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2. Relaxation problem in the sweeping process: The BVC case

For the sake of completeness, we recall the notation and summarize some useful
facts concerning Young measures. Let (Ω,F , P ) be a complete probability space.
Let X be a Polish space and let Cb(X) be the space of all bounded continuous
functions defined on X. Let M1

+(X) be the set of all Borel probability measures
on X equipped with the narrow topology. A Young measure λ : Ω → M1

+(X)
is, by definition, a scalarly measurable mapping from Ω into M1

+(X), that is, for

every f ∈ Cb(X), the mapping ω 7→ ⟨f, λω⟩ :=
∫
X f(x) dλω(x) is F-measurable. A

sequence (λn) in the space of Young measures Y(Ω,F , P ;M1
+(X)) stably converges

to a Young measure λ ∈ Y(Ω,F , P ;M1
+(X)) if the following holds:

lim
n→∞

∫
A
[

∫
X
f(x) dλn

ω(x)] dP (ω) =

∫
A
[

∫
X
f(x) dλω(x)] dP (ω)

for every A ∈ F and for every f ∈ Cb(X).

Theorem 2.1 ([10, Theorem 3.3.1]). Assume that S and T are Polish spaces.
Let (µn) be a sequence in Y(Ω,F , P ;M1

+(S)) and let (νn) be a sequence in
Y(Ω,F , P ;M1

+(T )). Assume that

(i) (µn) converges in probability to µ∞ ∈ Y(Ω,F , P ;M1
+(S)),

(ii) (νn) stably converges to ν∞ ∈ Y(Ω,F , P ;M1
+(T )).

Then (µn ⊗ νn) stably converges to µ∞ ⊗ ν∞ in Y(Ω,F , P ;M1
+(S × T )).

Theorem 2.2 ([10, Theorem 6.3.5]). Assume that X and Z are Polish spaces. Let
(un) be sequence of F-measurable mappings from Ω into X such that (un) converges
in probability to a F-measurable mapping u∞ from Ω into X, and let (vn) be a
sequence of F-measurable mappings from Ω into Z such that (vn) stably converges
to ν∞ ∈ Y(Ω,F , P ;M1

+(Z)). Let h : Ω×X × Z → R be a Carathéodory integrand
such that the sequence (h(., un(.), vn(.)) is uniformly integrable. Then the following
holds:

lim
n→∞

∫
Ω
h(ω, un(ω), vn(ω)) dP (ω) =

∫
Ω
[

∫
Z
h(ω, u∞(ω), z) dν∞ω (z)] dP (ω).

In the remainder Z is a compact metric space, M1
+(Z) is the space of all prob-

ability Radon measures on Z. We will endow M1
+(Z) with the narrow topology

so that M1
+(Z) is a compact metrizable space. Let us denote by Y([0, T ];M1

+(Z))
the space of all Young measures (alias relaxed controls) defined on [0, T ] endowed
with the stable topology so that Y([0, T ];M1

+(Z)) is a compact metrizable space
with respect to this topology. By the Portmanteau Theorem for Young mea-
sures [10, Theorem 2.1.3], a sequence (νn) in Y([0, T ];M1

+(Z)) stably converges
to ν ∈ Y([0, T ];M1

+(Z)) if

lim
n→∞

∫ T

0
[

∫
Z
ht(z)dν

n
t (z)] dt =

∫ T

0
[

∫
Z
ht(z)dνt(z)] dt

for all h ∈ L1
C(Z)([0, T ]), here C(Z) denotes the space of all continuous real valued

functions defined on Z endowed with the norm of uniform convergence. Finally let
us denote by Z the set of all Lebesgue measurable mappings (alias original controls)
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z : [0, T ] → Z andR := Y([0, T ];M1
+(Z)) the set of all relaxed controls (alias Young

measures) associated with Z.
Let us recall a fundamental result on sweeping process [21, 24].

Proposition 2.3. Let C : [0, T ] → Rd be closed convex valued lower semicontinuous
multifunction. Assume that

(i) there exist x0 ∈ Rd and r0 > 0 such that BRd(x0, r0) ⊂ C(t), ∀t ∈ [0, T ],
(ii) the graph of C is closed with respect to the left topology on [0, T ] and the usual

one on Rd.
Let a ∈ C(0). Then there exists a unique BVC solution to SW(C, a), that is, − dDu

d|Du|
(t) ∈ NC(t)(u(t)), |Du|-a.e.,

u(0) = a ∈ C(0).

Here Du is the differential vector measure associated with the BV function u and
|Du| is its variation measure, and NC(t)(u(t)) denotes the normal cone of C(t) at
the point u(t) ∈ C(t). Further, the solution u satisfies

||Du|| :=
∫ T

0
|Du| ≤ l(r0, ||a− x0||)

where the function l : R+ ×R+ → R+ is given by

l(s, S) :=

{
max{0, S2−s2

2s } if d ≥ 2,

max{0, S − s} if d = 1.

Assumptions (∗) and (∗∗) :
We will consider a closed convex valued multifunction C : [0, T ] → Rd and we

assume that C is continuous for the Hausdorff distance dH, that is,

(∗) ∀s ∈ [0, T ], lim
t→s

dH(C(t), C(s)) = 0

and that there exists r > 0 such that

(∗∗) ∀t ∈ [0, T ], 2rBRd(0, 1) ⊂ C(t).

Also E = Rd, in the sequel.

Assumptions on f :
Let us consider a mapping f : [0, T ]× E × Z → E satisfying:

(i) for every fixed t ∈ [0, T ], f(t, ., .) is continuous on E × Z,
(ii) for every (x, z) ∈ E × Z, f(., x, z) is Lebesgue-measurable on [0, T ],
(iii) there is a nonnegative Lebesgue integrable function g such that

f(t, x, z) ∈ g(t)(1 + ||x||)B̄E(0, 1)

for all (t, x, z) in [0, T ]× E × Z,
(iv) there exists α ∈ L1

R+ [0, T ]) such that

||f(t, x1, z)− f(t, x2, z)|| ≤ α(t)||x1 − x2||

for all (t, x1, z), (t, x2, z) ∈ [0, T ]× E × Z.
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Let C : [0, T ] → ck(E) be a convex compact valued continuous mapping satisfying
(∗) and (∗∗). We consider the sets of BVC solutions of the following two ”perturbed
sweeping process” problems (PSW)(C; ζ, x) and (PSW)(C;λ, x), namely −

dDux,ζ
|dDux,ζ |

(t) ∈ NC(t)(ux,ζ(t)) + f(t, ux,ζ(t), ζ(t))

ux,ζ(0) = x ∈ C(0)

and  −
dDux,λ
|dDux,λ|

(t) ∈ NC(t)(ux,λ(t)) +

∫
Z
f(t, ux,λ(t), z) dλt(z)

ux,λ(0) = x ∈ C(0)

where ζ belongs to the set Z of all original controls and λ belongs to the set R of all
relaxed controls. Taking [7, Theorem 4.4] into account, for each (x, ζ) ∈ C(0) × Z
(resp. (x, λ) ∈ C(0) ×R), there exists a unique BVC solution ux,ζ (resp. ux,λ) to
(PSW)(C; ζ, x) (resp. (PSW)(C;λ, x)), that is, for every positive Radon measure
dν on [0, T ] such that |Dux,ζ | << dν, |Dux,λ| << dν and dt << dν, the densities
Dux,ζ/dν, Dux,λ/dν and dt/dν satisfy

−
dDux,ζ
dν

(t)− f(t, ux,ζ(t), ζ(t))
dt

dν
(t) ∈ NC(t)(ux,ζ(t)), ν-a.e.

and respectively

−
dDux,λ

dν
(t)−

∫
Z
f(t, ux,λ(t), z) dλt(z)

dt

dν
(t) ∈ NC(t)(ux,λ(t)), ν-a.e.

We aim to present some relaxation problems in the framework of Optimal Control
Theory for the above (PSW). In particular, we state a viscosity property of the
value function associated with these evolution inclusions. Similar problems governed
by evolution inclusion with perturbation containing Young measures were initiated
by [3, 4, 9, 10]. Before going further, we recall first a fundamental result in [7,
Theorem 4.4] for the existence of BVC solutions to (PSW).

Proposition 2.4. Let C : [0, T ] → ck(E) be a convex compact valued continuous
mapping satisfying (∗) and (∗∗). Let us consider a mapping f : [0, T ] × E → E
satisfying:

(i) for every fixed t ∈ [0, T ], f(t, .) is continuous on E,
(ii) for every x ∈ E, f(., x) is Lebesgue-measurable on [0, T ],
(iii) there is a nonnegative Lebesgue integrable function g such that f(t, x) ∈

g(t)(1 + ||x||)B̄E(0, 1) for all (t, x) in [0, T ]× E,
(iv) there exists α ∈ L1

R+ [0, T ]) such that

||f(t, x1)− f(t, x2)|| ≤ α(t) ||x1 − x2||
for all (t, x1), (t, x2) ∈ [0, T ]× E.

Then there exists a unique BVC solution ux : [0, T ] → E with ux(0) = x ∈ C(0) to
the (PSW)(C; f ;x), that is, for every positive Radon measure ν on [0, T ] such that
Dux and dt are absolutely continuous with respect to ν, we have

−dDux
dν

(t)− f(t, ux(t))
dt

dν
(t) ∈ N(C(t);ux(t)), ν-a.e., t ∈ [0, T ].
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Briefly ux is the unique BVC solution of the inclusion

−Dux ∈ NC(t)(ux(t)) + f(t, ux(t)), ux(0) = x.

For the convenience of the reader we recall and summarize some results.

Proposition 2.5. The set of original controls Z is dense in the set R with respect
to the stable topology.

Proof. See [10, Lemma 7.1.1, page 197]. �
Let us recall the following denseness result based on Lyapunov’s theorem. See

e.g. [12, 25].

Proposition 2.6. Let Γ : [0, T ] → ck(E) be a convex compact valued measurable
and integrably bounded mapping. Let ext(Γ) : t 7→ ext(Γ(t)) where ext(Γ(t)) is the
set of extreme points of Γ(t)(t ∈ [0, T ]). Then the set S1

Γ of all integrable selections
of Γ is convex and σ(L1

E , L
∞
E ) compact and the set of all integrable selections S1

ext(Γ)

of ext(Γ) is dense in S1
Γ with respect to this topology.

The following stability result in the sweeping process is useful for our purposes.

Proposition 2.7. Let (Cn)n∈N∪{∞} be a sequence of lower semicontinuous mul-
tifunctions from [0, T ] to the set cc(E) of nonempty closed convex subsets of E.
Assume that the following assumptions are fulfilled:

(i) for any sequence (tn) in [0, T ] converging to t, C∞(t) ⊂ Li(Cn(tn)),
(ii) for any t ∈ [0, T ], Ls(Cn(t)) ⊂ C∞(t),
(iii) for every n ∈ N ∪ {∞}, the graph of Cn is left-closed,
(iv) there exists r > 0 such that BE(0, r) ⊂ Cn(t), ∀t ∈ [0, T ], ∀n ∈ N.

Let (un)n∈N be the BVC solution of the sweeping process

− dDun
d|Dun|

(t) ∈ NCn(t)(un(t)), |Dun|-a.e., un(0) = an ∈ Cn(0).

If (an)n∈N converges to a∞ ∈ E, then (un)n∈N pointwise converges to the unique
BVC continuous solution u∞ of the sweeping process

− dDu∞
d|Du∞|

(t) ∈ NC∞(t)(u∞(t)), |Du∞|-a.e., u∞(0) = a∞ ∈ C∞(0).

Proof. See [2, Theorem 4.4]. �
For simplicity we begin with some particular results on relaxation associated with

the above sweeping process which are based on the continuity of the solution with
respect to the control and the stability result for sweeping process.

Theorem 2.8. Let C : [0, T ] → cc(E) be a closed convex valued continuous mapping
satisfying (∗) and (∗∗). Let hn, h ∈ L1

E([0, T ] with ||hn(t)|| ≤ g(t) for all n ∈ N and
for all t ∈ [0, T ], for some positive integrable function g, and let us consider the two
following (PSW)  −

dDux,hn

d|Dux,hn |
(t)− hn(t) ∈ NC(t)(ux,hn(t))

ux,hn(0) = x ∈ C(0)



1048 C. CASTAING, M. D. P. MONTEIRO MARQUES, AND P. RAYNAUD DE FITTE −
dDux,h
d|Dux,h|

(t)− h(t) ∈ NC(t)(ux,h(t))

ux,h(0) = x ∈ C(0)

where ux,hn and ux,h are the BVC solutions to (PSW)(C;hn;x) and (PSW)(C;h;x),
respectively. Assuming that (hn) converges σ(L1

E , L
∞
E ) to h, then ux,hn pointwise

converges to ux,h.

Proof. Let us consider the closed convex valued continuous mappings

Ch(t) := C(t) +

∫ t

0
h(s) ds, ∀t ∈ [0, T ]

Chn(t) := C(t) +

∫ t

0
hn(s) ds, ∀t ∈ [0, T ].

Then the sweeping processes (SW)(Ch;x) and (SW)(Chn ;x) with initial value x
have unique BVC solutions respectively wx,h and wx,hn with wx,h(0) = wx,hn(0) =
x, wx,h(t) ∈ Ch(t), and wx,hn(t) ∈ Chn(t) for all t ∈ [0, T ]. Since hn converges
σ(L1

E , L
∞
E ) to h, we have

Shn(t) :=

∫ t

0
hn(s) ds → Sh(t) :=

∫ t

0
h(s) ds, ∀t ∈ [0, T ]

so that

(2.1) lim
n→∞

dH(Chn(t), Ch(t)) = lim
n→∞

||Shn(t)− Sh(t))|| = 0, ∀t ∈ [0, T ].

Further if tn → t, then using (2.1)

lim
n→∞

dH(Chn(tn), Ch(t)) ≤ lim
n→∞

[dH(C(tn), C(t)) + |
∫ tn

t
||hn(s)|| ds|](2.2)

≤ lim
n→∞

|
∫ tn

t
g(s) ds| = 0.

Then (2.1) and (2.2) imply the following conditions involving the well-known Ku-
ratowski limits of sets:

(i) for any sequence (tn) in [0, T ] converging to t, Ch(t) ⊂ LiChn(tn)
(ii) for any t ∈ [0, T ], LsChn(t) ⊂ Ch(t).

Since for every n, the graph of Chn is left closed, then by (i) and (ii) we may apply
the stability result for sweeping process in Proposition 2.7 which shows that the
solutions wx,hn to the sweeping process (SW)(Chn ;x) pointwise converge to the
unique solution wx,h to the sweeping process (SW)(Ch;x). Hence we deduce that,
for all t ∈ [0, T ]

lim
n→∞

ux,hn(t) = lim
n→∞

wx,hn(t)− Shn(t) = wx,h(t)− Sh(t) = ux,h(t).

�
Remark. In further applications, we will consider the BVC solution uxn,hn to
(PSW)(C;hn;xn) and ux,h to (PSW)(C;h;x). Then if (hn)σ(L

1
E , L

∞
E ) converges

to h and (xn) converges to x in C(0), then uxn,hn pointwise converges to ux,h.
Now we provide some applications of the sweeping process in Control Theory.
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Theorem 2.9. Let C : [0, T ] → ck(E) be a convex compact valued continuous
mapping satisfying (∗) and (∗∗). Let Γ : [0, T ] → ck(E) be a convex compact valued
measurable and integrably bounded mapping. Let ext(Γ) : t 7→ ext(Γ(t)) where
ext(Γ(t)) is the set of extreme points of Γ(t)(t ∈ [0, T ]). Let S1

Γ and S1
ext(Γ)be the set

of all integrable selections of Γ and ext(Γ), respectively. Let us consider the control
problems governed by the two following sweeping processes −

dDux,h
d|Dux,h|

(t)− h(t) ∈ NC(t)(ux,h(t)), h ∈ S1
Γ

ux,h(0) = x ∈ C(0)

 −
dDux,h
d|Dux,h|

(t)− h(t) ∈ NC(t)(ux,h(t)), h ∈ S1
ext(Γ)

ux,h(0) = x ∈ C(0).

Then the following hold:

(a) For each t ∈ [0, T ], the mapping h 7→ ux,h(t) ∈ E is continuous on S1
Γ; here

S1
Γ is endowed with the σ(L1

E , L
∞
E ) topology.

(b) For each t ∈ [0, T ], the set {ux,h(t) : h ∈ S1
ext(Γ)} is dense in the compact

set {ux,h(t) : h ∈ S1
Γ}.

Proof. (a) Observe that S1
Γ is compact metrizable with respect to the σ(L1

E , L
∞
E )

topology. Let hn ∈ S1
Γ σ(L1

E , L
∞
E ) converge to h ∈ S1

Γ. Then by Theorem 2.8, ux,hn

pointwise converges to ux,h which proves (a).
(b) is consequence of this continuity property and the denseness property in Propo-
sition 2.6. �

The following shows the continuous dependence of the solution with respect to
the control in the sweeping process (PSW).

Theorem 2.10. Let C : [0, T ] → ck(E) be a convex compact valued continuous
mapping satisfying (∗) and (∗∗) and let Z be a compact subset of E. Let us consider
the control problem governed by the sweeping process (PSW)(C; ν;x) − dDux,ν

d|Dux,ν |
(t)− bar(νt) ∈ NC(t)(ux,ν(t)), ν ∈ R

ux,ν(0) = x ∈ C(0)

where bar(νt) denotes the barycenter of the measure νt ∈ M1
+(Z). Then, for each

t ∈ [0, T ], the mapping ν 7→ ux,ν(t) is continuous on R, where R is endowed with
the stable topology.

Proof. (a) Let ν ∈ R and let bar(ν) : t 7→ bar(νt), t ∈ [0, T ]. It is easy to check
that ν 7→ bar(ν) from R into L1

E([0, T ]) is continuous with respect to the stable
topology and the σ(L1

E , L
∞
E ), respectively. Note that R is compact metrizable for

the stable topology. Now let (νn) be a sequence in R which stably converges to
ν ∈ R. Then bar(νn) σ(L1

E , L
∞
E ) converges to bar(ν). By Theorem 2.8 we see that

ux,νn pointwise converges to ux,ν . �
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Remark Taking into account the remark of Theorem 2.8, it is not difficult to show
that, for each t ∈ [0, T ], the mapping (x, ν) 7→ ux,ν(t) is continuous on C(0)×R.

