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R, R+ and C, respectively. The hyperbolic metric ρ : B × B → R+ [4, page 98] is
defined by

(2.1) ρ(x, y) := argtanh
(
1− σ(x, y)

) 1
2 ,

where

(2.2) σ(x, y) :=
(1− |x|2)(1− |y|2)

|1− ⟨x, y⟩|2
, x, y ∈ B.

This metric is the infinite-dimensional analogue of the Poincaré metric on the open
unit disk ∆ := {z ∈ C : |z| < 1}. We let B(a, r) := {x ∈ B : ρ(a, x) < r} stand
for the ρ-ball of center a and radius r. A subset of B is called ρ-bounded if it is
contained in a ρ-ball. We say that a mapping e : R → B is a metric embedding of
the real line R into B if ρ(e(s), e(t)) = |s − t| for all real s and t. The image of
R under a metric embedding is called a metric line. The image of a real interval
[a, b] = {t ∈ R : a ≤ t ≤ b} under such a mapping is called a metric segment.
It is known [4, page 102] that for any two distinct points x and y in B, there is
a unique metric line (also called a geodesic) which passes through x and y. This
metric line determines a unique metric segment joining x and y. For each 0 ≤ t ≤ 1,
there is a unique point z on this metric segment such that ρ(x, z) = tρ(x, y) and
ρ(z, y) = (1− t)ρ(x, y). This point will be denoted by (1− t)x⊕ ty.

The following inequality [4, page 104] shows that the metric space (B, ρ) is hy-
perbolic in the sense of [14].

Lemma 2.1. For any four points a, b, x and y in B, and any number t ∈ [0, 1],

(2.3) ρ((1− t)a⊕ tx, (1− t)b⊕ ty) ≤ (1− t)ρ(a, b) + tρ(x, y).

Next, we mention another useful property of the hyperbolic metric.

Lemma 2.2. For any three points u, v, w ∈ B and any number 0 ≤ t ≤ 1,

(2.4) ρ2(tv ⊕ (1− t)w, u) ≤ tρ2(v, u) + (1− t)ρ2(w, u)− t(1− t)ρ2(v, w).

This is Lemma 2.3 on page 315 of [17]. It shows that the hyperbolic metric ρ is
hyperbolically uniformly convex [14, page 541]. Since it also shows, in particular,
that the CN inequality (courbure négative) [3, page 63] holds in the Hilbert ball
(B, ρ), we see that (B, ρ) is a CAT(0) space [2, page 163].

Recall that the Möbius transformations of B [4, page 98] are biholomorphic map-
pings Ma : B → B of the form

(2.5) Ma(z) =
(√

(1− |a|2)Qa + Pa

)
ma(z), z ∈ B,

where a ∈ B, Pa is the orthogonal projection ofH onto the one-dimensional subspace
spanned by a, Qa = I − Pa, and ma(z) := (z + a)/(1 + ⟨z, a⟩). Every Möbius
transformation is an automorphism of B and hence a ρ-isometry. As a matter of
fact, any automorphism of B is of the form U ◦Ma for some unitary operator U on
H and a point a ∈ B [4, Theorem 14.1].

To each x ∈ B, we associate a Hilbert space Hx the elements of which are denoted
by {[x, y] : y ∈ B} [16, page 638]. Both the vector space structure and the inner
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product of Hx are determined by the (surjective) mapping i : Hx → H defined by

(2.6) i([x, y]) :=
(
ρ(x, y)/|M−x(y)|

)
M−x(y)

when y ̸= x and by i([x, y]) := 0 when y = x. In particular, the inner product in
Hx is given by

(2.7) ⟨[x, y], [x, z]⟩ = ρ(x, y) · ρ(x, z)
|M−x(y)||M−x(z)|

⟨M−x(y),M−x(z)⟩,

where y ̸= x and z ̸= x, and the norm of the element [x, y] ∈ Hx is ρ(x, y), that is,
|[x, y]|Hx = ρ(x, y). The spaces Hx and Hy, where x, y ∈ B, are isometric Hilbert
spaces via, for example, the isometry Ux,y : Hx → Hy defined by

(2.8) Ux,y[x, z] := [y,My(M−x(z))], z ∈ B.

The vector [x, y] ∈ Hx may be identified with the vector v in the tangent space at
x for which expx(v) = y, where expx is the exponential map at x.

The following “law of cosines” is Lemma 2.2 on page 638 of [16].

Lemma 2.3. For any three points u, v, w ∈ B,

(2.9) ρ2(v, w) ≥ ρ2(u, v) + ρ2(u,w)− 2 Re⟨[u, v], [u,w]⟩.

Combining Lemmata 2.2 and 2.3, we obtain another useful inequality.

Lemma 2.4. For any three points u, v, w ∈ B and any number 0 ≤ t ≤ 1,

(2.10) ρ2(tv⊕(1− t)w, u) ≤ t2ρ2(v, u)+(1− t)2ρ2(w, u)+2t(1− t)Re⟨[u, v], [u,w]⟩.

We may also rewrite the “law of cosines” as follows.

Lemma 2.5.

(2.11) |[u, v]− [u,w]|Hu ≤ ρ(v, w).

Now let K be a nonempty, ρ-closed and ρ-convex subset of B. We denote by PK

the nearest point projection of B onto K defined by

PK(p) = {p0 ∈ K : ρ(p, p0) ≤ ρ(p, q) ∀q ