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BREGMAN DISTANCE AND RELATED RESULTS ON BANACH
SPACES

CHIH-SHENG CHUANG AND LAI-JIU LIN

ABSTRACT. In this paper, we first study existence theorems of solution for opti-
mization problems which is related to Bregman distance. From these results, we
study fixed point problems for nonlinear mappings, contractive type mappings,
Caritsti type mappings, graph contractive type mappings with the Bregman dis-
tance on Banach spaces. We also study some properties of Bregman projection.
Our results on the properties of Bregman projection improve recent results of
Honda and Takahashi. We combine the techniques of optimization theory and
fixed point theory to study these problems in this paper. Our results are different
from many existence theorems for optimization problem and fixed point theorems
of nonlinear mappings, contractive type mappings, and graph contractive map-

pings.

1. INTRODUCTION

In 1967, Bregman [9] introduced the concept of the Bregman distance, and he has
discovered an elegant and effective technique for the use of the Bregman distance in
the process of designing and analyzing feasibility and optimization algorithms. More
recently researchers in geometric algorithms have shown that many important algo-
rithms can be generalized from Euclidean metrics to distances defined by Bregman
distance. Some researchers consider nonlinear mappings with Bregman distances.
For example, one can see [2, 3, 4, 5, 8, 11, 21, 24, 32, 33, 35, 36, 37, 38, 40, 41] and
related literatures.

Note that the Bregman distance is similar to a metric, but does not satisfy the
triangle inequality nor symmetry. So, we know that the Bregman distance are
different from the metric, w-distance [20], 7-distance [42], T-function [27], and weak
7-function [22]. Indeed, these generalized distance functions satisfy the triangle
inequality, but the Bregman distance does not satisfy the triangle inequality.

Since the Bregman distance does not satisfy the triangle inequality nor symmetry,
it is important to consider the fixed point theory and related problems with the
Bregman distance.

However, for many problems, like optimization problems and fixed point prob-
lems, we do not see many existence theorems of optimization theory with the Breg-
man distance, and fixed point theory with the Bregman distance. In fact, many
researchers considered various iteration processes with Bregman distance for opti-
mization problem, variational inequality, and fixed point. But, they do not consider
the existence theorems for optimization problem and fixed point theorems. (For
details, one refers to [2, 3, 4, 5, 8, 11, 21, 24, 31, 35, 36, 37, 38, 40, 41].)
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Few researches consider the existence theorems for optimization problems and
related problems. For example, Li, Song, and Yao [25] studied the convexity problem
of Chebyshev sets with the Bregman distance in a Banach space.

In this paper, we first study the properties of Bregman distance and an existence
and uniqueness theorem of solution for an optimization problem which is related
to Bregman distance. From these results, we study fixed point problems of nonlin-
ear mappings, contractive type mappings, Caristi type mappings, graph contractive
type mappings with the Bregman distance on Banach spaces. We also study some
properties of Bregman projection. Our results on the properties of Bregman pro-
jection improve recent results of Honda and Takahashi [16]. It is worth noting that
we combine the techniques of optimization theory and fixed point theory to study
these problems. Our results are different from any results on fixed point theorems of
nonlinear mappings, contractive type mappings, and graph contractive mappings.

2. PRELIMINARIES

Now, we recall some definitions. Let E be a Banach space with dual space E*.
Then the duality mapping J : E — E* is defined by

Joi={a" € B*: (v,0") = |le|l? = []2" |}, Va € E.

Let S(FE) be the unit sphere centered at the origin of E. Then the space E is said
to be smooth if the limit

i 12+ Il = Il

tgr(l) t
exists for all z,y € S(F). It is also said to be uniformly smooth if the limit
exists uniformly in z,y € S(F). A Banach space F is said to be strictly convex if
||%52]| < 1 whenever z,y € S(E) and = # y. It is said to be uniformly convex if for
each ¢ € (0,2], there exists § > 0 such that ||[Zf¥|| < 1 — § whenever z,y € S(E)
and ||z —y|| > e. Further, we have: (i) if E is smooth, then J is single-valued; (ii) if
E is reflexive, then J is onto; (iii) if F is strictly convex, then J is one-to-one; (iv)
if E is strictly convex, then J is strictly monotone; (v) if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E [43].

Now, let E be a smooth Banach space, and let C' be a nonempty closed convex

subset of E. A function ¢ : C x C' — R is defined by

o(x,y) = [l|* = 2(z, Jy) + [|y[|”
for all x,y € C. We know that this function plays an important role for convex

analysis and nonlinear analysis. (For example, see [23, 45] and related results).
Besides, we know that

(2.1) (2]l = 1lyl)? < (@, y) < (llzll + llyl})*

for all x,y € C.
Let E be a Banach space. Let f : E — (—o00, 00| be a convex function. Let D (or
D(f)) denote the domain of f, that is,
D:={zx e E: f(z) < oo}

Let D° denote the algebraic interior of D , i.e., the subset of D consisting of all those
points z € D such that, for any y € E \ {z}, there is z in the open segment (z,y)
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with [z, z] C D. The topological interior of D , denoted by int(D), is contained in
D.

A function f : E — (—o00,00] is said to be proper provided that D # (. It is
also called lower semicontinuous if {x € E : f(x) < r} is closed for each r € R. A
function f is upper semicontinuous if {x € E : f(z) > r} is closed for each r € R.
A function f is convex if f(tx + (1 —t)y) < tf(x)+ (1 —t)f(y) for all z,y € E and

€ [0,1]. A function f is strictly convex if f(tx + (1 —t)y) < tf(z) + (1 —t)f(y)
for all ,y € D(f) with  # y and ¢t € (0,1). A function f: E — (—o0, 0] is said
to be Gateaux differentiable at = € E if there is Vf(x) € E* such that

t—0 t

for each y € F.
The Bregman distance D associated with a proper convex function f is the
function Dy : D x D — [0, 00| defined by

Di(y,x) = f(y) — f(z) + f°(z, 2 — y),

where

0 [+ iz —y)) - flz)
r,xr—y):= lim .
I v) t—0+ t
For the Bregman distance, we need the following result and it plays an important
and essential role in this paper.

Lemma 2.1 ([10, Proposition 1.3.9]). Let E be a Banach space. Let f be a lower
semicontinuous convex function on D with int(D) # (. Suppose that [ is Gateaux
differentiable on D. Then we have

(i) Dp(y, =) = f(y) = fz) = (y =2, V[(x)) for all z,y € ini(D).
(ii) Df((%,)x) + (u—x,Vf(z) — Vf(y)) + Ds(x,y) = Dy(u,y) for all u,z,y €
mi(D).

Note that if f(z) = ||z||? in a smooth Banach space E, then it is known that f
is Gateaux differentiable and V f(x) = 2J(x) for each = € E, where J : E — E* is
the duality mapping [12, 15, 33]. This implies that

Dy(y,x) = |lz|]* + ||yl|* = 2{y, J (x)) = ¢(y, )

for each x,y € int(D) [15, 33]. Further, if £ is a real Hilbert space, then D¢ (z,y) =
||z —y||? for all z,y € E.

For a proper lower semicontinuous convex function f : E — (—o0, 00|, the subd-
ifferential df of f and the conjugate function f* of f are defined by

Of(x) :={z* € E* : f(x) + (y —x,2™) < f(y) for each y € E}

for each z € E, and

fH(x") = sup{(z, ") - f(z)}
zelk
for each z* € EF*. Tt is well-known that f(z)+ f*(2*) > (x,2*) for each (z,z*) €
E x E*. It is also known that

et € 0f(x) & fz) + f*(2") = (x,z7).
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We also know that if f : F — (—o00,00] is a proper convex lower semicontinuous
function, then f* : E* — (—o0, 00| is a proper, convex, and weak* lower semicon-
tinuous. Besides, f is convex and lower semicontinuous if and only if f** = f. (For
details, one can refer to [12].)

We need the following results as tools to consider optimization theory, fixed point
theory, and related results in the sequel.

Lemma 2.2 ([10, Proposition 1.1.5]). Let E be a Banach space. If f : E —
(—o00,00] is a proper lower semicontinuous and convex function on int(D), then f
is continuous on int(D).

Lemma 2.3 ([10, Proposition 1.1.9]). Let E be a Banach space. If f : E —
(—00, 0] is a proper convez function and Gateaux differentiable on int(D), then the
following are equivalent:
(i) f is strictly convex on int(D);
(ii) For each x,y € int(D) with x # y, one has D¢ (y,z) > 0;
(i) For each z,y € int(D) with x # y, one has {(x —y,V f(x) — Vf(y)) > 0.

Lemma 2.4 ([10, Proposition 1.1.10]). Let E be a Banach space. Let f : E —
(—00, 00| be a lower semicontinuous convex function with int(D) # (.
(i) f is Gateaux differentiable at x € int(D) if and only if Of(x) consists of a
single element. In this case, Of (x) = {Vf(x)}.
(ii) If f is Gdteauz differentiable on int(D), then Vf is norm-to weak™ contin-
uous on int(D);
(iii) If f is Fréchet differentiable, then Dy is continuous on int(D)xint(D).

Lemma 2.5 ([10, Proposition 1.1.11]). Let E be a Banach space. If f : E — R is a
continuous convex function, then the multivalued mapping 0f : E — E* is bounded
on bounded sets if and only if f is bounded on bounded sets.

Let E be a Banach space, and let f : E — (—o00,+00] be a convex function.
Define 6 : (0,400) — [0, +00] as
. 1 1 AW _
07(t) = int {5/ @) + 5 7) ~ F(552) ¢ o —yll =tz € D)}

for each ¢t > 0, where the infimum over the empty set is +0o0. We say that f is
uniformly convex when d¢(t) > 0 for all t > 0 [7, 46].
Define py : (0, +00) — [0, +00] as

—supd L 1 THEYN iyl =
pr(®) i=sup {3 f@) + 5 f@) ~ F(552) ¢l =l = sy € DO}
t
for each t > 0. We say f is uniformly smooth if lilgiL Pft() =0 [7, 46].
t—

Lemma 2.6 ([24]). Let E be a Banach space, and let f : E — R be a convexr Gateaux
differentiable function which is uniform convex on bounded sets. If {x,,} and {y,}

are bounded sequences in E and lim Dy(xy,yn) =0, then lim ||z, — y,|| = 0.
n—oo n—oo

Definition 2.7 ([10]). Let E be a Banach space. Then a function f : E — R is
said to be a Bregman function if the following conditions hold:
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(i) f is continuous, strictly convex, and Gateaux differentiable;
(ii) the set {y € E': D¢(x,y) < r}is bounded for each x € E and each r > 0.

Let E be a Banach space. A function f : F — R is said to be coercive if
||zn|| = oo implies that f(z,) — oco. A function f: E — R is said to be strongly
coercive if ||z,|| = oo implies that f(z,)/||zn|| — oo [33].

Lemma 2.8 ([33]). Let E be a reflexive Banach space, and let f : E — R be a
strongly coercive Bregman function. Then

(i) Vf: E — E* is one-to-one, onto, and norm-to-weak continuous;
(ii) {x € E: Dy¢(x,y) <1} is bounded for each y € E and each r > 0.
(iii) D(f*) = E*, f* is Gateaux differentiable, and V f* = (Vf)~L.

Let £°° be the Banach space of bounded sequences with the supremum norm. A
linear functional p on £° is called a mean if u(e) = ||p|| = 1, wheree = (1,1,1,....).
For z = (21,22, 23,....), the value u(z) is also denoted by p,(x,). A mean p on
£ is called a Banach limit if it satisfies p, () = pn(zn+1). If @ is a Banach limit
on ¢, then for x = (x1,x2,23,...) € £,

liminf 2, < pp(x,) < limsup z,.
n—00 n—oo

In particular, if z = (z1,22,23,...) € £*° and li_>m zn, = a € R, then p(z) =
n—oo

fn(xyn) = a. For details, we can refer to [43].
The following result comes from the proof of Theorem 3.2 in [28].

Lemma 2.9 ([28]). Let E be a reflexive Banach space with dual space E*. Let
[+ E — (—o0,00] be a proper, lower semicontinuous, and strictly convez function.
Suppose that f is Gateauz differentiable on int(D) and is bounded on bounded subsets
of int(D). Let C C int(D) be a nonempty closed conver set. Let {xyp}nen be a
bounded sequence in C' and let 1 be a mean on (>°. Let g : C — (—o0,00] be defined
by 9(2) := pnDy¢(xp,2) for each z € C. Then there is a unique element T € C
such that pn(xn,y) = (T,y) for all y € E*, and g(Z) = min,cc g(z). Note that
z € co{x,, : n € N}.

Proposition 2.10. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let f : E — R be a proper, lower
semicontinuous, strictly convex, and Gateauz differentiable function. LetT : C — C
be a mapping, p be a Banach limit on £>°, and {x,} be a sequence in C with x,, — x
for some x € C with p,Df(xn, Tx) < pnDf(xn,x). Then x is a fived point of T.

Proof. By Lemma 2.1, we have
for each y € C. Since z,, — z, we have
pnD¢(Tn,y) = inDs(xpn,x) = Dy(x,y) > 0.
By Lemma 2.3, for each y € C with y # x, we know that D(z,y) > 0 and
Man(l'n, .%') < ,U,an(.’L'n, y)

By assumption, Tx = x. O
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Proposition 2.11. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let f : E — R be a proper, lower
semicontinuous, strictly convexr, and Gateauz differentiable function. Let T : C —
C be a mapping, {x,} be a sequence in C with x, — x for some x € C with
limsup Df(xy, Tx) < limsup D¢(zp, ). Then x is a fixed point of T

n—oo n—o0

Proof. Following the similar argument as the proof of Proposition 2.10, we get the
conclusion of Proposition 2.11. O

The following results are special cases of Propositions 2.10 and 2.11, respectively.