We are now able to relate the Bolza type problems associated with sweeping
processes, as follows:

Theorem 2.11. With the hypotheses and notations of Theorem 2.10, assume that
J : [0, T ]× E × Z → R is a Carathéodory integrand, that is, J(t, ., .) is continuous
on E × Z for every t ∈ [0, T ] and J(., x, z) is Lebesgue-measurable on [0, T ] for
every (x, z) ∈ E × Z, which satisfies the condition (C): for every sequence (ζn) in
Z, the sequence (J(., ux,ζn(.), ζ

n(.)) is uniformly integrable in L1
R([0, T ], dt); here

ux,ζn denotes the unique BVC solution to (PSW)(C; ζn;x) −
dDux,ζn

d|Dux,ζn |
(t)− ζn(t) ∈ NC(t)(ux,ζn(t)), ζ

n ∈ Z

ux,ζn(0) = x ∈ C(0)

Let us consider the control problems

inf(PZ) := inf
ζ∈Z

∫ T

0
J(t, ux,ζ(t), ζ(t)) dt

and

inf(PR) := inf
λ∈R

∫ T

0
[

∫
Z
J(t, ux,λ(t), z)λt(dz)] dt

where ux,ζ (resp. ux,λ) is the unique BVC solution to (PSW)(C; ζ;x) and
(PSW)(C;λ;x), respectively. Then one has

inf(PZ) = inf(PR).

Proof. Take a control λ ∈ R. By virtue of Proposition 2.5, there is a sequence
(ζn)n∈N in Z such that the sequence (δζn)n∈N of Young measures associated with
(ζn)n∈N stably converges to λ. By Theorem 2.8, the sequence (ux,ζn) where ux,ζn
is the unique BVC solution to (PSW)(C; ζn;x) pointwise converges to the unique
BVC solution ux,λ to (PSW)(C;λ;x). As (J(t, ux,ζn(t), ζ

n(t))) is uniformly inte-
grable by assumption (C), using Theorem 2.2 (or [10, Theorem 6.3.5]), we get

lim
n→∞

∫ T

0
J(t, ux,ζn(t), ζ

n(t)) dt =

∫ T

0
[

∫
Z
J(t, ux,λ, z)dλt(z)] dt.

As ∫ T

0
J(t, ux,ζn(t), ζ

n(t)) dt ≥ inf(PZ)

for all n ∈ N, so is ∫ T

0
[

∫
Z
J(t, ux,λ, z)dλt(z)] dt ≥ inf(PZ);

by taking the infimum on R in this inequality we get

inf(PR) ≥ inf(PO)

As inf(PO) ≥ inf(PR), the proof is complete. �
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In the framework of Optimal Control, the above considerations lead to the study
of the value function associated with the (PSW). The following shows that the
value function satisfies the dynamic programming principle (DPP).

Theorem 2.12 (of dynamic programming principle). Assume the hypothesis and
notations of Theorem 2.10, and let x ∈ E, τ < T and σ > 0 such that τ + σ < T .
Assume that J : [0, T ] × E × Z → R is bounded and continuous. Let us consider
the value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T ]× E

where uτ,x,ν is the BVC solution to the (PSW)(C; ν;x) defined on [τ, T ] associated
the control ν ∈ R starting from x at time τ − dDuτ,x,ν

d|Duτ,x,ν |
(t)− bar(νt) ∈ NC(t)(uτ,x,ν(t))

uτ,x,ν(τ) = x ∈ C(τ)

Then the following holds:

VJ(τ, x) = sup
ν∈R

{
∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt+ VJ(τ + σ, uτ,x,ν(τ + σ))}

with

VJ(τ + σ, uτ,x,ν(τ + σ)) = sup
µ∈R

∫ T

τ+σ
[

∫
Z
J(t, vτ+σ,uτ,x,ν(τ+σ),µ(t), z)µt(dz)] dt

where vτ+σ,uτ,x,ν(τ+σ),µ
1 is the BVC solution to (PSW)(C;µ;uτ,x,ν(τ + σ)) defined

on [τ + σ, T ] associated with the control µ ∈ R starting from uτ,x,ν(τ + σ) at time
τ + σ

(2.3)

 −
dDvτ+σ,uτ,x,ν(τ+σ),µ

d|Dvτ+σ,uτ,x,ν(τ+σ),µ|
(t)− bar(µt) ∈ NC(t)(vτ+σ,uτ,x,ν(τ+σ),µ(t))

vτ+σ,uτ,x,ν(τ+σ),µ(τ + σ) = uτ,x,ν(τ + σ) ∈ C(τ + σ)

Proof. Let

WJ(τ, x) := sup
ν∈R

{
∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt+ VJ(τ + σ, uτ,x,ν(τ + σ))}.

For any ν ∈ R, we have∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt =

∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt

+

∫ T

τ+σ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt.

1It is necessary to write completely the expression of the trajectory vτ+σ,uτ,x,ν(τ+σ),µ that de-
pends on (ν, µ) ∈ R × R in order to get the continuous dependence with respect to ν ∈ R of
VJ(τ + σ, uτ,x,ν(τ + σ)).
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By the definition of VJ(τ + σ, uτ,x,ν(τ + σ)) we have

VJ(τ + σ, uτ,x,ν(τ + σ)) ≥
∫ T

τ+σ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt.

It follows that∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt ≤

∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt

+ VJ(τ + σ, uτ,x,ν(τ + σ)).

By taking the supremum on ν ∈ R in this inequality, we get

VJ(τ, x) ≤ sup
ν∈R

{
∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt+ VJ(τ + σ, uτ,x,ν(τ + σ))}

= WJ(τ, x).

Let us prove the converse inequality.

Main fact : ν 7→ VJ(τ + σ, uτ,x,ν(τ + σ)) is continuous on R.
Let us focus on the expression of VJ(τ + σ, uτ,x,ν(τ + σ)):

VJ(τ + σ, uτ,x,ν(τ + σ)) = sup
µ∈R

∫ T

τ+σ
[

∫
Z
J(t, vτ+σ,uτ,x,ν(τ+σ),µ(t), z)µt(dz)] dt

where vτ+σ,uτ,x,ν(τ+σ),µ denotes the trajectory solution on [τ +σ, T ] associated with
the control µ ∈ R starting from uτ,x,ν(τ + σ) at time τ + σ in (2.3). Using
the remark of Theorem 2.10 concerning the continuous dependence of the solu-
tion with respect to the state and the control, it is readily seen that the map-
ping (ν, µ) 7→ vτ+σ,uτ,x,ν(τ+σ),µ(t) is continuous on R × R for each t ∈ [τ, T ],
namely if νn stably converges to ν ∈ R and µn stably converges to µ ∈ R, then
vτ+σ,uτ,x,νn (τ+σ),µn pointwise converges to vτ+σ,uτ,x,ν(τ+σ),µ. By using the fiber prod-

uct of Young measure (see Theorem 2.1 or [10, Theorem 3.3.1]), we deduce that

(ν, µ) 7→
∫ T
τ+σ[

∫
Z J(t, vτ+σ,uτ,x,ν(τ+σ),µ(t), z)µt(dz)] dt is continuous on R×R. Con-

sequently ν 7→ VJ(τ + σ, uτ,x,ν(τ + σ)) is continuous on R. Hence the mapping

ν 7→
∫ τ+σ
τ [

∫
Z J(t, uτ,x,ν(t), z)νt(dz)]dt+ VJ(τ + σ, uτ,x,ν(τ + σ)) is continuous on R.

By compactness of R, there is a maximum point ν1 ∈ R such that

WJ(τ, x) =

∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν1(t), z)ν

1
t (dz)]dt+ VJ(τ + σ, uτ,x,ν1(τ + σ)).

Similarly there is µ2 ∈ R such that

VJ(τ + σ, uτ,x,ν1(τ + σ)) =

∫ T

τ+σ
[

∫
Z
J(t, vτ+σ,uτ,x,ν1 (τ+σ),µ2(t), z)µ2

t (dz)]dt

where

vτ+σ,uτ,x,ν1 (τ+σ),µ2(t)
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denotes the trajectory solution associated with the control µ2 ∈ R starting from
uτ,x,ν1(τ +σ) at time τ +σ to the (PSW)(C;µ2;uτ,x,ν1(τ +σ)) defined on [τ +σ, T ]

−
dDvτ+σ,uτ,x,ν1 (τ+σ),µ2

d|Dvτ+σ,uτ,x,ν1 (τ+σ),µ2 |
(t)− bar(µ2

t ) ∈ NC(t)(vτ+σ,uτ,x,ν1 (τ+σ),µ2(t)).

Let us set
ν := 1[τ,τ+σ]ν

1 + 1[τ+σ,T ]µ
2.

Then ν ∈ R. Let wτ,x,ν be the trajectory solution on [τ, T ] associated with ν ∈ R,
that is,  − dDwτ,x,ν

d|Dwτ,x,ν |
(t)− bar(νt) ∈ NC(t)(wτ,x,ν(t)), t ∈ [τ, T ]

wτ,x,ν(τ) = x ∈ C(τ).

By uniqueness of the solution, we have

wτ,x,ν(t) = uτ,x,ν1(t), ∀t ∈ [τ, τ + σ],

wτ,x,ν(t) = vτ+σ,uτ,x,ν1 (τ+σ),µ2(t), ∀t ∈ [τ + σ, T ].

