) = lim 2" =z
n—oo n—o0
and
u™(t) = lim urmn(t) € C(t),Vt € [1,T).

n—o0
From the inclusions

itrn () = [ im0, DF(d2) € Ny tran i (0)
it (8) = [ (bt (), 00 (d2) € N (e ()
and the monotonicity of  — Ng ;) (z) we deduce that

{thr gy (8) = g zoo oo (£), Ur,gn pn () = Ur goo poo (1))
< = (hun (b urgn (1)) = huoo (8 tr oo oo (£), Urgn pn (1)) = Ur oo voe (1)) ace.
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where
hl,n (t,u7-7xn7yn(t)) = / f(t,u-,-’zn’yn(t),Z)V?(dZ),
Z
hyoo (t, Ur goo yoo (1)) 1= /Zf(t,ur,xm,uoo (t), z)v;°(dz).

Integrating over [7,¢] (¢t € [0,T]) with respect to the measure ds yields

1 1
llrn o (£) = r g ()| = 512

n 0|2
— ™|
t
:/ <u7—,z",l/" = U goo,poo, Ur gn pyn — uT,.TOO,I/OO> ds
-

t
< - / <h1/” (37 Ur gn pr (3)) — hyeo (37 U, oo oo (3)); Ur,gn pn (3) — Ug goo pyo© (3)> ds.
Let us set
t
Ln(t) = / <u7,x”,yn (3) — U, oo poo (5)7 —hyn (Sa UT7I”,V”(S)) + hyoo (57 Ur x,p° (5))> ds.

Then we have the following estimate
1 1
gltramin () = r gz oo (]1° < 2" = 2" + La(#).

Now we repeat the calculations and arguments in the proof of in Theorem 2.13. We
have L, (t) = LL(t) + L2(t) + L3(t) where

t

L%L(t) = / <u7',ac",1/” (S) — Ug, oo poo (5)7 —hyn (37 U g pyr (S)) + hyn (87 U oo oo (S))> ds,
t

L (t) = / (Urgnun (8) = u(8), —hun (8, Ur goo oo (8)) + huoo (8, Ur goo voo () ds,
t

Li(t) - / (U(8) = Urgoo poo (8), —hum (8, Ur goo yoo (8)) + oo (8, Ur goo 1o (5))) ds.

As by (i) [|hyn (s, Urgnn(s)]] < R for all n € N U {oo} and for all s € [0,T7], and
Ur zn yn(8) — u™(s) for every s € [0,T], we see that L2(t) — 0 when n — oo for
each ¢t € [0, T]. By (iii), the integrand

h(s, z) == (U(s) — Ur goo poo (5), (S, Urzoo poo(s), 2))
is Carathéodory integrable and is bounded by
(s, 2)| < R|[u™(s) = trzoe poe (5)]|

for all (s,z) € [0,7] x Z. Hence h € Llc(Z)([O,T]). As v™ stably converges to v>°,
for every t € [0,T7], we have

lim t[/Z h(s,z)vi(dz)]dt = /:[/Z h(s,z)v(dz)] dt.

n—o0 T
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So lim,, 00 L3 (t) = 0, for every ¢ € [0,T]. By (iv) and (4) we have that |LL(t)| <
Jo ) [tz m (5) =tz 00 (5)]]*
1

1
Sltrain () = urpuee (IF <glla” = 2%(]* + Ly(8) + Ln()

ds. Finally we get

t
T / a(3) [trapn (5) — tr e (5)][2 ds.
0

As 3||z™ — 2*°[> = 0, L2(t) — 0 and L3(t) — 0, for all ¢t € [0,7], by Gronwall’s
lemma we have that w, zn yn(t) — Urgoo yoo (t), for all ¢ € [0, T, and hence ur 5 oo =
u°.

(b) Follows by using a general lower semicontinuity of integral functionals, see [10,
Theorem 8.1.6]. O

Lemma 4.2. The value function

T
Vi(r,z) = Sgg/ [/Z J(t, urz0 (), 2)11(d2)] dt, (7,2) € [0,T[xE

where Ur gz, s the Lipschitzean solution of the (PSW)(C;v;x) defined on [1,T)]
associated the control v € R starting from x at time T

gy — / F (b ttr (), 2)4(d2) € Ny (tran (1))
Z
Ur gz (T) =2 € C(7)
satisfies the dynamic programming principle.