Corollary 2.12. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C' be nonempty closed convex subset of E. Let T : C' — C be a mapping. Let u
be a Banach limit on £>°. Let {z,} be a sequence in C' with x, — x for some x € C
with pn@(tn, Tx) < pind(n, x), where ¢(x,y) := |[x|[> = 2(z, Jy) +[|y|[>. Then x is
a fized point of T.

Proof. Let f : E — R be defined by f(x) := [|z||* for each € E. Then f is a
proper, lower semicontinuous, strictly convex, Gateaux differentiable function, and
Vf(x) =2J(x) for each x € E. So, we get Corollary 2.12 by Proposition 2.10. [

Corollary 2.13. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be nonempty closed convex subset of E. Let T : C — C be a mapping. Let

{zn} be a sequence in C with x,, — x for some x € C with limsup ¢(x,, Tx) <
n—oo

limsup ¢(z,,, ), where ¢(z,y) = ||z||? — 2(z, Jy) + ||y||*>. Then x is a fived point
n—oo

of T.

3. EXISTENCE THEOREM FOR OPTIMIZATION PROBLEM AND FIXED POINT
PROBLEM WITH THE BREGMAN DISTANCE

Theorem 3.1. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convez, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convexr on bounded sets. Let C be a
nonempty closed convex subset of E, let {xy,} be a bounded sequence in C, 1) : C —
(—00, 0] be a proper, bounded below, and lower semicontinuous function, and let
T :C — C be a mapping. Suppose that there exists m € NU {0} such that

(3.1) pnD (2, T"y) + (Ty) < ¢(y) for each y € C.

Then there exists T € C' such that
(a) kl;rgo ,uan(acn,Tky) = pnD¢(zn,Z) =0 for each y € C with ¢ (y) < oo,
(b) kll}rglo Dy (7, T*y) = 0 for each y € C with (y) < 0.

Further, if C is bounded or f is a Bregman function, then we know that
(c) kll}n(r)lo TRy = & for each y € C with (y) < oo;

(d) 9(7) = infyex ¥(y);
(e) T is the unique fized point of T.
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Proof. (a) and (b): Let g : E — [0,00) be defined by ¢(z) := pnD¢(xp, 2) for each
z € E. By Lemma 2.9, there is a unique element & € C' such that

(3.2) g9(z) = miélg(z), and pu, (zy,y) = (z,y) for each y € E*.
zZe

Take any y € C with ¢(y) < oo. Then it follows from (3.1) that
pn Dy (an, T T y) < O(T*y) — (T y)

for each k € NU{0}. Hence, {1)(T*y)}?2, is a decreasing sequence which is bounded
below. Then limy_,o ¢¥(T"y) exists. Put s = limg_,o 1(T*y). Since

N N
Z g(Tm+k?/) = Z find(Tn, Tchy)
k=0 k=0

N
< G(TFy) — p(THy)
k=0

= ¢(y) — (T y)
for any N € N, we have that

D 9T y) = pnd(n, T y) < 4p(y) — 5 < 0.

k=0 k=0
Thus,
(3.3) lim uan(xn,Tk+my) = lim g(T*T™y) = 0.

k—o00 k—o00
So, it follows from (3.2) and (3.3) that
g(Z) = ming(z) < lim g(T*T™y) = 0.
zeC k—o0
Therefore, g(z) = 0. Since y is any point of C' with ¥ (y) < oo, we know that
(3.4) k:hm pn Dy (Tns Tky) =g(z)=0
—00

for each y € C with ¥(y) < co. By (3.4), for each y € C with 9(y) < oo, we have
S i f(20) = f(T*y) = pin (= Ty, VF(T*y))

::U'nf(wn) - f(j) - Mn<xn -z, Vf('f»
By (3.2) and (3.5),

klgglo Mnf(-xn) - f(Tky> - <£ - Tkya Vf(Tky» = Mnf(wn) - f('f)
This implies that
(36)  lim Dy(z,Thy) = lim f(z) = f(T*y) — (7 = Ty, Vf(T*y)) = 0.

k—o0

(3.5)

Further, suppose that C is bounded or f is a Bregman function. Then {T*y} is
a bounded sequence for each y € C' with ¢(y) < co. (¢): By (3.6) and Lemma 2.6,
we know that klim T*y = Z for each y € C with 9(y) < cc.
—00
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(d): By assumption, we have that

(3.7) W(TE) < pnDy(n, T"E) + $(TE) < $(3)
Since 1) is lower semicontinuous and klim TFT™u = Z for each u € C with ¢(u) < oo,
— 00

we have that

(3.8) ¥(Z) < liminf p(T*T™u) = lim Y(T*T™u) = inf  (T*T™u) < (u)
k—oo k—oo meNU{0}

for each u € C with ¥ (u) < co. By (3.7) and (3.8),

Hence, 9 (z) = inf cx ¥(y).
(e): Next, we show that Z is the unique fixed point of 7. Since

0<g(T™"z) = pnDy(2n, T"T) < (z) = ¢(TT) <0,
we have that g(T™z) = g(z) = 0. By (3.2), Tz = z. Hence,

0 < ptn Dy (@n, TE) = pn Dy (wn, T™H7) < P(T2) = H(T?F) < $(2) — (T°7) < 0.
Thus, ¢g(z) = g(Tz) = 0. By (3.2) again, Tz = . We show that Z is a unique fixed
point of T'. Indeed, if v is a fixed point of T', then

0<g(v) =g(T™v) < P(v) —(Tv) = 0.
Hence, v = z. Therefore, Z is the unique fixed point of T'. O

Remark 3.2. The conclusion of Theorem 3.1 is still true if (3.1) is replaced by one
of the following conditions:

(a) if 5D¢(x, Tx) < Dy(z,y), then pnDy(zn, y) +P(y) < P(2);
(b) D¢(y, Tx) +(Tx) < 4p(x) for all z,y € C.

Further, we know that following result is a special case of Theorem 3.1. Note
that we do not assume that C' is bounded. Indeed, by (2.1) and following the same
argument as the proof of Theorem 3.1, we get the following result.

Corollary 3.3. Let E be a reflexive, smooth, and strictly convexr Banach space. Let
C' be a nonempty closed convex subset of E, and let {z,} be a bounded sequence in
C. Let ¢ : C — (—o0,00] be a proper, bounded below, and lower semicontinuous
function. Let T : C — C be a mapping. Suppose that there exists m € NU{0} such
that

(3.9) fin® (20, T"y) + (Ty) < (y) for each y € C,

where ¢(z,y) = ||z||? — 2(x, Jy) + ||y||*> and J is the duality mapping. Then there
exists & € C' such that (a) klim Lin® (T TFY) = pind (0, %) = 0 for each y € C with

—00
P(y) < oo; (b) klim oz, T*y) = 0 for each y € C with (y) < oo; (c) klim TFy =z
—00 —00

for each y € C with ¥(y) < oo; (d) ¥(T) = infyex ¥(y); and (e) T is the unique
fixed point of T.

Following similar argument as the proof of Theorem 3.1, we have the following
result. For completeness, we give the proof of the following result.
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Theorem 3.4. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convexr, and Gateauz differentiable function. Suppose that
f is bounded on bounded sets, and uniform convexr on bounded sets. Let C be a
nonempty closed convex subset of E, let {x,} be a bounded sequence in C, and let
T:C — C be a mapping. Suppose that r € [0,1) and

(3.10) pnD¢(xn, Ty) <1 pnDy(xn,y) for each y € C.
Then there exists x € C' such that
(a) kl;rglo ,uan(xn,Tky) = punD¢(xn,T) =0 for each y € C;
(b) leIEO D¢(z,TFy) = 0 for each y € C;

(¢) pnf(xn) = f(Z);
(d) z is the unique fized point of T

Further, if C' is bounded or f is a Bregman function, then klim TFy = T for each
— 00
yeC.

Proof. Let g : E — [0,00) be defined by g(z) := pnDf(xp,2) for each z € E. By
Lemma 2.9, there is a unique element € C' such that

(3.11) g9(z) = miélg(z), and i, (zy,y) = (z,y) for each y € E*.
LS

By (3.10) and (3.11), we know that Z is a fixed point of 7. Besides, it follows from
(3.10) that

(3.12) Jim finD ¢ (2, TFy) = 0 for each y € C.
—00

So, by (3.11) and (3.12), we know that

(3.13) pnD(xn, ) =0.

This implies that

(3‘14) ,U/nf(xn) - f(j:) - Nn<xn -z, Vf(:i’» =0.

By (3.11) and (3.14), we know that p,f(xz,) = f(Z). Besides, from the proof of
Theorem 3.1, we know that klim Dy (z,T*y) = 0 for each y € C.
— 00

If g is a fixed point of T', then it follows from (3.12) that j,D¢(zn,y) = 0. So,
by (3.11) and (3.13), we have Z = . Hence, Z is the unique fixed point of 7T

Further, suppose that C is bounded or f is a Bregman function. Then {T*y}
is a bounded sequence for each y € C. By (3.12) and Lemma 2.6, we know that
kli_)rlgoTky:a’;for each y € C. g

Remark 3.5. We follow the same method as in [13, Theorem 3.4], we can get a
result which is similar to Theorem 3.4. Indeed, if we let ¢ : C' — [0.00) as follows:
1
U(y) = ﬁMan(fUmy)-
Then we know from Lemmas 2.2 and 2.4 that ¢ : C'— [0.00) is a proper bounded
below and continuous function. Further, we know that the following (3.15) and
(3.16) are equivalent:

(3.15) pnD¢(xn,y) +(Ty) < Y(y) for each y € C.
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(3.16) pinD¢(xn, Ty) <1 punDy¢(zn,y) for each y € C.
Then, by Theorem 3.1, we can get a result which is similar to Theorem 3.4.
The following results are special cases of Theorem 3.4.

Corollary 3.6. Let E be a reflexive, smooth, and strictly convexr Banach space. Let
C' be a nonempty closed convex subset of E, {x,} be a bounded sequence in C, and
T:C — C be a mapping. Suppose that r € [0,1) and

tn®(Tn, Ty) <1+ pnd(an,y) for each y € C,
where ¢(z,y) = ||z||? — 2{x, Jy) + ||[y||*> and J is the duality mapping. Then there
exists T € C' such that T is the unique fized point of T', and klim TFy = & for each
—00

y e C.

Corollary 3.7. Let E be a refiexive Banach space, and let f : E — R be a lower
semicontinuous, strictly conver, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convexr on bounded sets. Let C be a

nonempty closed convex subset of E, let T : C' — C be a mapping with {T"zx} is a
bounded sequence in C for some x € C. Suppose that r € [0,1) and

pnDp(T"x, Ty) <1 ppn Dy (T2, y) for each y € C.
Then there exists x € C' such that
(a) klim pin D (T2, T*y) = pn Dy (T"x, &) = 0 for each y € C;
—00
(b) lim Df(j,Tky) =0 for each y € C;
k—o00

(©) pnf(T"z) = f(T);
(d) z is the unique fized point of T

Further, if C' is bounded or f is a Bregman function, then klim TFy = Z for each
— 00

y e C.

Corollary 3.8. Let E be a Hilbert space. Let C be a nonempty closed convex subset
of E, let {z,,} be a bounded sequence in C, and letT : C' — C be a mapping. Suppose
that r € [0,1) and

pin|[zn — Tyl| < 7 pn||zy — yl| for each y € C.
Then there exists T € C such that
(2) Tim punlln — T¥9]| = pinlln — 31| = 0 for cach y € C;
k—o0
b) lim T*y = Z for each y € C;
k—o0

(b)
(©) pnllnl| = {|2[;
(d)

d) T is the unique fized point of T

Remark 3.9. Although Corollary 3.8 is a special case of Theorem 3.4, it is also
different from [14, Theorem 3.1]. Indeed, we have the conclusion (c) of Corollary
3.8.
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4. FIXED POINT THEOREMS FOR CARISTI TYPE AND GRAPH CONTRACTION TYPE
MAPPINGS WITH THE BREGMAN DISTANCE

In this section, we first consider the Caristi’s type fixed point theorem with the
Bregman distance on Banach spaces.

Theorem 4.1. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convex, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform convexr on bounded sets. Let C be a
nonempty bounded subset of E. Let 1 : C — [0,00) be a function, and letT : C' — C
be a map. Assume that:

(4.1) D¢(z,Tz) < Y(x) —(Tx) for each x € C.
Then we have:

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists * € C such that Tx = x;

(A2) If C is a compact set and T is continuous, then there exists & € C' such that
Tz = x;

(A3) If C is a compact set and x — Dy(x,Tx) is lower semicontinuous, then
there exists * € C such that Tz = Z.

Proof. Take any x € C and let z be fixed. For each n € NU {0}, let z,, = T"x and
T%% = . Then, for each n € NU {0}, it follows from (4.1) that

D¢(xn, Try) < Y(xn) — (Tay).

That is,

(4.2) Df(xnvxn—&-l) < Y(n) — Y(Tpi1).

By (4.2), we know that {¢(x,)} is a nonincreasing sequence, lim 1 (z,) exists,

n—oo

and lim D¢(xn,2nt1) = 0. By Lemma 2.6, lim ||z, — zp41]] = 0. That is,
n—oo n—oo

lim ||z, — Tx,|| = 0.

n—o0

(A1) Since C is a bounded closed convex subset of a reflexive Banach space E,
we may assume that z, — Z for some z € C. Since T has demiclosed property,
then Tz = z.

(A2) If C is a compact set, then we may assume that x,, — Z for some z € C.
Since T is continuous and nh_>ngo ||zn, — Txy|| = 0, we have T'Z = 7.

(A3) If C is a compact set, then we may assume that x,, — Z for some z € C.
Since x — Dy¢(x,T'x) is lower semicontinuous, then

D¢(z,T7) < linrr_1>i£fo(mn,T:L”n) = nh_)rgo D¢(xp, Tx,) = 0.
Hence, it follows from Lemma 2.3 that Tz = Z. O

Remark 4.2. In Theorem 4.1, if f : E — R is Fréchet differentiable and T :
C — C is continuous, then it follows from Lemma 2.4 that x — D¢(x,Tx) is lower
semicontinuous for each x € C.

Remark 4.3. Theorem 4.1 is not a special case of the classical Caristi’s fixed point
theorem or generalized Caristi’s fixed point theorem with generalized distance.
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Following the same argument as in Remark 3.5, we get the following result by
Theorem 4.1.

Theorem 4.4. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convexr, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform conver on bounded sets. Let C be a
nonempty bounded subset of E. Let 1 : C — [0,00) be a function, and letT : C' — C
be a map. Assume that r € [0,1) and

Df(TSL’,TQQJ‘) <r-Dys(x,Tx) for each x € C.
Then we have:

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists T € C such that TT = T;

(A2) If C is a compact set and T' is continuous, then there exists T € C such that
Tz =T,

(A3) If C is a compact set and x — Dy(x,Tx) is lower semicontinuous, then
there exists © € C such that Tx = .

The following results are special cases of Theorem 4.6.

Corollary 4.5. Let E be a reflexive, smooth, and strictly convex Banach space.
Let C' be a nonempty closed convex subset of F/, and T : C' — C' be a mapping.
Suppose that r € [0,1) and

&(Tz, T?x) < r- ¢(x, Tx) for each y € C,

where ¢(z,y) := ||z||*> — 2(z, Jy) + ||y||* and J is the duality mapping. Then we
have:
(A1) If C is also a closed convex subset of E and T" has demiclosed property, then
there exists T € C such that Tz = T;
(A2) If C is a compact set and 7" is continuous, then there exists £ € C such that
Tx = x;
(A3) If C is a compact set and x — ¢(z, Tx) is lower semicontinuous, then there
exists £ € C such that Tz = z.

Corollary 4.6. Let E be a Hilbert space. Let C be a nonempty closed convex subset
of E, and let T : C — C be a mapping. Suppose that r € [0,1) and

[ T%x — Tz|| <7 - ||z — Tz|| for each x € C.

Then there exists T € C such that

(A1) If C is also a closed convex subset of E and T has demiclosed property, then
there exists T € C such that TT = T;

(A2) If C is a compact set and T' is continuous, then there exists T € C such that
Tz =T,

(A3) If C is a compact set and x — ||x —Tx|| is lower semicontinuous, then there
exists T € C such that TZ = .

Let (X, d) be a metric space. Then f: X — R is said to be a graph contraction
map [39] if it has closed graph and there exists r € [0,1) such that

d(fz, f2x) <r-d(z, fz) for each z € C.
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Note that our results in this section are different from graph contraction mapping
existing in the literatures.

For Theorem 4.1, if C' is not assumed to be a bounded set, then we modify
Theorem 4.1 to the following result.

Theorem 4.7. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convex, and Gateauz differentiable function. Suppose that
f s bounded on bounded sets, and uniform convexr on bounded sets. Let C' be a
nonempty subset of E. Let ) : C'— [0,00) be a coercive function, and let T : C' — C
be a continuous map or has demiclosed property. Assume that:

(4.3) Dy(x,Tx) < Y(x) — p(Tx) for each x € C.
Then there exists T € C such that TT = .

Proof. Take any x € C and let z be fixed. For each n € NU {0}, let z,, = T"x and
T%z = x. In the proof of Theorem 4.1, we know that {1)(z,)} is a nonincreasing
sequence, lim v(x,) exists, and lim Dyf(xy,zns1) = 0. Clearly, {(xy)}nen is a
n—oo n—o0

bounded sequence.

Let B := {z, : n € N}. Suppose that B is an unbounded set. Then for each
k € N, there exists an element y;, € B such that ||yx|| > k. Hence, we get a sequence
{yk }ken in C such that ||yx|| — oo. Since 9 is coercive, we know that ¥ (yx) — oo.
So, {#(yx)} is an unbounded set. Since {¢(yx)} € ¥(B) = {¥(xn) }nen, we know
that {1(x,)}nen is an unbounded set. This leads to contraction. Hence, {zp }nen
is a bounded set. Next, following similar argument as the proof of Theorem 4.1, we
get the conclusion of Theorem 4.7. O

Next, we consider a multivalued fixed point theorem with the Bregman distance
on Banach spaces.

Theorem 4.8. Let E be a reflexive Banach space, and let f : E — R be a lower
semicontinuous, strictly convex, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets, and uniform conver on bounded sets. Let C be
a nonempty compact subset of E. Let T : C — C be a multivalued map with
nonempty closed values. Let Dy(z,T(x)) := infycpy) Dy(w,y). Let 0 <a <1, and
let ¢ : [0,00) — [0,1) and ¢ : [0,00] — [a, 1] be two functions with the properties:

. p(r)
(4.4) hrristljp o) <1 for each t € [0, 00).
For each x € X, there exists y € T'(x) such that
(4.5) (Dy(x, T(x))) - Dy(z,y) < Dy(z,T(x)),
and
(4.6) Dy(y, T(y)) < ¢(Dy(z,T(x))) - Dy (x,y).

Assume that one of the following conditions holds:
(A1) T is closed (i.e., Gr(T) :={(x,y) € C x C:y € T(x)} is a closed set);
(A2) x = Dy(x,T(x)) is lower semicontinuous;
(A3) inf{D¢(x,2) + Ds(x,T(x)) : x € C} >0 for each z € C with z ¢ T(z).
Then there exists & € C' such that & € T(Z).
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Proof. Take any point xg € E and let xy be fixed. By (4.5) and (4.6), there exists
x1 € T(xp) such that

(4.7) Y((Dy (w0, T (x0)))) - Dy(wo,21) < Dy(z0,T(20)),
and
(4.8) Dy(z1,T(21)) < o(Dg(wo, T(20))) - Do, z1)-

Continuing this process, we can choose a sequence {z, }7° ; with x,+1 € T'(z,) such
that

(4.9) Y((Dy(2n, T(2n)))) - Df(@n, ¥ny1) < Dy(2n, T(2n)),
and
(4.10) Dy(@nt1, T(xn+1)) < p(Dy(2n, T(20))) - Df(Tn, Tpt1)

for each n € NU{0}. By (4.9) and (4.10), for each n € NU {0}, we have:
(Dg(n, T (xn))) - Dy(@n, T(2n))
U(Dy(xn, T(xn)))

Clearly, {D¢(xn, T (z5))} 0o is a nonincreasing sequence in [0, c0). Then there exists
6 > 0 such that

(4.12) 0 = lim Dy¢(zp, T(xy)) = inf{D¢(xn, T(zy)) : n € NU{0}}.

n—oo

(4.11) D(zns1, T(zn41)) <

Suppose that 6 > 0. By (4.4), (4.11), and (4.12),
D n:T n -D naT n
o P T@n) - Dy T(w)
Dy (an,T(wn)) 5+ (Dy(xn, T(xn)))
And this is a contradiction. Thus § = 0. Further, le Dy¢(xpn,zny1) = 0. By

< 4.

Lemma 2.6, lim ||x,41 — 2zp|| = 0. Since C' is a compact set, we may assume that
n—oo

lim z,, = Z for some Z € C.
n—oo

If (A1) holds, then T is closed. Since xp4+1 € T(xy,) for each n € NU {0} and
Tp —> T asn — oo, T € T(z).
If (A2) holds, then we have:

0 < Dy(2,T(z)) < liminf Dy (zn, T(2n)) = 0.

Then D¢(z,T(Z)) = 0. So, for each k € N, there exists y, € T'(Z) such that
D¢(Z,yx) < 1/k. By Lemma 2.6 again, y, — & as k — oo. Since T'(Z) is closed,
z € T(x).
If (A3) holds, suppose that z ¢ T'(Z), then we have:
0 <inf{Df(x,Z) + Ds(x,T(x)) : x € C}
<inf{Df(xn,Z) + Df(xn,T(xy)) :n €N, and n > ng}
<inf{Df(xn,Z) + Df(xn,Tnt1) :n € Nand n > np} = 0.
And this is a contradiction. Hence, = € T'(Z). O

Remark 4.9. Although Theorem 4.8 is similar to [26, Theorem 3.1], [34, Theorem
2.2], and [30, Theorem 2.1], we know that these results are different.
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Remark 4.10. (a) If T is an upper semicontinuous multivalued map with
nonempty closed values, then the condition (A1) of Theorem 4.8 holds [1].
(b) If f is Fréchet differentiable and T is a lower semicontinuous multivalued
map, then it follows from Lemma 2.4 and [29, Theorem 1] that the condition

(A2) of Theorem 4.8 holds.

Remark 4.11. Following the same argument as the proof of Theorem 4.8, we can
get similar results from Theorems 3.2 and 3.3 in [26].

In Theorem 4.8, if T' is a map, and ¥ (t) = 1 for each t € [0,00), then we have
the following result.

Theorem 4.12. Let E be a reflerive Banach space, and let f : E — R be a lower
semicontinuous, strictly convex, and Gateaux differentiable function. Suppose that
f s bounded on bounded sets, and uniform convexr on bounded sets. Let C be a
nonempty compact subset of E. Let T : C — C be a map. Let ¢ : [0,00) — [0,1)
and
(4.13) limsup ¢(r) < 1 for each t € [0, 00).
r—tt

For each x € X,
(4.14) Dy(T(x),T*(z)) < ¢(Dy(x,T(2))) - Dy(x, T (x)).
Assume that one of the following conditions holds:

(A1) T is closed (i.e., Gr(T) = {(x,y) € C x C:y="T(x)} is a closed set);

(A2) © — Dy(z,T(x)) is lower semicontinuous;

(A3) inf{Dy(x,2) + Dy(x,T(x)) : x € C} > 0 for each z € C with z # T(z).
Then there exists & € C' such that T(Z) = Z.

5. PROPERTIES OF BREGMAN PROJECTION

Lemma 5.1. [10, Proposition 2.1.5] Let E be a reflexive Banach space, let C be a
nonempty closed convex set of D(f). Let f : E — (—o0,00] be a strongly coercive
Bregman function on int(D). Then for each x € int(D), there exists a unique z € C
such that D¢(z,x) = mingec Dy(y,x). Here, let Pox = z, and Pc is called the
Bregman projection from E onto C. Further, we have
(i) 2= Pex if and only if z € C and (y — 2,V f(x) =V f(z)) <0 forally € C;
(i) Df(y, Pcx) + Dy(Pox,x) < D¢(y,x) for each y € C and each x € E.

Lemma 5.2 ([46]). Let E be a Banach space, and let f : E — (—o0,+00] be a
convez function. Then we get:
(i) If f is uniformly convex on bounded sets, then
. af(@)+ (1 —a)f(y) — flaz + (1 - a)y)
2l <. |lyll<r[le—yll=t.a€(0,1) a(l —a)

forallr >0 and t > 0;
(ii) If f is uniformly smooth on bounded sets, then
lim sup af(z+ (1 —a)ty) + (1 —a)f(z — aty) — f(x) 0
HO [jaf | <r,|yl|=1,a€(0,1) ta(l —a))
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forallr > 0.

Lemma 5.3. [10, 33, 46] Let E be a reflexive Banach space, and let f : E — R be
a continuous convexr and strongly coercive function. Then the following assertions
are equivalent.
(i) f is bounded on bounded sets, and uniformly smooth on bounded sets;
(ii) f* is Fréchet differentiable and V f* is uniformly norm-to-norm continuous
on bounded sets;
(iii) D(f*) = E*, f* is strongly coercive and uniformly conver on bounded sets.

By Lemmas 5.2 and 5.3, it is easy to get the following result.

Lemma 5.4. Let E be a reflexive Banach space, and let f : E — R be a contin-
uwous convexr and strongly coercive function. If f is bounded on bounded sets, and
uniformly smooth on bounded sets, then f* is strictly convex.

Lemma 5.5 ([43]). Let E be a reflexive Banach space, and let C' be a nonempty
closed convex subset of E. Let f : C — (00, 00| be a proper convex lower semicon-
tinuous function, and suppose that f(x,) — oo as ||x,|| — oo. Then there exists
z € C such that f(z) = inf{f(z): z € C}.

By Lemma 5.5, it is easy to get the following result.

Lemma 5.6. Let E be a reflexive Banach space, and let C' be a nonempty closed
conver subset of E. Let f : E — R be a proper, continuous, strictly convex, and
strongly coercive function. Then, for each x € E, there exists a unique T € C such
that f(x — ) = minyec f(z — y). Here, we use the notation Pé(x) =1Z.

For Pé, we have the following result by Lemma 2.1. For detail, we give the proof
of the following result. Note that it is very important and essential for Theorem
5.21. In fact, if we do not have this result, then we could not get Theorem 5.21.
Besides, it is a generalization of Problem 5.3.3 in [43, pagel54].

Lemma 5.7. Let C' be a nonempty closed convex subset of a reflexive Banach space
E. Let f: E — R be a proper, continuous, strictly convexr, Gateauz differentiable,

and strongly coercive function. Let (x,z) € E x C. Then z = Pé(x) if and only if
(y—2,Vf(x—2)) <0 foralyeC.

Proof. Suppose that (y — z, Vf(z — z)) <0 for all y € C. Then for each y € C,
Dy(x —y,x—z):=fla—y) - fle—2)—(z—y) - (x—2),Vf(z—2)) 2 0.
Hence,
flx—y)— flr—2)>(z—y,Vf(x —2)) >0 for each y € C.
So, f(x — z) = mingec f(r —y) and 2z = P(];(:C)

Conversely, suppose that z = Pé(a;) Take any y € C, and let y be fixed. Since
f is Gateaux differentiable,

<z—y,Vf(33_Z)>:%i_%f(x—z—i-t(z—ty))_f(x_z)
Zlimf(x_(l_t)z_ty)_f(CU—Z).
t}0 t
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Clearly, (1 —t)z+ty € C for t € [0,1]. This implies that (y — z, Vf(z — z)) <0 for
each y € C. Therefore, the proof is completed. O

The following result is another version of Lemma 5.1.

Lemma 5.8. Let E be a reflexive Banach space, f : E — R be a proper strongly
coercive Bregman function, and let Dy be the Bregman distance associated with f.
Suppose that f is bounded on bounded sets, uniformly convex on bounded sets, and
uniformly smooth on bounded sets. Let C* be a closed convexr subset of E*. Let f*
be the conjugate function of f. Define Dy« : E* x E* — R as

Dy (2%, y") o= f*(@") = f*(y") = (" =y, Vf(y"))
for each (z*,y*) € E* x E*. Then, for each x* € E*, there is a unique element
z* € C* such that Dy«(2*,2*) = ming«ccx D= (y*, ).

Proof. By definition, we know that

Dy (Vf(x),Vf(y)) = Dys(y,x)

for each (z,y) € E x E [33]. f* is proper, convex, and Gateaux differentiable.
By Lemma 2.2, f* is w*-continuous. By Lemma 5.3, f* is strongly coercive and
uniformly convex on bounded sets. By Lemma 5.4, f* is strictly convex.

Next, for each z* € E* and each r > 0, it follows from Lemma 2.8 that there
exists a unique x € E such that * = V f(x). Hence,

{y* € E*: Dp(a™,y") <1} =Vf({ye E: Dy(y,x) <r}).

By Lemma 2.8, {y € E: D¢(y,z) <r} is a bounded set. By Lemmas 2.4 and 2.5,
{y* € E*: Dy«(z*,y*) < r}is a bounded set.

So, all conditions of Lemma 5.1 are satisfied. Therefore, for each z* € E*, there is
a unique element z* € C* such that Dy (2%, 2*) = miny«cc+ Dy« (y*, 2*). Therefore,
the proof is completed. O

Let E be a normed linear space and let z,y € E. We say that x is orthogonal to
y if ||z|| < ||z + Ayl|| for each A € R. Here, we use z L y to denote x is orthogonal
to y [6, 17, 18, 19]. We know that for z,y € E, x L y if and only if there exists
g € Jz such that (y,g) = 0. (For example, one can refer to [43].)

Definition 5.9. Let E be a normed linear space and let x,y € F, and let f : E — R
be a function. We say that = is f-orthogonal to y if f(x) < f(x+\y) for each A € R.
Here, we use x Ly y to denote x is f-orthogonal to y.

Remark 5.10. In Definition 5.9, if f(z) = [|z||?, then z L y is reduced to = L y.

By the definition of Bregman distance and related results, it is easy to get the
following result. For detail, we give the proof of the following result.

Proposition 5.11. Let E be a Banach space and let x,y € E, let f : E — R be
a proper, lower semicontinuous, convez, and Gateaux differentiable on D(f). Then
the following conditions are equivalent:

(i) f(x) < f(z+ N\y) for each A > 0;
(i) (y,Vf(z)) = 0.
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Proof. (i) = (ii): Suppose that f(z) < f(x+ Ay) for each A > 0. Since f is Gateaux
differentiable on D(f),

0,V f(z)) = lim L& F W) = (@)

t—0 t 40 t a
(ii) = (i): Suppose that (y, Vf(x)) > 0. Then, for each A > 0, we get
Do+ \g,) = F(z+Ay) — f(@) -z + Ay — 2, V£ () 2 0.

This implies that f(z + \y) — f(z) > Xy, Vf(z)) > 0. O

Further, we get the following proposition by following the similar argument as in
the proof of Proposition 5.11.

Proposition 5.12. Let E be a Banach space, and let f : E — R be a proper, lower
semicontinuous, convex, and Gateauz differentiable on D(f). Then x Ly y if and

only if (y, Vf(x)) =0.

Before we consider a sunny generalized nonexpansive retraction mapping, we
show the following lemmas. First, it is easy to get this result and it is a generalized
version of [16, Lemma 2.2]. Further, it is an important tool for Lemma 5.14 and
related results.

Lemma 5.13. Let E be a reflexive Banach space, and let f : E — R be a strongly
coercive Bregman function. Let M be a closed linear subspace of E, and let (z,z) €
E x M. Then z = Py if and only if (y,Vf(z) —Vf(z)) =0 for each y € M.

Next, we get the following result and it is a generalization of [16, Lemma 3.1].

Lemma 5.14. Let E be a reflexive Banach space. Let f : E — R be a proper,
strongly coercive, and Bregman function. Let Y be a closed linear subspace of E,
and let Py be the Bregman projection from E onto Y. Then the following hold.

(i) (Pyx,Vf(x)) = (Pyz,Vf(Pyx)) for each x € E.
(i) f*(Vf(Pyx)) < f*(Vf(x)) for each x € E.

(iii) If X is also a closed linear subspace of E with X CY, then Px Py = Px.
(iv) Pyax = aPyx for each x € E and each o > 0.

Proof. (i) Since Py is the Bregman projection from E onto Y, it follows Lemma 5.1
that (y — Pyz, Vf(x) — Vf(Pyzx)) <O0. for each z € F and eachy € Y. Let y; :=0
and yy := 2Pyx. Clearly, y1,y2 € Y. Then, for each z € E,

(Pyz,Vf(x) = Vf(Pyz)) >0 and (Pyz,Vf(z)— Vf(Pyx)) <O0.
Hence, (Pyx,V f(x)) = (Pyxz,Vf(Pyx)) for each x € E.

