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Few researches consider the existence theorems for optimization problems and
related problems. For example, Li, Song, and Yao [25] studied the convexity problem
of Chebyshev sets with the Bregman distance in a Banach space.

In this paper, we first study the properties of Bregman distance and an existence
and uniqueness theorem of solution for an optimization problem which is related
to Bregman distance. From these results, we study fixed point problems of nonlin-
ear mappings, contractive type mappings, Caristi type mappings, graph contractive
type mappings with the Bregman distance on Banach spaces. We also study some
properties of Bregman projection. Our results on the properties of Bregman pro-
jection improve recent results of Honda and Takahashi [16]. It is worth noting that
we combine the techniques of optimization theory and fixed point theory to study
these problems. Our results are different from any results on fixed point theorems of
nonlinear mappings, contractive type mappings, and graph contractive mappings.

2. Preliminaries

Now, we recall some definitions. Let E be a Banach space with dual space E∗.
Then the duality mapping J : E ( E∗ is defined by

Jx := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||2 = ||x∗||2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said
to be smooth if the limit

lim
t→0

||x+ ty|| − ||x||
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit
exists uniformly in x, y ∈ S(E). A Banach space E is said to be strictly convex if
||x+y

2 || < 1 whenever x, y ∈ S(E) and x ̸= y. It is said to be uniformly convex if for

each ε ∈ (0, 2], there exists δ > 0 such that ||x+y
2 || < 1 − δ whenever x, y ∈ S(E)

and ||x−y|| ≥ ε. Further, we have: (i) if E is smooth, then J is single-valued; (ii) if
E is reflexive, then J is onto; (iii) if E is strictly convex, then J is one-to-one; (iv)
if E is strictly convex, then J is strictly monotone; (v) if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E [43].

Now, let E be a smooth Banach space, and let C be a nonempty closed convex
subset of E. A function ϕ : C × C → R is defined by

ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩+ ||y||2

for all x, y ∈ C. We know that this function plays an important role for convex
analysis and nonlinear analysis. (For example, see [23, 45] and related results).
Besides, we know that

(2.1) (||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2

for all x, y ∈ C.
Let E be a Banach space. Let f : E → (−∞,∞] be a convex function. Let D (or

D(f)) denote the domain of f , that is,

D := {x ∈ E : f(x) <∞}.
Let D◦ denote the algebraic interior of D , i.e., the subset of D consisting of all those
points x ∈ D such that, for any y ∈ E \ {x}, there is z in the open segment (x, y)
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with [x, z] ⊆ D. The topological interior of D , denoted by int(D), is contained in
D.

A function f : E → (−∞,∞] is said to be proper provided that D ̸= ∅. It is
also called lower semicontinuous if {x ∈ E : f(x) ≤ r} is closed for each r ∈ R. A
function f is upper semicontinuous if {x ∈ E : f(x) ≥ r} is closed for each r ∈ R.
A function f is convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ E and
t ∈ [0, 1]. A function f is strictly convex if f(tx + (1 − t)y) < tf(x) + (1 − t)f(y)
for all x, y ∈ D(f) with x ̸= y and t ∈ (0, 1). A function f : E → (−∞,∞] is said
to be Gâteaux differentiable at x ∈ E if there is ∇f(x) ∈ E∗ such that

lim
t→0

f(x+ ty)− f(x)

t
= ⟨y,∇f(x)⟩

for each y ∈ E.
The Bregman distance Df associated with a proper convex function f is the

function Df : D ×D → [0,∞] defined by

Df (y, x) := f(y)− f(x) + f◦(x, x− y),

where

f◦(x, x− y) := lim
t→0+

f(x+ t(x− y))− f(x)

t
.

For the Bregman distance, we need the following result and it plays an important
and essential role in this paper.

Lemma 2.1 ([10, Proposition 1.3.9]). Let E be a Banach space. Let f be a lower
semicontinuous convex function on D with int(D) ̸= ∅. Suppose that f is Gâteaux
differentiable on D. Then we have

(i) Df (y, x) = f(y)− f(x)− ⟨y − x,∇f(x)⟩ for all x, y ∈ int(D).
(ii) Df (u, x) + ⟨u − x,∇f(x) − ∇f(y)⟩ + Df (x, y) = Df (u, y) for all u, x, y ∈

int(D).

Note that if f(x) = ||x||2 in a smooth Banach space E, then it is known that f
is Gâteaux differentiable and ∇f(x) = 2J(x) for each x ∈ E, where J : E → E∗ is
the duality mapping [12, 15, 33]. This implies that

Df (y, x) = ||x||2 + ||y||2 − 2⟨y, J(x)⟩ = ϕ(y, x)

for each x, y ∈ int(D) [15, 33]. Further, if E is a real Hilbert space, then Df (x, y) =
||x− y||2 for all x, y ∈ E.

For a proper lower semicontinuous convex function f : E → (−∞,∞], the subd-
ifferential ∂f of f and the conjugate function f∗ of f are defined by

∂f(x) := {x∗ ∈ E∗ : f(x) + ⟨y − x, x∗⟩ ≤ f(y) for each y ∈ E}

for each x ∈ E, and

f∗(x∗) := sup
x∈E

{⟨x, x∗⟩ − f(x)}

for each x∗ ∈ E∗. It is well-known that f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ for each (x, x∗) ∈
E × E∗. It is also known that

x∗ ∈ ∂f(x) ⇔ f(x) + f∗(x∗) = ⟨x, x∗⟩.
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We also know that if f : E → (−∞,∞] is a proper convex lower semicontinuous
function, then f∗ : E∗ → (−∞,∞] is a proper, convex, and weak∗ lower semicon-
tinuous. Besides, f is convex and lower semicontinuous if and only if f∗∗ = f . (For
details, one can refer to [12].)

We need the following results as tools to consider optimization theory, fixed point
theory, and related results in the sequel.

Lemma 2.2 ([10, Proposition 1.1.5]). Let E be a Banach space. If f : E →
(−∞,∞] is a proper lower semicontinuous and convex function on int(D), then f
is continuous on int(D).

Lemma 2.3 ([10, Proposition 1.1.9]). Let E be a Banach space. If f : E →
(−∞,∞] is a proper convex function and Gâteaux differentiable on int(D), then the
following are equivalent:

(i) f is strictly convex on int(D);
(ii) For each x, y ∈ int(D) with x ̸= y, one has Df (y, x) > 0;
(iii) For each x, y ∈ int(D) with x ̸= y, one has ⟨x− y,∇f(x)−∇f(y)⟩ > 0.

Lemma 2.4 ([10, Proposition 1.1.10]). Let E be a Banach space. Let f : E →
(−∞,∞] be a lower semicontinuous convex function with int(D) ̸= ∅.

(i) f is Gâteaux differentiable at x ∈ int(D) if and only if ∂f(x) consists of a
single element. In this case, ∂f(x) = {∇f(x)}.

(ii) If f is Gâteaux differentiable on int(D), then ∇f is norm-to weak∗ contin-
uous on int(D);

(iii) If f is Fréchet differentiable, then Df is continuous on int(D)×int(D).