Coming back to the expression of VJ and WJ we have

WJ(τ, x) =

∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν1(t), z)ν

1
t (dz)] dt

+

∫ T

τ+σ
[

∫
Z
J(t, vτ+σ,uτ,x,ν1 (τ+σ),µ2(t), z)µ2

t (dz)] dt

=

∫ 1

τ
[

∫
Z
J(t, wτ,x,ν(t), z)νt(dz)] dt

≤ sup
ν∈R

{
∫ 1

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt = VJ(τ, x).

�
In the above results we have considered the sweeping process with control Young

measure (PSW)(C; ν;x) − dDuτ,x,ν
d|Duτ,x,ν |

(t)− bar(νt) ∈ NC(t)(uτ,x,ν(t)), t ∈ [τ, T ]

uτ,x,ν(τ) = x ∈ C(τ)

with ν ∈ R, using the continuity of the solution with respect to the control ν ∈ R.
In this case the perturbation bar(νt) is of simple nature. Now we will treat a more
general case. Namely we consider a mapping f : [0, T ]× E → E satisfying:
(i) for every fixed t ∈ [0, T ], f(t, .) is continuous on E,
(ii) for every x ∈ E, f(., x) is Lebesgue-measurable on [0, T ],
(iii) there is a nonnegative Lebesgue integrable function g such that f(t, x) ∈ g(t)(1+
||x||)B̄E(0, 1) for all (t, x) in [0, T ]× E,
(iv) there exists α ∈ L1

R+ [0, T ]) such that

||f(t, x1)− f(t, x2)|| ≤ α(t) ||x1 − x2||
for all (t, x1), (t, x2) ∈ [0, T ]× E.
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We consider the sweeping process (PSW) on [0, T ] −
dDux,λ
d|Dux,λ|

(t)−
∫
Z
f(t, uτ,x,λ(t), z)λt(dz) ∈ NC(t)(ux,λ(t))

ux,λ(0) = x ∈ C(0)

where C : [0, T ] → ck(E) is a convex compact valued mapping satisfying (∗) and
(∗∗), Z is a compact subset of E and R is the space of relaxed controls associated
with Z. By virtue of Proposition 2.3 or [5, Theorem 4.4], for each λ ∈ R there is
a unique BVC solution ux,λ for this inclusion. Further, arguing as in the proof of
[7, Theorems 4.2–4.3], it is not difficult to see that (ux,λ)λ∈R is uniformly bounded
and uniformly bounded in variation, that is, supt∈[0,T ] supλ∈R ||ux,λ(t)|| ≤ R < ∞
and supλ∈R ||Dux,λ|| := supλ∈R

∫ T
τ |Dux,λ| ≤ K < ∞.

Here is a main result in this section dealing with the continuous dependence of
the solution with respect to the control Young measure in the above (PSW).

Theorem 2.13. Let C : [0, T ] → ck(E) be a convex compact valued continuous
mapping satisfying (∗) and (∗∗). Let ux,λ be the BVC solution to the following
(PSW) on [0, T ] −

dDux,λ
d|Dux,λ|

(t)−
∫
Z
f(t, ux,λ(t), z)λt(dz) ∈ NC(t)(ux,λ(t))

ux,λ(0) = x ∈ C(0)

Then the following hold:

(a) For each t ∈ [0, T ], the mapping λ 7→ ux,λ(t) is continuous on R, here R is
endowed with the stable topology.

(b) Let J : [0, T ]×E×Z → E be bounded continuous mapping, then the mapping

λ 7→
∫ T

0
[

∫
Z
J(t, ux,λ(t), z)λt(dz)]dt

is continuous on R with respect to the stable topology. Consequently

inf
ζ∈Z

∫ T

0
J(t, ux,ζ(t), ζ(t)) dt = min

λ∈R

∫ T

0
[

∫
Z
J(t, ux,λ(t), z)λt(dz)]dt.

Proof. (a) Let λn ∈ R stably converge to λ∞ ∈ R. We need to show that (ux,λn)
pointwise converges to ux,λ∞ . Since (ux,λn) is uniformly bounded and uniformly
bounded in variation, by Banach-Helly Theorem [21, Theorem 2.1], the sequence
(ux,λn) is relatively sequentially compact for the topology of pointwise convergence.
Hence we may assume, by extracting a subsequence that (ux,λn) pointwise converges
to a BV function u∞ with u∞(0) = x. Let us set

hλ(t, x) =

∫
Z
f(t, x, z)λt(dz) ∀(t, x, λ) ∈ [0, T ]× E ×R.

Then we have −
dDux,λn

d|Dux,λn |
(t)− hλn(t, ux,λn(t)) ∈ N(C(t);ux,λn(t))

ux,λn(0) = x ∈ C(0).
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Let us consider a positive Radon measure dν such that |Duλn |+ |Duλ∞ |+dt << dν
for all n ∈ N. Then |Duλn | << dν, |Duλ∞ | << dν and dt << dν. In view of the
characterization of the solution to (PSW) in [7, Theorem 4.1], we have

(2.4) −
dDux,λn

dν
− hλn(t, ux,λn(t))

dt

dν
(t) ∈ NC(t)(ux,λn(t)), ν-a.e.

Since x 7→ NC(t)(x) is monotone, (2.4) implies⟨(
−
dDux,λn

dν
− hλn(t, ux,λn(t))

dt

dν
(t)

)
−

(
−
dDux,λ∞

dν
− hλ∞(t, ux,λ∞(t))

dt

dν
(t)

)
, ux,λn(t)− ux,λ∞(t)

⟩
≥ 0, ν-a.e.

Equivalently,

(2.5)

⟨
dD(ux,λn − ux,λ∞)

dν
, ux,λn(t)− ux,λ∞(t)

⟩
≤ −

⟨
hλn(t, ux,λn(t))− hλ∞(t, ux,λ∞(t)), (ux,λn(t)− ux,λ∞(t))

dt

dν

⟩
, ν-a.e.

Integrating (2.5) over [0, t] (t ∈ [0, T ]) with respect to the measure dν yields

(2.6)

∫ t

0
⟨ux,λn − ux,λ∞ , D(ux,λn − ux,λ∞)⟩

≤ −
∫ t

0
⟨hλn(s, ux,λn(s))− hλ∞(s, ux,λ∞(s)), ux,λn(s)− ux,λ∞(s)⟩ ds.

By (2.6) and [23], it follows that

(2.7)
1

2
||ux,λn(t)− ux,λ∞(t)||2 =

∫ t

0
⟨ux,λn − ux,λ∞ , D(ux,λn − ux,λ∞)⟩

≤ −
∫ t

0
⟨hλn(s, ux,λn(s))− hλ∞(s, ux,λ∞(s)), ux,λn(s)− ux,λ∞(s)⟩ ds.

Let us set

Ln(t) =

∫ t

0
⟨ux,λn(s)− ux,λ∞(s),−hλn(s, ux,λn(s)) + hλ∞(s, ux,λ∞(s))⟩ ds.

Then Ln(t) = L1
n(t) + L2

n(t) + L3
n(t) where

L1
n(t) =

∫ t

0
⟨ux,λn(s)− ux,λ∞(s),−hλn(s, ux,λn(s)) + hλn(s, ux,λ∞(s))⟩ ds,

L2
n(t) =

∫ t

0
⟨ux,λn(s)− u∞(s),−hλn(s, ux,λ∞(s)) + hλ∞(s, ux,λ∞(s))⟩ ds,

L3
n(t) =

∫ t

0
⟨u∞(s)− ux,λ∞(s),−hλn(s, ux,λ∞(s)) + hλ∞(s, ux,λ∞(s))⟩ ds.
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As ux,λn(s) → u∞(s) for every fixed s ∈ [0, T ], and, by (iii),

||hλn(s, ux,λn(s)|| ≤ g(s)(1 + ||ux,λn(s))||) ≤ g(s)(1 +R)

for all n ∈ N ∪ {∞}, we see that L2
n(t) → 0 when n → ∞ for each t ∈ [[0, T ]. By

(iii), the integrand

h(s, z) := ⟨u∞(s)− ux,λ∞(s), f(s, ux,λ∞(s), z)⟩
is Carathéodory integrable and is estimated by

||h(s, z)|| ≤ g(s)(1 +R)||u∞ − ux,λ∞ ||

for all (s, z) ∈ [0, T ] × Z. Hence h ∈ L1
C(Z)([0, T ]). As λn stably converges to λ∞,

for every t ∈ [0, T ], we have

lim
n→∞

∫ t

0
[

∫
Z
h(s, z)λn

s (dz)] dt →
∫ t

0
[

∫
Z
h(s, z)λ∞

s (dz)] dt.

So limn→∞ L3
n(t) = 0, for every t ∈ [0, T ]. By (iv) we have that |L1

n(t)| ≤∫ t
0 α(s)||ux,λn(s)− ux,λ∞(s)||2 ds. Finally by (2.7) we get

1

2
||ux,λn(t)− ux,λ∞(t)||2 ≤ L2

n(t) + L3
n(t) +

∫ t

0
α(s)||ux,λn(s)− ux,λ∞(s)||2 ds.

As L2
n(t) → 0 and L3

n(t) → 0, for all t ∈ [0, 1], by Gronwall’s lemma we have that
ux,λn(t) → ux,λ∞(t), for all t ∈ [0, 1], and hence ux,λ∞ = u∞.
(b) Let λn stably converge to λ in R. By (a), ux,λn pointwise converges to ux,λ∞ so
that

lim
n→∞

∫ T

0
[

∫
Z
J(t, ux,λn(t), z)λn

t (dz)] dt =

∫ T

0
[

∫
Z
J(t, ux,λ∞)(t), z)λ∞

t (dz)] dt

using the fiber product for Young measures in Theorem 2.1 or [10, Theorem 3.3.1].
Again by compactness of R and by continuity of the solutions with respect to the
controls in (a), we conclude that

inf
ζ∈Z

∫ T

0
J(t, ux,ζ(t), ζ(t)) dt = min

λ∈R

∫ T

0
[

∫
Z
J(t, ux,λ(t), z)λt(dz)] dt.

�
Remarks. (1) It is worth to mention that the condition

(∗∗) ∀t ∈ [0, T ], 2rB(0, 1) ⊂ C(t)

can be replaced by the following more general condition

(∗∗∗) ∀t ∈ [0, T ], IntC(t) ̸= ∅.
We would like to mention that, in the above dynamic models, we need some new
techniques, because the closed convex moving set C(t) is only assumed to be con-
tinuous with IntC(t) ̸= ∅, by contrast to earlier problems considered in the above
mentioned works.

(2) The stability for the sweeping process [2] with continuous moving sets is of
importance. This allows to obtain a general Skohorod problem and is decisive in
the solvability of the Skorohod differential equation.
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3. Viscosity problem in the sweeping process: The Lipschitzean case

In this section we present several viscosity problems for the (PSW) when E = Rd

and C : [0, T ] ⇒ E is a convex compact valued L-Lipschitzean mapping:

|d(x,C(t))− d(y, C(τ))| ≤ L|t− τ |+ ||x− y||, ∀x, y ∈ E × E, ∀t, τ ∈ [0, T ]× [0, T ].

Given a closed convex valued L-Lipschitzean mapping, then, from a classical result
in the sweeping process [22], given x ∈ C(0), there is a unique L-Lipschitzean
function u : [0, T ] → E with ||u̇(t)|| ≤ L a.e. such that{

− u̇(t) ∈ NC(t)(u(t)), t ∈ [0, T ]

u(0) = x ∈ C(0).

Now we state and summarize a stability result in (PSW) for the Lipschitzean
case.

Theorem 3.1. Let (Cn), n ∈ N∪{∞} be a sequence of ck(E)-valued L-Lipschitzean
mappings. Assume that the following assumptions are fulfilled:

(i) for any sequence (tn) in [0, T ] converging to t, C∞(t) ⊂ Li(Cn(tn))
(ii) for any t ∈ [0, T ], Ls(Cn(t)) ⊂ C∞(t).

Let (uk)k∈N be the L-Lipschitzean solutions of the sweeping processes

−u̇k(t) ∈ NCk(t)(t)(uk(t)), uk(0) = ak ∈ Ck(0).

If (ak)k∈N converges to a∞ ∈ E, then (uk)k∈N converges uniformly to the unique
L-Lipschitzean solution u∞ of the sweeping process

−u̇∞(t) ∈ NC∞(t)(t)(u∞(t)), u∞(0) = a∞ ∈ C∞(0).

Proof. Here one can adapt the proof of the stability result for the sweeping process
in the BVC case [2](Theorem 4.4). For convenience we provide the proof in the
Lipschitzean case that is based on an epi-lower convergence result of integral convex
functional on the space of vector measures and the definition of normal cone for
closed convex set in the sense of Convex Analysis. Since (uk)k∈N is equi-lipschitzean,
it is relatively compact in CE([0, T ]), therefore (uk)k∈N converges uniformly to an L-
Lipschitzean function u∞ ∈ CE([0, T ]) with u̇k → u̇∞ with respect to the σ(L1

E , L
∞
E )

topology and u∞(0) = a∞ ∈ C∞(0). It remains to check that

−u̇∞(t) ∈ NC∞(t)(u∞(t)) a.e.

Main fact: lim infk
∫ T
0 δ∗(−u̇k(t), Ck(t)) dt ≥

∫ T
0 δ∗(−u̇∞(t), C∞(t)) dt.

Let δ∗(x,Ck(t)) denote the support function of Ck. From (i) and (ii), it is not
difficult to check that δ∗(., Ck(.)) lower epiconverges to δ∗(., C∞(.)), that is, for
any sequence (tk, xk) in [0, T ] × E converging to (t, x) ∈ [0, T ] × E we have that
lim infk δ

∗(xk, Ck(tk)) ≥ δ∗(x,C∞(t)). Let φ∞ be a continuous selection of C∞.
By [2, Proposition 3.9], there are continuous selections φk of Ck which converge
uniformly to φ∞. Let us set Γk = Ck − φk, k ∈ N ∪ {∞}. Then δ∗(.,Γk(.)) is
positive and lower epiconverges to δ∗(.,Γ∞(.)). Now let mk = −u̇k dt be the vector
measure of density −u̇k (k ∈ N). Then mk converges weakly to m∞ = −u̇∞ dt
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in the space of bounded vector measure Mb([0, T ], E). Hence by invoking a lower
epi-convergence version of Reshetnyak Theorem [2, Theorem 3.4], we have

lim inf
k

∫ T

0
δ∗(

dmk

d|mk|
(t),Γk(t))d|mk|(t) ≥

∫ T

0
δ∗(

dm∞
d|m∞|

,Γ∞(t)), d|m∞|(t).

This gives

(3.1) lim inf
k

∫ T

0
δ∗(

dmk

d|mk|
(t), Ck(t))d|mk|(t) ≥

∫ T

0
δ∗(

dm∞
d|m∞|

(t), C∞(t))d|m∞|(t).

Since mk = −u̇k dt, we have, for a.e. t ∈ [0, T ] and for all k ∈ N,

(3.2) dmk =
dmk

d|mk|
d|mk|
dt

dt =
dmk

d|mk|
||u̇k|| dt.

Hence (3.2) yields

δ∗(
dmk

dt
(t), Ck(t)) = δ∗(

dmk

d|mk|
(t)||u̇k(t)||, Ck(t))

= ||u̇k(t)||δ∗(
dmk

d|mk|
(t), Ck(t)).

By integrating we get∫ T

0
δ∗(

dmk

dt
(t), Ck(t)) dt =

∫ T

0
δ∗(

dmk

d|mk|
(t), Ck(t))||u̇k(t)|| dt

=

∫ T

0
δ∗(

dmk

d|mk|
(t), Ck(t))d|mk|(t).(3.3)

Using (3.3) (also for k = ∞) and coming back to (3.1.1) we finally obtain

lim inf
k

∫ T

0
δ∗(−u̇k(t), Ck(t)) dt ≥

∫ T

0
δ∗(−u̇∞(t), C∞(t)) dt.

From −u̇k(t) ∈ NCk(t)(t)(uk(t)) we have

δ∗(−u̇k(t), Ck(t)) + ⟨uk(t), u̇k(t)⟩ ≤ 0.

Integrating on [0, T ] yields

(3.4)

∫ T

0
δ∗(−u̇k(t), Ck(t)) dt+

∫ T

0
⟨uk(t), u̇k(t)⟩ dt ≤ 0.

It is clear that

lim
k→∞

∫ T

0
⟨uk(t), u̇k(t)⟩ dt =

∫ T

0
⟨u∞(t), u̇∞(t)⟩ dt.

Taking the lim inf in (3.4) and using the main fact gives∫ T

0
δ∗(−u̇∞(t), C∞(t)) dt+

∫ T

0
⟨u∞(t), u̇∞(t)⟩ dt ≤ 0.

Whence
δ∗(−u̇∞(t), C∞(t)) + ⟨u∞(t), u̇∞(t)⟩ ≤ 0 a.e.

thus proving the desired inclusion

−u̇∞(t) ∈ NC∞(t)(u∞(t)) a.e.
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�

Theorem 3.1 allows to get a stability result in the (PSW) when C is Lipschitzean
that is useful for further applications.

Theorem 3.2. Let C : [0, T ] → ck(E) be a convex compact valued L-Lipschitzean
mapping. Let hn, h∞ ∈ L∞

E ([0, T ] with ||hn(t)|| ≤ M for all n ∈ N∪{∞} and for all
t ∈ [0, T ] for some positive constant M and let us consider the (PSW)(C;hn;xn){

− u̇xn,hn − hn(t) ∈ NC(t)(uxn,hn(t))

uxn,hn(0) = xn ∈ C(0)

where uxn,hn denotes the Lipschitzean solution for this sweeping process. If xn → x∞
and if hn → h∞ with respect to the σ(L1

E , L
∞
E ) topology, then uxn,hn converges

uniformly to the Lipschitzean solution ux∞,h∞ of the (PSW)(C;h∞;x∞){
−u̇x∞,h∞ − h∞(t) ∈ NC(t)(ux∞,h∞(t))

ux∞,h∞(0) = x∞ ∈ C(0)

Proof. The proof follows the same lines as in Theorem 2.8 by applying the stability
result for Lipschitzean process in Theorem 3.1. �

Similarly we have a useful variant:

Theorem 3.3. Let C : [0, T ] → ck(E) be a convex compact valued L-Lipschitzean
mapping. Let Z be a compact subset in E an R the space of relaxed controls asso-
ciated with Z. Let νn, ν∞ ∈ R (n ∈ N and let us consider the (PSW)(C; νn;xn)
process {

− u̇xn,νn − bar(νnt ) ∈ NC(t)(uxn,νn(t))

uxn,νn(0) = xn ∈ C(0)

where uxn,νn is the Lipschitzean solution for this sweeping process. If xn → x∞
and if νn → ν∞ stably, then uxn,νn converges uniformly to the Lipschitzean solution
ux∞,ν∞ of the (PSW)(C; ν∞;x∞) process{