Proof. Follows from the scheme of the proof of Theorem 2.12, using the continuous
dependence of the solution with respect to the state and the control obtained in
Lemma 4.1. g

Lemma 4.3. Let Z be a convex compact subset in E, M} (Z) is endowed with the
vague topology and R the space of relazed controls associated with Z. Let A : [0,T] x
E x MY (Z) — R be an upper semicontinuous function such that the restriction of
A to [0,T)x B x MY (Z) is bounded on any bounded subset B of E. Let C': [0,T] —
ck(E) be a convex compact valued L-Lipschitzean mapping. Let (to,xo) € [0,T] x E.
If Max, e a1 () A(tg, xo, ) < —n < 0 for some n > 0, then there exists o > 0 such
that -
o+o
sup/ A(t, wgy o (t), 1) dt < —?
VER Jitg

where U, 4. 1S the trajectory solution of the (PSW)(C;v;xg) associated with the
control v € R starting from xg at time tg

- ﬂtoﬂﬁoyv(t) - /Zf(tvuﬂ',x,l/(t)7 Z)Vt(dz) € NC(t) (uto,lo,v(t))’ te [t07T]
uto,xo,l/(to) = X0-

Proof. 1t is similar to Lemma 3.5, using the estimate ||t 4., (f)|| < L + R a.e. for
alv e R O
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From these lemmas it is not difficult to get the following viscosity solution of the
value function using the techniques of Theorem 3.6.

Theorem 4.4 (of viscosity solution). Let C : [0,T] — ck(E) be a conver compact
valued L-Lipschitzean mapping. Let Z be a compact subset in E and R the space of
relazed controls associated with Z. Assume that J : [0,T] x E x Z — R is bounded
and continuous and f : [0,T] x E x Z — E is continuous satisfying

(i) there is a constant R > 0 such that ||f(t,z,2)|| < R for all (t,z,z) in

0,7 x E x Z,
(ii) there exists a € L, [0,T]) such that

Lf(t 21, 2) = f(E, 22, 2)[| < alt)]|z1 — 22l
for all (t,x1,2),(t,x2,2) € [0,T] x E X Z.
Let us consider the value function
T
Vi(r,z) = sup/ [/ J(t,urz0(t), 2)1ve(dz)] dt, (T,2) € [0,T] x E
vER JT Z

where ur 5, is the trajectory solution of the sweeping process (PSW)(C;v;x) asso-
ciated with the control v € R starting from x € E at time T

— Uy gz / f(t urew(t), 2)vi(dz) € Nog (Urew(t)), te€[r,T]
Urz(T) =2 € C(T)

and the Hamiltonian

H(t,x,p) = sup /fta:z (dz)) /thz dz)]

peMt (Z
+ 0" (p, —(L + 2R)ddc ) (x))

where (t,z,p) € [0,T] x E x E and 9[dc)|(x) denotes the subdifferential of the
distance functions x + dogyx. Then, Vj is a viscosity subsolution of the HJB
equation
oUu
ot (
that is, for any ¢ € C*([0,T]) x E) for which Vj — ¢ reaches a local mazimum at
(to, o) € [0,T] x E, we have

t,x)+ H(t,z,VU(t,x)) =0

H(to, x0, V(to, z0)) + (toaxo) > 0.

Op
ot
Proof. Follows the scheme of the proof of Theorem 3.6, using Lemmas 4.1-4.2—
4.3. O

It is interesting to study the existence and properties of BVC solutions for
an evolution inclusion governed by the upper semicontinuous perturbation F' of
a maximal monotone operator A(t) depending on time ¢ € [0,7] of the form

_dcng\ (t) — F(t,u(t)) € A(t)u(t), u(0) € dom A(0) extending the pioneering work
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in [19]. Existence of BVC solutions for PSW(C, F, x) with upper semicontinuous
perturbation F’

dDu

_m(t) — F(t,u(t)) € Now(u(t)), u(0)==z

is available in [7, Theorem 4.3]. When C'is Lipschitz, this inclusion modelizes some
applications in Mathematical Economics. See [17]. Dealing with BVC solutions for
the aforementioned inclusions, the assumption

() vt € [0,T], IntC(t)#0

is crucial and so is the stability of sweeping process. Along the paper, the convexity
of the moving set C' is needed. One may consult [20] dealing with the sweeping
process without convexity where several references and related results can be found.
See also [15, 16] for related results on relaxation and sweeping process.

REFERENCES

[1] C. Castaing, T.X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping
process, Set Valued Anal. 1 (1993), 109-139.

[2] C. Castaing and V. Jalby, Epi-convergence of Integral Functionals defined on the Space of
Measures, Applications to the Sweeping Process, Atti. Sem. Mat. Fis. Univ. Modena XLIII
(1995) 113-157.

[3] C. Castaing, A. Jofre and A. Salvadori, Control problems governed by functional evolution
inclusions with Young measures, J. Nonlinear Convex Anal. 5 (2004), 131-152.

[4] C. Castaing, A. Jofre and A. Syam, Some limit results for integrands and Hamiltonians with
application to viscosity, J. Nonlinear Convex Anal. 6 (2005), 465-485.

[5] C. Castaing and S. Marcellin, Evolution inclusions with pln functions and application to vis-
cosity and control, J. Nonlinear Convex Anal. 8 (2007), 227-255.

[6] C. Castaing and M. D. P. Monteiro Marques, Periodic solution of evolution problems associated
with moving convex sets, Discussions Mathematicae, Differential Inclusions 15 (1995), 99-127.

[7] C. Castaing and M. D. P. Monteiro Marques, BV Periodic solutions of an evolution problem
associated with continuous moving convex sets, Set Valued Analysis 3 (1995), 381-399.

[8] C. Castaing and Paul Raynaud de Fitte, On the fiber product of Young measures with appli-
cations to a control problem with measures, Adv. Math. Econ. 6 (2004), 1-38.

[9] C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results with
application to evolution inclusions, Adv. Math. Econ. 8 (2006), 33-73.

[10] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on Topological Spaces.
With Applications in Control Theory and Probability Theory, Kluwer Academic Publishers,
Dordrecht, 2004.

[11] C. Castaing and Le Xuan Truong, Bolza, relazation and viscosity problems governed by a
second order differential equation, J. Nonlinear Convex Anal. 14 (2013), 451-482.

[12] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes
in Math. 580, Springer-Verlag, Berlin, 1977.

[13] R. J. Elliot, Viscosity solutions and optimal control, Pitman, London, 1987.

[14] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions
of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J 33 (1984), 773-797.

[15] J. F. Edmond and L. Thibault, Relazation of an optimal control problem involving a perturbed
sweeping process, Math. Program, Ser. B 104 (2005), 347-373.

[16] J. F. Edmond and L. Thibault, BV solutions of non conver sweeping process differential in-
clusion with perturbation, J. Differential Equations 226 (2006), 135-179.

[17] C. Henry, An existence theorem for a class of differential equation with multivalued right-hand
side, J. Math. Anal. Appl. 41 (1973) 179-186.



1070 C. CASTAING, M. D. P. MONTEIRO MARQUES, AND P. RAYNAUD DE FITTE

[18] V. Jalby, Contributions aux problémes de convergence des fonctions vectorielles et des
intégrales fonctionnelles, These de Doctorat, Université Montpellier 11, 1993.

[19] M. Kunze and M. D. M. Monteiro Marques, BV Solutions to evolution problems with time-
dependent domains, Set-Valued Analysis 5 (1997), 57-72.

[20] M. Mazade and L. Thibault, Differential variational inequalities with locally proz-regular sets,
Journal of Convex Analysis 19 (2012), 1109-1139.

[21] M. D. P Monteiro Marques, Differential inclusions in Nonsmooth Mechanical Problems, Shocks
and Dry Friction, Birkhduser, Basel, 1993.

[22] J. J. Moreau, Evolution problem associated with a moving set in Hilbert space, J. Differential.
Eq. 26 (1977), 347-374.

[23] J. J. Moreau and M. Valadier, A chain rule involving vector functions of bounded variations,
J. Funct. Anal. 74 (1987), 333-345; and LMGMC, Montpellier, Preprint no 86-1, 1986.

[24] M. Valadier, Lipschitz approzimation of the sweeping (or Moreau) process, J. Differential Equa-
tions 88 (1990), 248-264.

[25] M. Valadier, Some bang-bang theorems, Multifunctions and Integrands, Stochastics Analysis,
Approximations and Optimization Proceedings, Catania 1983, Lecture Notes in Mathematics,
1091, pp. 225-234.

Manuscript received March 14, 2013
revised May 19, 201}

C. CASTAING
Département de Mathématiques, Université Montpellier 11, case courrier 051, 34095 Montpellier
Cedex 5, France

E-mail address: charles.castaing@gmail.com

M. D. P. MONTEIRO MARQUES
CMAF and Faculdade de Ciencias da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003
Lisboa, Portugal

E-mail address: mmarques@ptmat.fc.ul.pt

P. RAYNAUD DE FITTE
Normandie Univ, UR, Lab. de Mathématiques R. Salem, CNRS, UMR 6085, Av. de l'université,
76800 Saint-Etienne du Rouvray, France

E-mail address: prf@univ-rouen.fr