Lemma 2.5 ([10, Proposition 1.1.11]). Let E be a Banach space. If f : E → R is a
continuous convex function, then the multivalued mapping ∂f : E → E∗ is bounded
on bounded sets if and only if f is bounded on bounded sets.

Let E be a Banach space, and let f : E → (−∞,+∞] be a convex function.
Define δf : (0,+∞) → [0,+∞] as

δf (t) := inf
{1

2
f(x) +

1

2
f(y)− f

(x+ y

2

)
: ||x− y|| = t, x, y ∈ D(f)

}
for each t > 0, where the infimum over the empty set is +∞. We say that f is
uniformly convex when δf (t) > 0 for all t > 0 [7, 46].

Define ρf : (0,+∞) → [0,+∞] as

ρf (t) := sup
{1

2
f(x) +

1

2
f(y)− f

(x+ y

2

)
: ||x− y|| = t, x, y ∈ D(f)

}
for each t > 0. We say f is uniformly smooth if lim

t→0+

ρf (t)

t
= 0 [7, 46].

Lemma 2.6 ([24]). Let E be a Banach space, and let f : E → R be a convex Gâteaux
differentiable function which is uniform convex on bounded sets. If {xn} and {yn}
are bounded sequences in E and lim

n→∞
Df (xn, yn) = 0, then lim

n→∞
||xn − yn|| = 0.

Definition 2.7 ([10]). Let E be a Banach space. Then a function f : E → R is
said to be a Bregman function if the following conditions hold:
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(i) f is continuous, strictly convex, and Gâteaux differentiable;
(ii) the set {y ∈ E : Df (x, y) ≤ r} is bounded for each x ∈ E and each r > 0.

Let E be a Banach space. A function f : E → R is said to be coercive if
||xn|| → ∞ implies that f(xn) → ∞. A function f : E → R is said to be strongly
coercive if ||xn|| → ∞ implies that f(xn)/||xn|| → ∞ [33].

Lemma 2.8 ([33]). Let E be a reflexive Banach space, and let f : E → R be a
strongly coercive Bregman function. Then

(i) ∇f : E → E∗ is one-to-one, onto, and norm-to-weak continuous;
(ii) {x ∈ E : Df (x, y) ≤ r} is bounded for each y ∈ E and each r > 0.
(iii) D(f∗) = E∗, f∗ is Gâteaux differentiable, and ∇f∗ = (∇f)−1.

Let ℓ∞ be the Banach space of bounded sequences with the supremum norm. A
linear functional µ on ℓ∞ is called a mean if µ(e) = ||µ|| = 1, where e = (1, 1, 1, . . . .).
For x = (x1, x2, x3, . . . .), the value µ(x) is also denoted by µn(xn). A mean µ on
ℓ∞ is called a Banach limit if it satisfies µn(xn) = µn(xn+1). If µ is a Banach limit
on ℓ∞, then for x = (x1, x2, x3, . . . ) ∈ ℓ∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if x = (x1, x2, x3, . . . ) ∈ ℓ∞ and lim
n→∞

xn = a ∈ R, then µ(x) =

µn(xn) = a. For details, we can refer to [43].
The following result comes from the proof of Theorem 3.2 in [28].

Lemma 2.9 ([28]). Let E be a reflexive Banach space with dual space E∗. Let
f : E → (−∞,∞] be a proper, lower semicontinuous, and strictly convex function.
Suppose that f is Gâteaux differentiable on int(D) and is bounded on bounded subsets
of int(D). Let C ⊆ int(D) be a nonempty closed convex set. Let {xn}n∈N be a
bounded sequence in C and let µ be a mean on ℓ∞. Let g : C → (−∞,∞] be defined
by g(z) := µnDf (xn, z) for each z ∈ C. Then there is a unique element x̄ ∈ C
such that µn⟨xn, y⟩ = ⟨x̄, y⟩ for all y ∈ E∗, and g(x̄) = minz∈C g(z). Note that
x̄ ∈ co{xn : n ∈ N}.

Proposition 2.10. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let f : E → R be a proper, lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Let T : C → C
be a mapping, µ be a Banach limit on ℓ∞, and {xn} be a sequence in C with xn ⇀ x
for some x ∈ C with µnDf (xn, Tx) ≤ µnDf (xn, x). Then x is a fixed point of T .

Proof. By Lemma 2.1, we have

Df (xn, y)−Df (xn, x) = ⟨xn − x,∇f(x)−∇f(y)⟩+Df (x, y)

for each y ∈ C. Since xn ⇀ x, we have

µnDf (xn, y)− µnDf (xn, x) = Df (x, y) ≥ 0.

By Lemma 2.3, for each y ∈ C with y ̸= x, we know that Df (x, y) > 0 and

µnDf (xn, x) < µnDf (xn, y).

By assumption, Tx = x. �



1024 C. S. CHUANG AND L. J. LIN

Proposition 2.11. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let f : E → R be a proper, lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Let T : C →
C be a mapping, {xn} be a sequence in C with xn ⇀ x for some x ∈ C with
lim sup
n→∞

Df (xn, Tx) ≤ lim sup
n→∞

Df (xn, x). Then x is a fixed point of T .

Proof. Following the similar argument as the proof of Proposition 2.10, we get the
conclusion of Proposition 2.11. �

The following results are special cases of Propositions 2.10 and 2.11, respectively.

Corollary 2.12. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let T : C → C be a mapping. Let µ
be a Banach limit on ℓ∞. Let {xn} be a sequence in C with xn ⇀ x for some x ∈ C
with µnϕ(xn, Tx) ≤ µnϕ(xn, x), where ϕ(x, y) := ||x||2− 2⟨x, Jy⟩+ ||y||2. Then x is
a fixed point of T .

Proof. Let f : E → R be defined by f(x) := ||x||2 for each x ∈ E. Then f is a
proper, lower semicontinuous, strictly convex, Gâteaux differentiable function, and
∇f(x) = 2J(x) for each x ∈ E. So, we get Corollary 2.12 by Proposition 2.10. �

Corollary 2.13. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let T : C → C be a mapping. Let
{xn} be a sequence in C with xn ⇀ x for some x ∈ C with lim sup

n→∞
ϕ(xn, Tx) ≤

lim sup
n→∞

ϕ(xn, x), where ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩ + ||y||2. Then x is a fixed point

of T .

3. Existence theorem for optimization problem and fixed point
problem with the Bregman distance

Theorem 3.1. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty closed convex subset of E, let {xn} be a bounded sequence in C, ψ : C →
(−∞,∞] be a proper, bounded below, and lower semicontinuous function, and let
T : C → C be a mapping. Suppose that there exists m ∈ N ∪ {0} such that

(3.1) µnDf (xn, T
my) + ψ(Ty) ≤ ψ(y) for each y ∈ C.

Then there exists x̄ ∈ C such that

(a) lim
k→∞

µnDf (xn, T
ky) = µnDf (xn, x̄) = 0 for each y ∈ C with ψ(y) <∞;

(b) lim
k→∞

Df (x̄, T
ky) = 0 for each y ∈ C with ψ(y) <∞.