− u̇x∞,ν∞ − bar(ν∞t ) ∈ NC(t)(ux∞,ν∞(t))

ux∞,ν∞(0) = x∞ ∈ C(0)

From Theorem 3.2, it is now possible to show that the value function associated
with (PSW) when C is Lipschitzean satisfies the dynamic programming principle
(DPP), namely

Theorem 3.4 (of dynamic programming principle). Let C : [0, T ] → ck(E) be a
convex compact valued L-Lipschitzean mapping. Let Z be a convex compact subset
in E an R the space of relaxed controls associated with Z. Let x ∈ E, τ < T and
σ > 0 such that τ + σ < T . Assume that J : [0, T ] × E × Z → R is bounded and
continuous. Let us consider the value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T [×E
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where uτ,x,ν is the Lipschitzean solution to the (PSW)(C; ν;x) defined on [τ, T ]
associated with the control ν ∈ R starting from x at time τ{

− u̇τ,x,ν − bar(νt) ∈ NC(t)(uτ,x,ν(t))

uτ,x,ν(τ) = x ∈ C(τ)

Then the following holds:

VJ(τ, x) = sup
ν∈R

∫ τ+σ

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)]dt+ VJ(τ + σ, uτ,x,ν(τ + σ))


with

VJ(τ + σ, uτ,x,ν(τ + σ)) = sup
µ∈R

∫ T

τ+σ
[

∫
Z
J(t, vτ+σ,uτ,x,ν(τ+σ),µ(t), z)µt(dz)] dt

where vτ+σ,uτ,x,ν(τ+σ),µ is the Lipschitzean solution to (PSW)(C;µ;uτ,x,ν(τ + σ))
defined on [τ + σ, T ] associated with the control µ ∈ R starting from uτ,x,ν(τ + σ)
at time τ + σ.

Proof. We omit the proof since it follows the lines of the proof of Theorem 2.12 using
the dependence of the solution with respect to the state x ∈ E and the controls
ν ∈ R. �

The viscosity property of the value function associated to the (PSW) in the
Lipschitz case is now within reach. Let us mention a useful lemma that is borrowed
from [3, Lemma 4.1]. See also [5, 9, 10, 11] for related results.

Lemma 3.5. Let Z be a convex compact subset in E, M1
+(Z) is endowed with the

vague topology and R the space of relaxed controls associated with Z. Let Λ : [0, T ]×
E ×M1

+(Z) → R be an upper semicontinuous function such that the restriction of
Λ to [0, T ]×B×M1

+(Z) is bounded on any bounded subset B of E. Let C : [0, T ] →
ck(E) be a convex compact valued L-Lipschitzean mapping. Let (t0, x0) ∈ [0, T ]×E.
If maxµ∈M1

+(Z) Λ(t0, x0, µ) < −η < 0 for some η > 0, then there exist σ > 0 such

that

sup
ν∈R

∫ t0+σ

t0

Λ(t, ut0,x0,ν(t), νt) dt < −ση

2

where ut0,x0,ν is the trajectory solution of the sweeping process (PSW)(C; ν;x0),
associated with the control ν ∈ R and starting from x0 at time t0{

− u̇t0,x0,ν(t)− bar(νt) ∈ NC(t)(ut0,x0,ν(t)), t ∈ [t0, T ]

ut0,x0,ν(t0) = x0.

Proof. By our assumption maxµ∈M1
+(Z) Λ(t0, x0, µ) < −η < 0 for some η > 0. As

the function (t, x, µ) 7→ Λ(t, x, µ) is upper semicontinuous, so is the function

(t, x) 7→ max
µ∈M1

+(Z)
Λ(t, x, µ).

Hence there exists ζ > 0 such that

max
µ∈M1

+(Z)
Λ(t, x, µ) < −η

2
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for 0 < t− t0 ≤ ζ and ||x− x0|| ≤ ζ. Thus, for small values of σ, we have

||ut0,x0,ν(t)− ut0,x0,ν(t0)|| ≤ ζ

for all t ∈ [t0, t0 + σ] and for all ν ∈ R because ||u̇t0,x0,ν(t)|| ≤ L + 2|Z| for all
ν ∈ R and for all t ∈ [0, T ] ([1], Theorem 4.1’ yields a sharper estimate). Hence
t 7→ Λ(t, ut0,x0,ν(t), νt) is bounded and Lebesgue-measurable on [t0, t0 + σ]. Then
by integrating∫ t0+σ

t0

Λ(t, ut0,x0,ν(t), νt) dt ≤
∫ t0+σ

t0

[ max
µ∈M1

+(Z)
Λ(t, ut0,x0,ν(t), µ)] dt < −ση

2
.

�
Theorem 3.6 (of viscosity solution). Let C : [0, T ] → ck(E) be a convex compact
valued L-Lipschitzean mapping. Let Z be a compact subset in E and R be the space
of relaxed control associated with Z. Assume that J : [0, T ]×E×Z → R is bounded
and continuous. Let us consider the value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T ]× E

where uτ,x,ν is the trajectory solution on [τ, T ] of the sweeping process (PSW)(C; ν;x)
associated with the control ν ∈ R and starting from x ∈ E at time τ{

− u̇τ,x,ν(t)− bar(νt) ∈ NC(t)(uτ,x,ν(t)), t ∈ [τ, T ]

uτ,x,ν(τ) = x

and the Hamiltonian

H(t, x, ρ)

= sup
µ∈M1

+(Z)

−⟨ρ, bar(µ)⟩+
∫
Z
J(t, x, z)µ(dz)

+ δ∗(ρ,−(L+ 3|Z|)∂[dC(t)](x)),

where (t, x, ρ) ∈ [0, T ] × E × E and ∂[dC(t)]](x) denotes the subdifferential of the
distance functions x 7→ dC(t)x. Then, VJ is a viscosity subsolution of the HJB
equation

∂U

∂t
(t, x) +H(t, x,∇U(t, x)) = 0, 2

that is, for any φ ∈ C1([0, T ]) × E) for which VJ − φ reaches a local maximum at
(t0, x0) ∈ [0, T ]×E, we have

H(t0, x0,∇φ(t0, x0)) +
∂φ

∂t
(t0, x0) ≥ 0.

Proof. Assume by contradiction that there exists a φ ∈ C1([0, T ]× E) and a point
(t0, x0) ∈ [0, T ]×E for which

∂φ

∂t
(t0, x0) +H(t0, x0,∇φ(t0, x0)) ≤ −η < 0 for η > 0.

Applying Lemma 3.5, by taking

2here ∇U is the gradient of U with respect to the second variable
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Λ(t, x, µ) = −⟨∇φ(t, x), bar(µ)⟩+
∫
Z
J(t, x, z)µ(dz)

+ δ∗(∇φ(t, x),−(L+ 3|Z|) ∂[dC(t)](x)) +
∂φ

∂t
(t, x)

yields some σ > 0 such that

sup
ν∈R

∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,ν(t), z)νt(dz)] dt(3.5)

−
∫ t0+σ

t0

⟨∇φ(t, ut0,x0,ν(t), bar(νt)⟩ dt

+

∫ t0+σ

t0

δ∗(∇φ(t, ut0,x0,ν(t)),−(L+ 3|Z|) ∂[dC(t)](ut0,x0,ν(t))) dt

+

∫ t0+σ

t0

∂φ

∂t
(t, ut0,x0,ν(t)) dt


≤ −ση

2

where ut0,x0,ν is the trajectory solution of the sweeping process (PSW)(C; ν;x0)
associated with the control ν ∈ R starting from x0 at time t0{

− u̇t0,x0,ν(t)− bar(νt) ∈ NC(t)(ut0,x0,ν(t)) t ∈ [t0, T ]

ut0,x0,ν(t0) = x0

Applying the dynamic programming principle (Theorem 3.4) gives
(3.6)

VJ(t0, x0) = sup
ν∈R

∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,ν(t), z)νt(dz)]dt+VJ(t0+σ, ut0,x0,ν(t0+σ))

.

Since VJ − φ has a local maximum at (t0, x0), for small enough σ

(3.7) VJ(t0, x0)−φ(t0, x0) ≥ VJ(t0 + σ, ut0,x0,ν(t0 + σ))−φ(t0 + σ, ut0,x0,ν(t0 + σ))

for all ν ∈ R. By (3.6) for each n ∈ N, there exists νn ∈ R such that

(3.8) VJ(t0, x0) ≤
∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,νn(t)), z)ν

n
t (dz)] dt

+ VJ(t0 + σ, ut0,x0,νn(t0 + σ)) +
1

n
.

From (3.7) and (3.8) we deduce that

VJ(t0 + σ, ut0,x0,νn(t0 + σ))− φ(t0 + σ, ut0,x0,νn(t0 + σ))

≤
∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,νn(t)), z)ν

n
t (dz)]dt+

1

n

− φ(t0, x0) + VJ(t0 + σ, ut0,x0,νn(t0 + σ)).

Therefore we have

(3.9) 0 ≤
∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,νn(t)), z)ν

n
t (dz)] dt
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+ φ(t0 + σ, ut0,x0,νn(t0 + σ))− φ(t0, x0) +
1

n
.