(ii) Since Py is the Bregman projection from E onto Y, for each z € E and each
y € Y, it follows from Lemmas 2.1 ,5.13 and 5.1 and the properties of the conjugate
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function that

0 < D¢(y,x) — Dy(y, Py )
= —(y—=z,Vf(x) - Vf(Pra
= —(y—=z,Vf(z) - Vf(Pra

— Dy(z, Pyx)
— f(@) + f(Pya) + (& — Pya, Vf(Pyx))
= (&, Vf(z) = Vf(Pyz)) — f(z) + f(Prz) + (z — Pra, Vf(Pyz))
= (2, Vf(x)) = (&, Vf(Pya)) — f(z) + f(Pyx) + (2, V[ (Pyx)) — (Pra, Vf(Pyz))
= <$ Vi) = f(z) + [(Pyz) = (Pya,Vf(Pyz))
(V@) = 7 (V(Pyzx)).
Therefore, f*(Vf(Pyz)) < f*(Vf(x)) for each z € E. O

)
)

By Lemmas 5.8, 5.13, and 5.14, we give another versions of Lemmas 5.13 and
5.14, respectively.

Lemma 5.15. Let E be a reflexive Banach space. Let f : E — R be a proper,
strongly coercive, and Bregman function. Suppose that f is bounded on bounded
sets, uniformly convex on bounded sets, and uniformly smooth on bounded sets. Let
M* be a closed linear subspace of E*, and let (z*,2*) € E* x M*. Then z* = Py-x*
if and only if (y*,Vf*(x*) — Vf*(z*)) =0 for each y* € M*.

Lemma 5.16. Let E be a reflexive Banach space. Let f : E — R be a proper,
strongly coercive, and Bregman function. Suppose that f is bounded on bounded
sets, uniformly convex on bounded sets, and uniformly smooth on bounded sets. Let
Y* be a closed linear subspace of E*, and let Py« be the Bregman projection from
E* onto Y*. Then the following hold.

(i) (Py=a*,Vf*(x*)) = (Py=x*,V f*(Py«z*)) for each x* € E*;

(i) F(VF*(Py-a*)) < F(Vf*(2)) for each * € E*;

(iii) If X* is a closed linear subspace of E* with X* C Y™, then Px«Py» = Px=»;

(iv) Py~ax = aPy-x for each x € E* and o > 0.

Following the same argument as the proof of Theorem 3.3 and Corollary 3.1
in [16] and using the above lemmas, we get the following result. In fact, it is a
generalization of [16, Theorem 3.3].

Theorem 5.17. Let E be a smooth, strictly convex, and reflexive Banach space, and
let f: E — R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly convex on bounded sets, and uniformly smooth on bounded sets.
Let Y* be a nonempty closed linear subspace of E*. Then the mapping Ey+ =
(Vf)~LPy+V f has the following properties:

(i) For each x € E, Vf(x) € Y* if and only if Ey«(x) = x;

(ii) f(Ey~z) < f(x) for each z € E;

(iii) For each x € E, the following are equivalent:

(a) F(Ey-(@)) = f(2); (b) By-(z) = z; and (c) Vf(z) € V",
(iv) Ey+ (371 + .TQ) = Fy~« (Ey* (.561) + By« (:L’Q)) for all x1,z5 € E.
(v) Forn >2, and x1,22,...,2, € E. Then

Ey«(x1+x2+ - +ap) = By« (Ey=(21) + - - + Ey=(z,)).
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(vi) Ey«(az) = aFEy+(x) for each x € E* and each o > 0.

Following the same argument as the proof of [16, Theorem 3.4] and using the
above lemmas, we get the following result. In fact, it is a generalization of [16,
Theorem 3.4].

Theorem 5.18. Let E be a smooth, strictly convex, and reflexive Banach space,
and let f : E — R be a strongly coercive Bregman function which is bounded on
bounded sets, and uniformly conver and uniformly smooth on bounded sets. Let
YY" and Yy be a nonempty closed linear subspace of E* with Y{* C Yy. Then we
have: (i) EyyEyy = Eys; (i) EysEy; = Eyy; and (iii) If Vf(0) = 0, then
Ey1(0) C Ey:(0).

Lemma 5.19. Let E be a normed linear space, and let f : E — R be a function.
Let T : E — E be a map such that T(Tx + f(x —Tx)) = Tz for each x € E and
each § € R. Then f(Tx) < f(x) for each x € E if and only if Tx Ly (x —Tx) for
each x € E.

Proof. Suppose that f(Tz) < f(x) for each x € E. For each z € E and each § € R,
since T(Tx 4+ S(xz — Tx)) = Tz, we know that

f(Tx) = f(T(Tz + p(x — Tx))) < f(Tz + Bz — Tx)).

Then Tz Ly (v — Tx) for each x € E.

Conversely, suppose that Tz L (x — Tx) for each x € E. Then f(Tz) <
f(Tx+ p(x—Tzx)) for each x € E and each § € R. Let § = 1. Then f(Tz) < f(z)
for each z € E. O

By Lemmas 2.3, 5.15, 5.19, and Theorem 5.17, and following the same argument
as the proof of [16, Theorem 4.1}, we get the following result.

Theorem 5.20. Let E be a reflexive, strictly convex, and smooth Banach space. Let
f:E —= R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly conver and uniformly smooth on bounded sets. Let Y* be a
nonempty closed linear subspace of E*. Then Ey=(x) Ly (x — Ey=(x)) for each
rzeFE.

Let Y be a nonempty subset of a Banach space E, and let Y* be a nonempty
subset of the dual space E*. Then we define the following two sets:

(5.1) Yi={zxeFE:g(x)=0forall geY"}
and
(5.2) Yi:={gecE* :g(x)=0forallz €Y}

For these two sets, we give the following result.

Following the same argument as the proof of [16, Theorem 4.2], and using Lemmas
5.15 and 5.7, we get the following result. In fact, Lemma 5.7 is essential and
important for Theorem 5.21.

Theorem 5.21. Let E be a reflexive, strictly convex, and smooth Banach space. Let
f:E — R be a strongly coercive Bregman function which is bounded on bounded
sets, and uniformly conver and uniformly smooth on bounded sets. Let Y* be a
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nonempty closed linear subspace of E*. Let I be the identity map on E. Then we
have:

(1]
2]

3]

(4]

[5]

(10]

(1]

(12]
(13]
(14]

[15]

[16]

[17]
18]

(19]
20]
(21]

22]

(i) I — Ey» = P}fj;
(ii) If Y is a closed linear subspace of E, then (I — P{i) =FEy..
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