Further, if C is bounded or f is a Bregman function, then we know that

(c) lim
k→∞

T ky = x̄ for each y ∈ C with ψ(y) <∞;

(d) ψ(x̄) = infy∈X ψ(y);
(e) x̄ is the unique fixed point of T .
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Proof. (a) and (b): Let g : E → [0,∞) be defined by g(z) := µnDf (xn, z) for each
z ∈ E. By Lemma 2.9, there is a unique element x̄ ∈ C such that

(3.2) g(x̄) = min
z∈C

g(z), and µn⟨xn, y⟩ = ⟨x̄, y⟩ for each y ∈ E∗.

Take any y ∈ C with ψ(y) <∞. Then it follows from (3.1) that

µnDf (xn, T
mT ky) ≤ ψ(T ky)− ψ(T k+1y)

for each k ∈ N∪{0}. Hence, {ψ(T ky)}∞k=0 is a decreasing sequence which is bounded

below. Then limk→∞ ψ(T ky) exists. Put s = limk→∞ ψ(T ky). Since

N∑
k=0

g(Tm+ky) =
N∑
k=0

µnd(xn, T
m+ky)

≤
N∑
k=0

ψ(T ky)− ψ(T k+1y)

= ψ(y)− ψ(TN+1y)

for any N ∈ N, we have that
∞∑
k=0

g(Tm+ky) =

∞∑
k=0

µnd(xn, T
m+ky) ≤ ψ(y)− s <∞.

Thus,

(3.3) lim
k→∞

µnDf (xn, T
k+my) = lim

k→∞
g(T kTmy) = 0.

So, it follows from (3.2) and (3.3) that

g(x̄) = min
z∈C

g(z) ≤ lim
k→∞

g(T kTmy) = 0.

Therefore, g(x̄) = 0. Since y is any point of C with ψ(y) <∞, we know that

(3.4) lim
k→∞

µnDf (xn, T
ky) = g(x̄) = 0

for each y ∈ C with ψ(y) <∞. By (3.4), for each y ∈ C with ψ(y) <∞, we have

lim
k→∞

µnf(xn)− f(T ky)− µn⟨xn − T ky,∇f(T ky)⟩

=µnf(xn)− f(x̄)− µn⟨xn − x̄,∇f(x̄)⟩.
(3.5)

By (3.2) and (3.5),

lim
k→∞

µnf(xn)− f(T ky)− ⟨x̄− T ky,∇f(T ky)⟩ = µnf(xn)− f(x̄).

This implies that

(3.6) lim
k→∞

Df (x̄, T
ky) = lim

k→∞
f(x̄)− f(T ky)− ⟨x̄− T ky,∇f(T ky)⟩ = 0.

Further, suppose that C is bounded or f is a Bregman function. Then {T ky} is
a bounded sequence for each y ∈ C with ψ(y) < ∞. (c): By (3.6) and Lemma 2.6,

we know that lim
k→∞

T ky = x̄ for each y ∈ C with ψ(y) <∞.
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(d): By assumption, we have that

(3.7) ψ(T x̄) ≤ µnDf (xn, T
mx̄) + ψ(T x̄) ≤ ψ(x̄).

Since ψ is lower semicontinuous and lim
k→∞

T kTmu = x̄ for each u ∈ C with ψ(u) <∞,

we have that

(3.8) ψ(x̄) ≤ lim inf
k→∞

ψ(T kTmu) = lim
k→∞

ψ(T kTmu) = inf
m∈N∪{0}

ψ(T kTmu) ≤ ψ(u)

for each u ∈ C with ψ(u) <∞. By (3.7) and (3.8),

ψ(x̄) ≤ inf
y∈X

ψ(y) ≤ ψ(T x̄) ≤ ψ(x̄).

Hence, ψ(x̄) = infy∈X ψ(y).
(e): Next, we show that x̄ is the unique fixed point of T . Since

0 ≤ g(Tmx̄) = µnDf (xn, T
mx̄) ≤ ψ(x̄)− ψ(T x̄) ≤ 0,

we have that g(Tmx̄) = g(x̄) = 0. By (3.2), Tmx̄ = x̄. Hence,

0 ≤ µnDf (xn, T x̄) = µnDf (xn, T
m+1x̄) ≤ ψ(T x̄)− ψ(T 2x̄) ≤ ψ(x̄)− ψ(T 2x̄) ≤ 0.

Thus, g(x̄) = g(T x̄) = 0. By (3.2) again, T x̄ = x̄. We show that x̄ is a unique fixed
point of T . Indeed, if v is a fixed point of T , then

0 ≤ g(v) = g(Tmv) ≤ ψ(v)− ψ(Tv) = 0.

Hence, v = x̄. Therefore, x̄ is the unique fixed point of T . �
Remark 3.2. The conclusion of Theorem 3.1 is still true if (3.1) is replaced by one
of the following conditions:

(a) if 1
2Df (x, Tx) ≤ Df (x, y), then µnDf (xn, y) + ψ(y) ≤ ψ(x);

(b) Df (y, Tx) + ψ(Tx) ≤ ψ(x) for all x, y ∈ C.

Further, we know that following result is a special case of Theorem 3.1. Note
that we do not assume that C is bounded. Indeed, by (2.1) and following the same
argument as the proof of Theorem 3.1, we get the following result.

Corollary 3.3. Let E be a reflexive, smooth, and strictly convex Banach space. Let
C be a nonempty closed convex subset of E, and let {xn} be a bounded sequence in
C. Let ψ : C → (−∞,∞] be a proper, bounded below, and lower semicontinuous
function. Let T : C → C be a mapping. Suppose that there exists m ∈ N∪ {0} such
that

(3.9) µnϕ(xn, T
my) + ψ(Ty) ≤ ψ(y) for each y ∈ C,

where ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩+ ||y||2 and J is the duality mapping. Then there

exists x̄ ∈ C such that (a) lim
k→∞

µnϕ(xn, T
ky) = µnϕ(xn, x̄) = 0 for each y ∈ C with

ψ(y) <∞; (b) lim
k→∞

ϕ(x̄, T ky) = 0 for each y ∈ C with ψ(y) <∞; (c) lim
k→∞

T ky = x̄

for each y ∈ C with ψ(y) < ∞; (d) ψ(x̄) = infy∈X ψ(y); and (e) x̄ is the unique
fixed point of T .

Following similar argument as the proof of Theorem 3.1, we have the following
result. For completeness, we give the proof of the following result.
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Theorem 3.4. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty closed convex subset of E, let {xn} be a bounded sequence in C, and let
T : C → C be a mapping. Suppose that r ∈ [0, 1) and

(3.10) µnDf (xn, T y) ≤ r · µnDf (xn, y) for each y ∈ C.

Then there exists x̄ ∈ C such that

(a) lim
k→∞

µnDf (xn, T
ky) = µnDf (xn, x̄) = 0 for each y ∈ C;

(b) lim
k→∞

Df (x̄, T
ky) = 0 for each y ∈ C;

(c) µnf(xn) = f(x̄);
(d) x̄ is the unique fixed point of T .

Further, if C is bounded or f is a Bregman function, then lim
k→∞

T ky = x̄ for each

y ∈ C.