As φ ∈ C1([0, T ]× E) we have

(3.10) φ(t0 + σ, ut0,x0,νn(t0 + σ))− φ(t0, x0)

=

∫ t0+σ

t0

⟨∇φ(t, ut0,x0,νn(t)), u̇t0,x0,νn(t)⟩ dt+
∫ t0+σ

t0

∂φ

∂t
(t, ut0,x0,νn(t)) dt.

Since ut0,x0,νn is the trajectory solution starting from x0 at time t0 to the sweeping
process (PSW)(C; νn;x0){

− u̇t0,x0,νn(t)− bar(νnt ) ∈ NC(t)(ut0,x0,νn(t)), t ∈ [t0, T ]

ut0,x0,νn(t0) = x0

and since u̇t0,x0,νn(t) + bar(νnt ) ∈ BE(0, L + 3|Z|), by the classical property of the
normal convex cone we get

−u̇t0,x0,νn(t)− bar(νnt ) ∈ (L+ 3|Z)|) ∂[dC(t)](ut0,x0,νn(t))

so that (3.10) yields the estimate

(3.11)

φ(t0 + σ, ut0,x0,νn(t0 + σ))− φ(t0, x0)

=

∫ t0+σ

t0

⟨∇φ(t, ut0,x0,νn(t)), u̇t0,x0,νn(t)⟩ dt+
∫ t0+σ

t0

∂φ

∂t
(t, ut0,x0,νn(t)) dt

≤ −
∫ t0+σ

t0

⟨∇φ(t, ut0,x0,νn(t)), bar(ν
n
t )⟩ dt

+

∫ t0+σ

t0

δ∗(∇φ(t, ut0,x0,νn(t)),−(L+ 3|Z|) ∂[dC(t)](ut0,x0,νn(t))) dt

+

∫ t0+σ

t0

∂φ

∂t
(t, ut0,x0,νn(t)) dt.

Inserting the estimate (3.11) into (3.9) we get

0 ≤
∫ t0+σ

t0

[

∫
Z
J(t, ut0,x0,νn(t)), z)ν

n
t (dz)]dt(3.12)

−
∫ t0+σ

t0

⟨∇φ(t, ut0,x0,νn(t)), bar(ν
n
t )⟩ dt

+

∫ t0+σ

t0

δ∗(∇φ(t, ut0,x0,νn(t)),−(L+ 3|Z|) ∂[dC(t)](ut0,x0,νn(t))) dt

+

∫ t0+σ

t0

∂φ

∂t
(t, ut0,x0,νn(t)) dt+

1

n
.

Then (3.5) and (3.12) yield 0 ≤ −ση
2 + 1

n for all n ∈ N. By passing to the limit
when n goes to ∞ in this inequality, we get a contradiction: 0 ≤ −ση

2 . The proof is
therefore complete. �
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4. Further extensions and applications

This study leads to several variants and the techniques developed here can be ap-
plied in other situations in differential games and also to the stochastic perturbation
of the sweeping process. At this point, compare with earlier results dealing with
ordinary differential equations (ODE) and evolution inclusions [3, 4, 5, 8, 9, 13, 14].
See also [11] dealing with the viscosity property of value function in second or-
der (ODE). In this context, we assume along this section that E = Rd and that
C : [0, T ] ⇒ E is a convex compact valued mapping satisfying the Lipschitz condi-
tion

|d(x,C(t))− d(y, C(τ))| ≤ L|t− τ |+ ||x− y||
for all x, y ∈ E and for all t, τ ∈ [0, T ] where L > 0 is the Lipschitz constant. Now
we will study the DPP property of the value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T [×E

where uτ,x,ν is the Lipschitz solution to the (PSW)(C; ν;x) defined on [τ, T ] asso-
ciated to the control ν ∈ R starting from x at time τ − u̇τ,x,ν(t)−

∫
Z
f(t, uτ,x,ν(t), z)νt(dz) ∈ NC(t)(uτ,x,ν(t))

uτ,x,ν(τ) = x ∈ C(τ)

where f : [0, T ]× E × Z → E satisfies

(i) for every fixed t ∈ [0, T ], f(t, ., .) is continuous on E × Z,
(ii) for every (x, z) ∈ E × Z, f(., x, z) is Lebesgue-measurable on [0, T ],
(iii) there is a constant R > 0 such that ||f(t, x, z)|| ≤ R for all (t, x, z) in

[0, T ]× E × Z,
(iv) there exists α ∈ L1

R+ [0, T ]) such that

||f(t, x1, z)− f(t, x2, z)|| ≤ α(t)||x1 − x2||
for all (t, x1, z), (t, x2, z) ∈ [0, T ]× E.

Note that, for ν ∈ R, the mapping

hν : (t, x) 7→
∫
Z
f(t, x, z)νt(dz)

inherits the properties

(1) for every fixed t ∈ [0, T ], hν(t, .) is continuous on E,
(2) for every x ∈ E, hν(., x) is Lebesgue-measurable on [0, T ],
(3) there is a constant R > 0 such that ||hν(t, x)|| ≤ R for all (t, x) in [0, T ]×E,
(4) there exists α ∈ L1

R+ [0, T ]) such that

||hν(t, x1)− hν(t, x2)|| ≤ α(t)||x1 − x2||
for all (t, x1), (t, x2) ∈ [0, T ]× E.

Consequently, by Theorem 4.1’ in [1] the sweeping process{
− u̇τ,x,ν(t)− hν(t, uτ,x,ν(t)) ∈ NC(t)(uτ,x,ν(t))

uτ,x,ν(τ) = x ∈ C(τ)



SOME PROBLEMS INOPTIMAL CONTROL GOVERNEDBYTHESWEEPING PROCESS 1065

admits a unique Lipschitz solution uτ,x,ν with ||u̇τ,x,ν(t)|| ≤ L + R a.e. Now using
the tools developed here we will provide the following viscosity solution for the value
function associated with the sweeping process. A series of lemmas will be needed.

Lemma 4.1. Let uτ,xn,νn be the trajectory solution on [τ, T ] associated the control
νn ∈ R starting from xn ∈ E at time τ to the sweeping process (PSW)(C; νn;xn) − u̇τ,xn,νn(t)−

∫
Z
f(t, uτ,xn,νn(t), z)ν

n
t (dz) ∈ NC(t)(uτ,xn,νn(t))

uτ,xn,νn(τ) = xn ∈ C(τ)

(a) If (xn) converges to x∞ and νn stably converges to ν∞, then uτ,xn,νn converges
uniformly to uτ,x∞,ν∞, which is the Lipschitzean solution of the sweeping process
(PSW)(C; ν∞;x∞)

 − u̇τ,x∞,ν∞(t)−
∫
Z
f(t, uτ,x∞,ν∞(t), z)ν∞t (dz) ∈ NC(t)(uτ,x∞,ν∞(t))

uτ,x∞,ν∞(τ) = x∞ ∈ C(τ)

(b) Let J : [0, 1]× (E × E) →]−∞,+∞] be a normal integrand such that J(t, x, .)
is convex on E for all (t, x) ∈ [0, T ]× E and that

J(t, uτ,xn,νn(t), u̇τ,xn,νn(t)) ≥ βn(t)

for all n ∈ N and for all t ∈ [0, T ] for some uniformly integrable sequence (βn)n∈N
in L1

R([0, T ]), then we have

lim inf
n

∫ T

τ
J(t, uτ,xn,νn(t), u̇τ,xn,νn(t)) dt ≥

∫ T

τ
J(t, uτ,x∞,ν∞(t), u̇τ,x∞,ν∞(t)) dt.

Proof. (a) As ||u̇τ,xn,νn(t)|| ≤ L+R a.e. we may extract a subsequence still denoted
by (u̇τ,xn,νn) which converges weakly in L1

E [τ, T ]. For every t and for every n,
uτ,xn,νn(t) ∈ C(t). Then, by Ascoli’s theorem, there is a subsequence still denoted
by (uτ,xn,νn) which converges uniformly to an absolutely continuous function u∞

with ||u̇∞(t)|| ≤ L+R a.e. Clearly

u∞(τ) = lim
n→∞

uτ,xn,νn(τ) = lim
n→∞

xn = x∞

and

u∞(t) = lim
n→∞

uτ,xn,νn(t) ∈ C(t), ∀t ∈ [τ, T ].

From the inclusions

−u̇τ,xn,νn(t)−
∫
Z
f(t, uτ,xn,νn(t), z)ν

n
t (dz) ∈ NC(t)(uτ,xn,νn(t))

−u̇τ,x∞,ν∞(t)−
∫
Z
f(t, uτ,x∞,ν∞(t), z)ν∞t (dz) ∈ NC(t)(uτ,x∞,ν∞(t))

and the monotonicity of x 7→ NC(t)(x) we deduce that

⟨u̇τ,xn,νn(t)− u̇τ,x∞,ν∞(t), uτ,xn,νn(t)− uτ,x∞,ν∞(t)⟩
≤ −⟨hνn(t, uτ,xn,νn(t))− hν∞(t, uτ,x∞,ν∞(t), uτ,xn,νn(t))− uτ,x∞,ν∞(t)⟩ a.e.
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where

hνn(t, uτ,xn,νn(t)) :=

∫
Z
f(t, uτ,xn,νn(t), z)ν

n
t (dz),

hν∞(t, uτ,x∞,ν∞(t)) :=

∫
Z
f(t, uτ,x∞,ν∞(t), z)ν∞t (dz).

Integrating over [τ, t] (t ∈ [0, T ]) with respect to the measure ds yields

1

2
||uτ,xn,νn(t)− uτ,x∞,ν∞(t)||2 − 1

2
||xn − x∞||2

=

∫ t

τ
⟨uτ,xn,νn − uτ,x∞,ν∞ , u̇τ,xn,νn − u̇τ,x∞,ν∞⟩ ds

≤−
∫ t

τ
⟨hνn(s, uτ,xn,νn(s))− hν∞(s, uτ,x∞,ν∞(s)), uτ,xn,νn(s)− uτ,x∞,ν∞(s)⟩ ds.

Let us set

Ln(t) =

∫ t

τ
⟨uτ,xn,νn(s)− uτ,x∞,ν∞(s),−hνn(s, uτ,xn,νn(s)) + hν∞(s, uτ,x,ν∞(s))⟩ ds.

Then we have the following estimate

1

2
||uτ,xn,νn(t)− uτ,x∞,ν∞(t)||2 ≤ 1

2
||xn − x∞||2 + Ln(t).

Now we repeat the calculations and arguments in the proof of in Theorem 2.13. We
have Ln(t) = L1

n(t) + L2
n(t) + L3

n(t) where

L1
n(t) =

∫ t

τ
⟨uτ,xn,νn(s)− uτ,x∞,ν∞(s),−hνn(s, uτ,xn,νn(s)) + hνn(s, uτ,x∞,ν∞(s))⟩ ds,

L2
n(t) =

∫ t

τ
⟨uτ,xn,νn(s)− u∞(s),−hνn(s, uτ,x∞,ν∞(s)) + hν∞(s, uτ,x∞,ν∞(s))⟩ ds,

L3
n(t) =

∫ t

τ
⟨u∞(s)− uτ,x∞,ν∞(s),−hνn(s, uτ,x∞,ν∞(s)) + hν∞(s, uτ,x∞,ν∞(s))⟩ ds.

As by (iii) ||hνn(s, uτ,xn,νn(s)|| ≤ R for all n ∈ N ∪ {∞} and for all s ∈ [0, T ], and
uτ,xn,νn(s) → u∞(s) for every s ∈ [0, T ], we see that L2

n(t) → 0 when n → ∞ for
each t ∈ [0, T ]. By (iii), the integrand

h(s, z) := ⟨u∞(s)− uτ,x∞,ν∞(s), f(s, uτ,x∞,ν∞(s), z)⟩

is Carathéodory integrable and is bounded by

|h(s, z)| ≤ R ||u∞(s)− uτ,x∞,ν∞(s)||

for all (s, z) ∈ [0, T ] × Z. Hence h ∈ L1
C(Z)([0, T ]). As νn stably converges to ν∞,

for every t ∈ [0, T ], we have

lim
n→∞

∫ t

τ
[

∫
Z
h(s, z)νns (dz)] dt =

∫ t

τ
[

∫
Z
h(s, z)ν∞s (dz)] dt.
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So limn→∞ L3
n(t) = 0, for every t ∈ [0, T ]. By (iv) and (4) we have that |L1

n(t)| ≤∫ t
0 α(s)||uτ,x,νn(s)− uτ,x,ν∞(s)||2 ds. Finally we get

1

2
||uτ,x,νn(t)− uτ,x,ν∞(t)||2 ≤1

2
||xn − x∞||2 + L2

n(t) + L3
n(t)

+

∫ t

0
α(s)||uτ,x,νn(s)− uτ,x,ν∞(s)||2 ds.

As 1
2 ||x

n − x∞||2 → 0, L2
n(t) → 0 and L3

n(t) → 0, for all t ∈ [0, T ], by Gronwall’s
lemma we have that uτ,xn,νn(t) → uτ,x∞,ν∞(t), for all t ∈ [0, T ], and hence uτ,x,ν∞ =
u∞.

(b) Follows by using a general lower semicontinuity of integral functionals, see [10,
Theorem 8.1.6]. �

Lemma 4.2. The value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T [×E

where uτ,x,ν is the Lipschitzean solution of the (PSW)(C; ν;x) defined on [τ, T ]
associated the control ν ∈ R starting from x at time τ − u̇τ,x,ν −

∫
Z
f(t, uτ,x,ν(t), z)νt(dz) ∈ NC(t)(uτ,x,ν(t))

uτ,x,ν(τ) = x ∈ C(τ)

satisfies the dynamic programming principle.

Proof. Follows from the scheme of the proof of Theorem 2.12, using the continuous
dependence of the solution with respect to the state and the control obtained in
Lemma 4.1. �

Lemma 4.3. Let Z be a convex compact subset in E, M1
+(Z) is endowed with the

vague topology and R the space of relaxed controls associated with Z. Let Λ : [0, T ]×
E ×M1

+(Z) → R be an upper semicontinuous function such that the restriction of
Λ to [0, T ]×B×M1

+(Z) is bounded on any bounded subset B of E. Let C : [0, T ] →
ck(E) be a convex compact valued L-Lipschitzean mapping. Let (t0, x0) ∈ [0, T ]×E.
If maxµ∈M1

+(Z) Λ(t0, x0, µ) < −η < 0 for some η > 0, then there exists σ > 0 such

that

sup
ν∈R

∫ t0+σ

t0

Λ(t, ut0,x0,ν(t), νt) dt < −ση

2

where ut0,x0,ν is the trajectory solution of the (PSW)(C; ν;x0) associated with the
control ν ∈ R starting from x0 at time t0 − u̇t0,x0,ν(t)−

∫
Z
f(t, uτ,x,ν(t), z)νt(dz) ∈ NC(t)(ut0,x0,ν(t)), t ∈ [t0, T ]

ut0,x0,ν(t0) = x0.

Proof. It is similar to Lemma 3.5, using the estimate ||u̇t0,x0,ν(t)|| ≤ L+R a.e. for
all ν ∈ R �
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From these lemmas it is not difficult to get the following viscosity solution of the
value function using the techniques of Theorem 3.6.

Theorem 4.4 (of viscosity solution). Let C : [0, T ] → ck(E) be a convex compact
valued L-Lipschitzean mapping. Let Z be a compact subset in E and R the space of
relaxed controls associated with Z. Assume that J : [0, T ]×E × Z → R is bounded
and continuous and f : [0, T ]× E × Z → E is continuous satisfying

(i) there is a constant R > 0 such that ||f(t, x, z)|| ≤ R for all (t, x, z) in
[0, T ]× E × Z,

(ii) there exists α ∈ L1
R+ [0, T ]) such that

||f(t, x1, z)− f(t, x2, z)|| ≤ α(t)||x1 − x2||

for all (t, x1, z), (t, x2, z) ∈ [0, T ]× E × Z.

Let us consider the value function

VJ(τ, x) = sup
ν∈R

∫ T

τ
[

∫
Z
J(t, uτ,x,ν(t), z)νt(dz)] dt, (τ, x) ∈ [0, T ]× E

where uτ,x,ν is the trajectory solution of the sweeping process (PSW)(C; ν;x) asso-
ciated with the control ν ∈ R starting from x ∈ E at time τ − u̇τ,x,ν(t)−

∫
Z
f(t, uτ,x,ν(t), z)νt(dz) ∈ NC(t)(uτ,x,ν(t)), t ∈ [τ, T ]

uτ,x,ν(τ) = x ∈ C(τ)

and the Hamiltonian

H(t, x, ρ) = sup
µ∈M1

+(Z)

−⟨ρ,
∫
Z
f(t, x, z)µ(dz)⟩+

∫
Z
J(t, x, z)µ(dz)


+ δ∗(ρ,−(L+ 2R)∂[dC(t)](x))

where (t, x, ρ) ∈ [0, T ] × E × E and ∂[dC(t)](x) denotes the subdifferential of the
distance functions x 7→ dC(t)x. Then, VJ is a viscosity subsolution of the HJB
equation

∂U

∂t
(t, x) +H(t, x,∇U(t, x)) = 0

that is, for any φ ∈ C1([0, T ]) × E) for which VJ − φ reaches a local maximum at
(t0, x0) ∈ [0, T ]×E, we have

H(t0, x0,∇φ(t0, x0)) +
∂φ

∂t
(t0, x0) ≥ 0.

Proof. Follows the scheme of the proof of Theorem 3.6, using Lemmas 4.1–4.2–
4.3. �

It is interesting to study the existence and properties of BVC solutions for
an evolution inclusion governed by the upper semicontinuous perturbation F of
a maximal monotone operator A(t) depending on time t ∈ [0, T ] of the form
− dDu

d|Du|(t) − F (t, u(t)) ∈ A(t)u(t), u(0) ∈ domA(0) extending the pioneering work
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in [19]. Existence of BVC solutions for PSW(C,F, x) with upper semicontinuous
perturbation F

− dDu

d|Du|
(t)− F (t, u(t)) ∈ NC(t)(u(t)), u(0) = x

is available in [7, Theorem 4.3]. When C is Lipschitz, this inclusion modelizes some
applications in Mathematical Economics. See [17]. Dealing with BVC solutions for
the aforementioned inclusions, the assumption

(∗∗∗) ∀t ∈ [0, T ], IntC(t) ̸= ∅

is crucial and so is the stability of sweeping process. Along the paper, the convexity
of the moving set C is needed. One may consult [20] dealing with the sweeping
process without convexity where several references and related results can be found.
See also [15, 16] for related results on relaxation and sweeping process.
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