Proof. Let g : E → [0,∞) be defined by g(z) := µnDf (xn, z) for each z ∈ E. By
Lemma 2.9, there is a unique element x̄ ∈ C such that

(3.11) g(x̄) = min
z∈C

g(z), and µn⟨xn, y⟩ = ⟨x̄, y⟩ for each y ∈ E∗.

By (3.10) and (3.11), we know that x̄ is a fixed point of T . Besides, it follows from
(3.10) that

(3.12) lim
k→∞

µnDf (xn, T
ky) = 0 for each y ∈ C.

So, by (3.11) and (3.12), we know that

(3.13) µnDf (xn, x̄) = 0.

This implies that

(3.14) µnf(xn)− f(x̄)− µn⟨xn − x̄,∇f(x̄)⟩ = 0.

By (3.11) and (3.14), we know that µnf(xn) = f(x̄). Besides, from the proof of

Theorem 3.1, we know that lim
k→∞

Df (x̄, T
ky) = 0 for each y ∈ C.

If ȳ is a fixed point of T , then it follows from (3.12) that µnDf (xn, ȳ) = 0. So,
by (3.11) and (3.13), we have x̄ = ȳ. Hence, x̄ is the unique fixed point of T .

Further, suppose that C is bounded or f is a Bregman function. Then {T ky}
is a bounded sequence for each y ∈ C. By (3.12) and Lemma 2.6, we know that

lim
k→∞

T ky = x̄ for each y ∈ C. �

Remark 3.5. We follow the same method as in [13, Theorem 3.4], we can get a
result which is similar to Theorem 3.4. Indeed, if we let ψ : C → [0.∞) as follows:

ψ(y) =
1

1− r
µnDf (xn, y).

Then we know from Lemmas 2.2 and 2.4 that ψ : C → [0.∞) is a proper bounded
below and continuous function. Further, we know that the following (3.15) and
(3.16) are equivalent:

(3.15) µnDf (xn, y) + ψ(Ty) ≤ ψ(y) for each y ∈ C.
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(3.16) µnDf (xn, T y) ≤ r · µnDf (xn, y) for each y ∈ C.

Then, by Theorem 3.1, we can get a result which is similar to Theorem 3.4.

The following results are special cases of Theorem 3.4.

Corollary 3.6. Let E be a reflexive, smooth, and strictly convex Banach space. Let
C be a nonempty closed convex subset of E, {xn} be a bounded sequence in C, and
T : C → C be a mapping. Suppose that r ∈ [0, 1) and

µnϕ(xn, T y) ≤ r · µnϕ(xn, y) for each y ∈ C,

where ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩+ ||y||2 and J is the duality mapping. Then there

exists x̄ ∈ C such that x̄ is the unique fixed point of T , and lim
k→∞

T ky = x̄ for each

y ∈ C.

Corollary 3.7. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty closed convex subset of E, let T : C → C be a mapping with {Tnx} is a
bounded sequence in C for some x ∈ C. Suppose that r ∈ [0, 1) and

µnDf (T
nx, Ty) ≤ r · µnDf (T

nx, y) for each y ∈ C.

Then there exists x̄ ∈ C such that

(a) lim
k→∞

µnDf (T
nx, T ky) = µnDf (T

nx, x̄) = 0 for each y ∈ C;

(b) lim
k→∞

Df (x̄, T
ky) = 0 for each y ∈ C;

(c) µnf(T
nx) = f(x̄);

(d) x̄ is the unique fixed point of T .

Further, if C is bounded or f is a Bregman function, then lim
k→∞

T ky = x̄ for each

y ∈ C.

Corollary 3.8. Let E be a Hilbert space. Let C be a nonempty closed convex subset
of E, let {xn} be a bounded sequence in C, and let T : C → C be a mapping. Suppose
that r ∈ [0, 1) and

µn||xn − Ty|| ≤ r · µn||xn − y|| for each y ∈ C.

Then there exists x̄ ∈ C such that

(a) lim
k→∞

µn||xn − T ky|| = µn||xn − x̄|| = 0 for each y ∈ C;

(b) lim
k→∞

T ky = x̄ for each y ∈ C;

(c) µn||xn|| = ||x̄||;
(d) x̄ is the unique fixed point of T .

Remark 3.9. Although Corollary 3.8 is a special case of Theorem 3.4, it is also
different from [14, Theorem 3.1]. Indeed, we have the conclusion (c) of Corollary
3.8.
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4. Fixed point theorems for Caristi type and graph contraction type
mappings with the Bregman distance

In this section, we first consider the Caristi’s type fixed point theorem with the
Bregman distance on Banach spaces.

Theorem 4.1. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty bounded subset of E. Let ψ : C → [0,∞) be a function, and let T : C → C
be a map. Assume that:

(4.1) Df (x, Tx) ≤ ψ(x)− ψ(Tx) for each x ∈ C.

Then we have:

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists x̄ ∈ C such that T x̄ = x̄;

(A2) If C is a compact set and T is continuous, then there exists x̄ ∈ C such that
T x̄ = x̄;

(A3) If C is a compact set and x → Df (x, Tx) is lower semicontinuous, then
there exists x̄ ∈ C such that T x̄ = x̄.

Proof. Take any x ∈ C and let x be fixed. For each n ∈ N ∪ {0}, let xn = Tnx and
T 0x = x. Then, for each n ∈ N ∪ {0}, it follows from (4.1) that

Df (xn, Txn) ≤ ψ(xn)− ψ(Txn).

That is,

(4.2) Df (xn, xn+1) ≤ ψ(xn)− ψ(xn+1).

By (4.2), we know that {ψ(xn)} is a nonincreasing sequence, lim
n→∞

ψ(xn) exists,

and lim
n→∞

Df (xn, xn+1) = 0. By Lemma 2.6, lim
n→∞

||xn − xn+1|| = 0. That is,

lim
n→∞

||xn − Txn|| = 0.

(A1) Since C is a bounded closed convex subset of a reflexive Banach space E,
we may assume that xn ⇀ x̄ for some x̄ ∈ C. Since T has demiclosed property,
then T x̄ = x̄.

(A2) If C is a compact set, then we may assume that xn → x̄ for some x̄ ∈ C.
Since T is continuous and lim

n→∞
||xn − Txn|| = 0, we have T x̄ = x̄.

(A3) If C is a compact set, then we may assume that xn → x̄ for some x̄ ∈ C.
Since x→ Df (x, Tx) is lower semicontinuous, then

Df (x̄, T x̄) ≤ lim inf
n→∞

Df (xn, Txn) = lim
n→∞

Df (xn, Txn) = 0.

Hence, it follows from Lemma 2.3 that T x̄ = x̄. �
Remark 4.2. In Theorem 4.1, if f : E → R is Fréchet differentiable and T :
C → C is continuous, then it follows from Lemma 2.4 that x→ Df (x, Tx) is lower
semicontinuous for each x ∈ C.

Remark 4.3. Theorem 4.1 is not a special case of the classical Caristi’s fixed point
theorem or generalized Caristi’s fixed point theorem with generalized distance.
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Following the same argument as in Remark 3.5, we get the following result by
Theorem 4.1.

Theorem 4.4. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty bounded subset of E. Let ψ : C → [0,∞) be a function, and let T : C → C
be a map. Assume that r ∈ [0, 1) and

Df (Tx, T
2x) ≤ r ·Df (x, Tx) for each x ∈ C.

Then we have:

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists x̄ ∈ C such that T x̄ = x̄;

(A2) If C is a compact set and T is continuous, then there exists x̄ ∈ C such that
T x̄ = x̄;

(A3) If C is a compact set and x → Df (x, Tx) is lower semicontinuous, then
there exists x̄ ∈ C such that T x̄ = x̄.

The following results are special cases of Theorem 4.6.

Corollary 4.5. Let E be a reflexive, smooth, and strictly convex Banach space.
Let C be a nonempty closed convex subset of E, and T : C → C be a mapping.
Suppose that r ∈ [0, 1) and

ϕ(Tx, T 2x) ≤ r · ϕ(x, Tx) for each y ∈ C,

where ϕ(x, y) := ||x||2 − 2⟨x, Jy⟩ + ||y||2 and J is the duality mapping. Then we
have:

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists x̄ ∈ C such that T x̄ = x̄;

(A2) If C is a compact set and T is continuous, then there exists x̄ ∈ C such that
T x̄ = x̄;

(A3) If C is a compact set and x→ ϕ(x, Tx) is lower semicontinuous, then there
exists x̄ ∈ C such that T x̄ = x̄.

Corollary 4.6. Let E be a Hilbert space. Let C be a nonempty closed convex subset
of E, and let T : C → C be a mapping. Suppose that r ∈ [0, 1) and

||T 2x− Tx|| ≤ r · ||x− Tx|| for each x ∈ C.

Then there exists x̄ ∈ C such that

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists x̄ ∈ C such that T x̄ = x̄;

(A2) If C is a compact set and T is continuous, then there exists x̄ ∈ C such that
T x̄ = x̄;

(A3) If C is a compact set and x→ ||x−Tx|| is lower semicontinuous, then there
exists x̄ ∈ C such that T x̄ = x̄.

Let (X, d) be a metric space. Then f : X → R is said to be a graph contraction
map [39] if it has closed graph and there exists r ∈ [0, 1) such that

d(fx, f2x) ≤ r · d(x, fx) for each x ∈ C.



BREGMAN DISTANCE AND RELATED RESULTS 1031

Note that our results in this section are different from graph contraction mapping
existing in the literatures.

For Theorem 4.1, if C is not assumed to be a bounded set, then we modify
Theorem 4.1 to the following result.

Theorem 4.7. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty subset of E. Let ψ : C → [0,∞) be a coercive function, and let T : C → C
be a continuous map or has demiclosed property. Assume that:

(4.3) Df (x, Tx) ≤ ψ(x)− ψ(Tx) for each x ∈ C.

Then there exists x̄ ∈ C such that T x̄ = x̄.

Proof. Take any x ∈ C and let x be fixed. For each n ∈ N ∪ {0}, let xn = Tnx and
T 0x = x. In the proof of Theorem 4.1, we know that {ψ(xn)} is a nonincreasing
sequence, lim

n→∞
ψ(xn) exists, and lim

n→∞
Df (xn, xn+1) = 0. Clearly, {ψ(xn)}n∈N is a

bounded sequence.
Let B := {xn : n ∈ N}. Suppose that B is an unbounded set. Then for each

k ∈ N, there exists an element yk ∈ B such that ||yk|| ≥ k. Hence, we get a sequence
{yk}k∈N in C such that ||yk|| → ∞. Since ψ is coercive, we know that ψ(yk) → ∞.
So, {ψ(yk)} is an unbounded set. Since {ψ(yk)} ⊆ ψ(B) = {ψ(xn)}n∈N, we know
that {ψ(xn)}n∈N is an unbounded set. This leads to contraction. Hence, {xn}n∈N
is a bounded set. Next, following similar argument as the proof of Theorem 4.1, we
get the conclusion of Theorem 4.7. �

Next, we consider a multivalued fixed point theorem with the Bregman distance
on Banach spaces.

Theorem 4.8. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be
a nonempty compact subset of E. Let T : C ( C be a multivalued map with
nonempty closed values. Let Df (x, T (x)) := infy∈T (x)Df (x, y). Let 0 < a < 1, and
let φ : [0,∞) → [0, 1) and ψ : [0,∞] → [a, 1] be two functions with the properties:

(4.4) lim sup
r→t+

φ(r)

ψ(r)
< 1 for each t ∈ [0,∞).

For each x ∈ X, there exists y ∈ T (x) such that

(4.5) ψ(Df (x, T (x))) ·Df (x, y) ≤ Df (x, T (x)),

and

(4.6) Df (y, T (y)) ≤ φ(Df (x, T (x))) ·Df (x, y).

Assume that one of the following conditions holds:

(A1) T is closed (i.e., Gr(T ) := {(x, y) ∈ C × C : y ∈ T (x)} is a closed set);
(A2) x→ Df (x, T (x)) is lower semicontinuous;
(A3) inf{Df (x, z) +Df (x, T (x)) : x ∈ C} > 0 for each z ∈ C with z ̸∈ T (z).

Then there exists x̄ ∈ C such that x̄ ∈ T (x̄).
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Proof. Take any point x0 ∈ E and let x0 be fixed. By (4.5) and (4.6), there exists
x1 ∈ T (x0) such that

(4.7) ψ((Df (x0, T (x0)))) ·Df (x0, x1) ≤ Df (x0, T (x0)),

and

(4.8) Df (x1, T (x1)) ≤ φ(Df (x0, T (x0))) ·Df (x0, x1).

Continuing this process, we can choose a sequence {xn}∞n=1 with xn+1 ∈ T (xn) such
that

(4.9) ψ((Df (xn, T (xn)))) ·Df (xn, xn+1) ≤ Df (xn, T (xn)),

and

(4.10) Df (xn+1, T (xn+1)) ≤ φ(Df (xn, T (xn))) ·Df (xn, xn+1)

for each n ∈ N ∪ {0}. By (4.9) and (4.10), for each n ∈ N ∪ {0}, we have:

(4.11) Df (xn+1, T (xn+1)) <
φ(Df (xn, T (xn))) ·Df (xn, T (xn))

ψ(Df (xn, T (xn)))
.

Clearly, {Df (xn, T (xn))}∞n=0 is a nonincreasing sequence in [0,∞). Then there exists
δ ≥ 0 such that

(4.12) δ = lim
n→∞

Df (xn, T (xn)) = inf{Df (xn, T (xn)) : n ∈ N ∪ {0}}.

Suppose that δ > 0. By (4.4), (4.11), and (4.12),

δ ≤ lim
Df (xn,T (xn))→δ+

φ(Df (xn, T (xn))) ·Df (xn, T (xn))

ψ(Df (xn, T (xn)))
< δ.

And this is a contradiction. Thus δ = 0. Further, lim
n→∞

Df (xn, xn+1) = 0. By

Lemma 2.6, lim
n→∞

||xn+1 − xn|| = 0. Since C is a compact set, we may assume that

lim
n→∞

xn = x̄ for some x̄ ∈ C.

If (A1) holds, then T is closed. Since xn+1 ∈ T (xn) for each n ∈ N ∪ {0} and
xn → x̄ as n→ ∞, x̄ ∈ T (x̄).

If (A2) holds, then we have:

0 ≤ Df (x̄, T (x̄)) ≤ lim inf
n→∞

Df (xn, T (xn)) = 0.

Then Df (x̄, T (x̄)) = 0. So, for each k ∈ N, there exists yk ∈ T (x̄) such that
Df (x̄, yk) < 1/k. By Lemma 2.6 again, yk → x̄ as k → ∞. Since T (x̄) is closed,
x̄ ∈ T (x̄).

If (A3) holds, suppose that x̄ ̸∈ T (x̄), then we have:

0 < inf{Df (x, x̄) +Df (x, T (x)) : x ∈ C}
≤ inf{Df (xn, x̄) +Df (xn, T (xn)) : n ∈ N, and n > n0}
≤ inf{Df (xn, x̄) +Df (xn, xn+1) : n ∈ N and n > n0} = 0.

And this is a contradiction. Hence, x̄ ∈ T (x̄). �
Remark 4.9. Although Theorem 4.8 is similar to [26, Theorem 3.1], [34, Theorem
2.2], and [30, Theorem 2.1], we know that these results are different.
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Remark 4.10. (a) If T is an upper semicontinuous multivalued map with
nonempty closed values, then the condition (A1) of Theorem 4.8 holds [1].

(b) If f is Fréchet differentiable and T is a lower semicontinuous multivalued
map, then it follows from Lemma 2.4 and [29, Theorem 1] that the condition
(A2) of Theorem 4.8 holds.

Remark 4.11. Following the same argument as the proof of Theorem 4.8, we can
get similar results from Theorems 3.2 and 3.3 in [26].

In Theorem 4.8, if T is a map, and ψ(t) = 1 for each t ∈ [0,∞), then we have
the following result.

Theorem 4.12. Let E be a reflexive Banach space, and let f : E → R be a lower
semicontinuous, strictly convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convex on bounded sets. Let C be a
nonempty compact subset of E. Let T : C → C be a map. Let φ : [0,∞) → [0, 1)
and

(4.13) lim sup
r→t+

φ(r) < 1 for each t ∈ [0,∞).

For each x ∈ X,

(4.14) Df (T (x), T
2(x)) ≤ φ(Df (x, T (x))) ·Df (x, T (x)).

Assume that one of the following conditions holds:

(A1) T is closed (i.e., Gr(T ) := {(x, y) ∈ C × C : y = T (x)} is a closed set);
(A2) x→ Df (x, T (x)) is lower semicontinuous;
(A3) inf{Df (x, z) +Df (x, T (x)) : x ∈ C} > 0 for each z ∈ C with z ̸̸= T (z).

Then there exists x̄ ∈ C such that T (x̄) = x̄.

5. Properties of Bregman projection

Lemma 5.1. [10, Proposition 2.1.5] Let E be a reflexive Banach space, let C be a
nonempty closed convex set of D(f). Let f : E → (−∞,∞] be a strongly coercive
Bregman function on int(D). Then for each x ∈ int(D), there exists a unique z ∈ C
such that Df (z, x) = miny∈C Df (y, x). Here, let PCx = z, and PC is called the
Bregman projection from E onto C. Further, we have

(i) z = PCx if and only if z ∈ C and ⟨y− z,∇f(x)−∇f(z)⟩ ≤ 0 for all y ∈ C;
(ii) Df (y, PCx) +Df (PCx, x) ≤ Df (y, x) for each y ∈ C and each x ∈ E.

Lemma 5.2 ([46]). Let E be a Banach space, and let f : E → (−∞,+∞] be a
convex function. Then we get:

(i) If f is uniformly convex on bounded sets, then

0 < inf
||x||≤r,||y||≤r,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)

for all r > 0 and t > 0;
(ii) If f is uniformly smooth on bounded sets, then

lim
t↓0

sup
||x||≤r,||y||=1,α∈(0,1)

αf(x+ (1− α)ty) + (1− α)f(x− αty)− f(x)

tα(1− α))
= 0
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for all r > 0 .

Lemma 5.3. [10, 33, 46] Let E be a reflexive Banach space, and let f : E → R be
a continuous convex and strongly coercive function. Then the following assertions
are equivalent.

(i) f is bounded on bounded sets, and uniformly smooth on bounded sets;
(ii) f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous

on bounded sets;
(iii) D(f∗) = E∗, f∗ is strongly coercive and uniformly convex on bounded sets.

By Lemmas 5.2 and 5.3, it is easy to get the following result.

Lemma 5.4. Let E be a reflexive Banach space, and let f : E → R be a contin-
uous convex and strongly coercive function. If f is bounded on bounded sets, and
uniformly smooth on bounded sets, then f∗ is strictly convex.

Lemma 5.5 ([43]). Let E be a reflexive Banach space, and let C be a nonempty
closed convex subset of E. Let f : C → (∞,∞] be a proper convex lower semicon-
tinuous function, and suppose that f(xn) → ∞ as ||xn|| → ∞. Then there exists
x̄ ∈ C such that f(x̄) = inf{f(x) : x ∈ C}.

By Lemma 5.5, it is easy to get the following result.

Lemma 5.6. Let E be a reflexive Banach space, and let C be a nonempty closed
convex subset of E. Let f : E → R be a proper, continuous, strictly convex, and
strongly coercive function. Then, for each x ∈ E, there exists a unique x̄ ∈ C such

that f(x− x̄) = miny∈C f(x− y). Here, we use the notation P f
C(x) = x̄.

For P f
C , we have the following result by Lemma 2.1. For detail, we give the proof

of the following result. Note that it is very important and essential for Theorem
5.21. In fact, if we do not have this result, then we could not get Theorem 5.21.
Besides, it is a generalization of Problem 5.3.3 in [43, page154].

Lemma 5.7. Let C be a nonempty closed convex subset of a reflexive Banach space
E. Let f : E → R be a proper, continuous, strictly convex, Gateaux differentiable,

and strongly coercive function. Let (x, z) ∈ E × C. Then z = P f
C(x) if and only if

⟨y − z,∇f(x− z)⟩ ≤ 0 for all y ∈ C.

Proof. Suppose that ⟨y − z,∇f(x− z)⟩ ≤ 0 for all y ∈ C. Then for each y ∈ C,

Df (x− y, x− z) := f(x− y)− f(x− z)− ⟨(x− y)− (x− z),∇f(x− z)⟩ ≥ 0.

Hence,

f(x− y)− f(x− z) ≥ ⟨z − y,∇f(x− z)⟩ ≥ 0 for each y ∈ C.

So, f(x− z) = miny∈C f(x− y) and z = P f
C(x).

Conversely, suppose that z = P f
C(x). Take any y ∈ C, and let y be fixed. Since

f is Gateaux differentiable,

⟨z − y,∇f(x− z)⟩ = lim
t→0

f(x− z + t(z − y))− f(x− z)

t

= lim
t↓0

f(x− (1− t)z − ty)− f(x− z)

t
.
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Clearly, (1− t)z + ty ∈ C for t ∈ [0, 1]. This implies that ⟨y− z,∇f(x− z)⟩ ≤ 0 for
each y ∈ C. Therefore, the proof is completed. �

The following result is another version of Lemma 5.1.

Lemma 5.8. Let E be a reflexive Banach space, f : E → R be a proper strongly
coercive Bregman function, and let Df be the Bregman distance associated with f .
Suppose that f is bounded on bounded sets, uniformly convex on bounded sets, and
uniformly smooth on bounded sets. Let C∗ be a closed convex subset of E∗. Let f∗

be the conjugate function of f . Define Df∗ : E∗ ×E∗ → R as

Df∗(x∗, y∗) := f∗(x∗)− f∗(y∗)− ⟨x∗ − y∗,∇f∗(y∗)⟩
for each (x∗, y∗) ∈ E∗ × E∗. Then, for each x∗ ∈ E∗, there is a unique element
z∗ ∈ C∗ such that Df∗(z∗, x∗) = miny∗∈C∗ Df∗(y∗, x∗).

Proof. By definition, we know that

Df∗(∇f(x),∇f(y)) = Df (y, x)

for each (x, y) ∈ E × E [33]. f∗ is proper, convex, and Gâteaux differentiable.
By Lemma 2.2, f∗ is w∗-continuous. By Lemma 5.3, f∗ is strongly coercive and
uniformly convex on bounded sets. By Lemma 5.4, f∗ is strictly convex.

Next, for each x∗ ∈ E∗ and each r > 0, it follows from Lemma 2.8 that there
exists a unique x ∈ E such that x∗ = ∇f(x). Hence,

{y∗ ∈ E∗ : Df∗(x∗, y∗) ≤ r} = ∇f({y ∈ E : Df (y, x) ≤ r}).

By Lemma 2.8, {y ∈ E : Df (y, x) ≤ r} is a bounded set. By Lemmas 2.4 and 2.5,
{y∗ ∈ E∗ : Df∗(x∗, y∗) ≤ r} is a bounded set.

So, all conditions of Lemma 5.1 are satisfied. Therefore, for each x∗ ∈ E∗, there is
a unique element z∗ ∈ C∗ such that Df∗(z∗, x∗) = miny∗∈C∗ Df∗(y∗, x∗). Therefore,
the proof is completed. �

Let E be a normed linear space and let x, y ∈ E. We say that x is orthogonal to
y if ||x|| ≤ ||x+ λy|| for each λ ∈ R. Here, we use x ⊥ y to denote x is orthogonal
to y [6, 17, 18, 19]. We know that for x, y ∈ E, x ⊥ y if and only if there exists
g ∈ Jx such that ⟨y, g⟩ = 0. (For example, one can refer to [43].)

Definition 5.9. Let E be a normed linear space and let x, y ∈ E, and let f : E → R
be a function. We say that x is f -orthogonal to y if f(x) ≤ f(x+λy) for each λ ∈ R.
Here, we use x ⊥f y to denote x is f -orthogonal to y.

Remark 5.10. In Definition 5.9, if f(x) = ||x||2, then x ⊥f y is reduced to x ⊥ y.

By the definition of Bregman distance and related results, it is easy to get the
following result. For detail, we give the proof of the following result.

Proposition 5.11. Let E be a Banach space and let x, y ∈ E, let f : E → R be
a proper, lower semicontinuous, convex, and Gâteaux differentiable on D(f). Then
the following conditions are equivalent:

(i) f(x) ≤ f(x+ λy) for each λ > 0;
(ii) ⟨y,∇f(x)⟩ ≥ 0.
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Proof. (i) ⇒ (ii): Suppose that f(x) ≤ f(x+λy) for each λ > 0. Since f is Gâteaux
differentiable on D(f),

⟨y,∇f(x)⟩ = lim
t→0

f(x+ ty)− f(x)

t
= lim

t↓0

f(x+ ty)− f(x)

t
≥ 0.

(ii) ⇒ (i): Suppose that ⟨y,∇f(x)⟩ ≥ 0. Then, for each λ > 0, we get

Df (x+ λy, x) = f(x+ λy)− f(x)− ⟨x+ λy − x,∇f(x)⟩ ≥ 0.

This implies that f(x+ λy)− f(x) ≥ λ⟨y,∇f(x)⟩ ≥ 0. �

Further, we get the following proposition by following the similar argument as in
the proof of Proposition 5.11.

Proposition 5.12. Let E be a Banach space, and let f : E → R be a proper, lower
semicontinuous, convex, and Gâteaux differentiable on D(f). Then x ⊥f y if and
only if ⟨y,∇f(x)⟩ = 0.

Before we consider a sunny generalized nonexpansive retraction mapping, we
show the following lemmas. First, it is easy to get this result and it is a generalized
version of [16, Lemma 2.2]. Further, it is an important tool for Lemma 5.14 and
related results.

Lemma 5.13. Let E be a reflexive Banach space, and let f : E → R be a strongly
coercive Bregman function. Let M be a closed linear subspace of E, and let (x, z) ∈
E ×M . Then z = PMx if and only if ⟨y,∇f(x)−∇f(z)⟩ = 0 for each y ∈M.

Next, we get the following result and it is a generalization of [16, Lemma 3.1].

Lemma 5.14. Let E be a reflexive Banach space. Let f : E → R be a proper,
strongly coercive, and Bregman function. Let Y be a closed linear subspace of E,
and let PY be the Bregman projection from E onto Y . Then the following hold.

(i) ⟨PY x,∇f(x)⟩ = ⟨PY x,∇f(PY x)⟩ for each x ∈ E.
(ii) f∗(∇f(PY x)) ≤ f∗(∇f(x)) for each x ∈ E.
(iii) If X is also a closed linear subspace of E with X ⊆ Y , then PXPY = PX .
(iv) PY αx = αPY x for each x ∈ E and each α ≥ 0.

Proof. (i) Since PY is the Bregman projection from E onto Y , it follows Lemma 5.1
that ⟨y−PY x,∇f(x)−∇f(PY x)⟩ ≤ 0. for each x ∈ E and each y ∈ Y . Let y1 := 0
and y2 := 2PY x. Clearly, y1, y2 ∈ Y . Then, for each x ∈ E,

⟨PY x,∇f(x)−∇f(PY x)⟩ ≥ 0 and ⟨PY x,∇f(x)−∇f(PY x)⟩ ≤ 0.

Hence, ⟨PY x,∇f(x)⟩ = ⟨PY x,∇f(PY x)⟩ for each x ∈ E.
(ii) Since PY is the Bregman projection from E onto Y , for each x ∈ E and each

y ∈ Y , it follows from Lemmas 2.1 ,5.13 and 5.1 and the properties of the conjugate
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function that

0 ≤ Df (y, x)−Df (y, PY x)

= − ⟨y − x,∇f(x)−∇f(PY x)⟩ −Df (x, PY x)

= − ⟨y − x,∇f(x)−∇f(PY x)⟩ − f(x) + f(PY x) + ⟨x− PY x,∇f(PY x)⟩
= ⟨x,∇f(x)−∇f(PY x)⟩ − f(x) + f(PY x) + ⟨x− PY x,∇f(PY x)⟩
= ⟨x,∇f(x)⟩ − ⟨x,∇f(PY x)⟩ − f(x) + f(PY x) + ⟨x,∇f(PY x)⟩ − ⟨PY x,∇f(PY x)⟩
= ⟨x,∇f(x)⟩ − f(x) + f(PY x)− ⟨PY x,∇f(PY x)⟩
= f∗(∇f(x))− f∗(∇f(PY x)).

Therefore, f∗(∇f(PY x)) ≤ f∗(∇f(x)) for each x ∈ E. �

By Lemmas 5.8, 5.13, and 5.14, we give another versions of Lemmas 5.13 and
5.14, respectively.

Lemma 5.15. Let E be a reflexive Banach space. Let f : E → R be a proper,
strongly coercive, and Bregman function. Suppose that f is bounded on bounded
sets, uniformly convex on bounded sets, and uniformly smooth on bounded sets. Let
M∗ be a closed linear subspace of E∗, and let (x∗, z∗) ∈ E∗×M∗. Then z∗ = PM∗x∗

if and only if ⟨y∗,∇f∗(x∗)−∇f∗(z∗)⟩ = 0 for each y∗ ∈M∗.

Lemma 5.16. Let E be a reflexive Banach space. Let f : E → R be a proper,
strongly coercive, and Bregman function. Suppose that f is bounded on bounded
sets, uniformly convex on bounded sets, and uniformly smooth on bounded sets. Let
Y ∗ be a closed linear subspace of E∗, and let PY ∗ be the Bregman projection from
E∗ onto Y ∗. Then the following hold.

(i) ⟨PY ∗x∗,∇f∗(x∗)⟩ = ⟨PY ∗x∗,∇f∗(PY ∗x∗)⟩ for each x∗ ∈ E∗;
(ii) f(∇f∗(PY ∗x∗)) ≤ f(∇f∗(x∗)) for each x∗ ∈ E∗;
(iii) If X∗ is a closed linear subspace of E∗ with X∗ ⊆ Y ∗, then PX∗PY ∗ = PX∗;
(iv) PY ∗αx = αPY ∗x for each x ∈ E∗ and α ≥ 0.

Following the same argument as the proof of Theorem 3.3 and Corollary 3.1
in [16] and using the above lemmas, we get the following result. In fact, it is a
generalization of [16, Theorem 3.3].

Theorem 5.17. Let E be a smooth, strictly convex, and reflexive Banach space, and
let f : E → R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly convex on bounded sets, and uniformly smooth on bounded sets.
Let Y ∗ be a nonempty closed linear subspace of E∗. Then the mapping EY ∗ :=
(∇f)−1PY ∗∇f has the following properties:

(i) For each x ∈ E, ∇f(x) ∈ Y ∗ if and only if EY ∗(x) = x;
(ii) f(EY ∗x) ≤ f(x) for each x ∈ E;
(iii) For each x ∈ E, the following are equivalent:

(a) f(EY ∗(x)) = f(x); (b) EY ∗(x) = x; and (c) ∇f(x) ∈ Y ∗.
(iv) EY ∗(x1 + x2) = EY ∗(EY ∗(x1) + EY ∗(x2)) for all x1, x2 ∈ E.
(v) For n ≥ 2, and x1, x2, . . . , xn ∈ E. Then

EY ∗(x1 + x2 + · · ·+ xn) = EY ∗(EY ∗(x1) + · · ·+ EY ∗(xn)).
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(vi) EY ∗(αx) = αEY ∗(x) for each x ∈ E∗ and each α > 0.

Following the same argument as the proof of [16, Theorem 3.4] and using the
above lemmas, we get the following result. In fact, it is a generalization of [16,
Theorem 3.4].

Theorem 5.18. Let E be a smooth, strictly convex, and reflexive Banach space,
and let f : E → R be a strongly coercive Bregman function which is bounded on
bounded sets, and uniformly convex and uniformly smooth on bounded sets. Let
Y ∗
1 and Y ∗

2 be a nonempty closed linear subspace of E∗ with Y ∗
1 ⊆ Y ∗

2 . Then we
have: (i) EY ∗

2
EY ∗

1
= EY ∗

1
; (ii) EY ∗

1
EY ∗

2
= EY ∗

1
; and (iii) If ∇f(0) = 0, then

E−1
Y ∗
2
(0) ⊆ E−1

Y ∗
1
(0).

Lemma 5.19. Let E be a normed linear space, and let f : E → R be a function.
Let T : E → E be a map such that T (Tx + β(x − Tx)) = Tx for each x ∈ E and
each β ∈ R. Then f(Tx) ≤ f(x) for each x ∈ E if and only if Tx ⊥f (x− Tx) for
each x ∈ E.

Proof. Suppose that f(Tx) ≤ f(x) for each x ∈ E. For each x ∈ E and each β ∈ R,
since T (Tx+ β(x− Tx)) = Tx, we know that

f(Tx) = f(T (Tx+ β(x− Tx))) ≤ f(Tx+ β(x− Tx)).

Then Tx ⊥f (x− Tx) for each x ∈ E.
Conversely, suppose that Tx ⊥f (x − Tx) for each x ∈ E. Then f(Tx) ≤

f(Tx+ β(x− Tx)) for each x ∈ E and each β ∈ R. Let β = 1. Then f(Tx) ≤ f(x)
for each x ∈ E. �

By Lemmas 2.3, 5.15, 5.19, and Theorem 5.17, and following the same argument
as the proof of [16, Theorem 4.1], we get the following result.

Theorem 5.20. Let E be a reflexive, strictly convex, and smooth Banach space. Let
f : E → R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly convex and uniformly smooth on bounded sets. Let Y ∗ be a
nonempty closed linear subspace of E∗. Then EY ∗(x) ⊥f (x − EY ∗(x)) for each
x ∈ E.

Let Y be a nonempty subset of a Banach space E, and let Y ∗ be a nonempty
subset of the dual space E∗. Then we define the following two sets:

(5.1) Y ∗
⊥ := {x ∈ E : g(x) = 0 for all g ∈ Y ∗},

and

(5.2) Y ⊥ := {g ∈ E∗ : g(x) = 0 for all x ∈ Y }.
For these two sets, we give the following result.

Following the same argument as the proof of [16, Theorem 4.2], and using Lemmas
5.15 and 5.7, we get the following result. In fact, Lemma 5.7 is essential and
important for Theorem 5.21.

Theorem 5.21. Let E be a reflexive, strictly convex, and smooth Banach space. Let
f : E → R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly convex and uniformly smooth on bounded sets. Let Y ∗ be a
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nonempty closed linear subspace of E∗. Let I be the identity map on E. Then we
have:

(i) I − EY ∗ = P f
Y ∗
⊥
;

(ii) If Y is a closed linear subspace of E, then (I − P f
Y ) = EY ⊥.
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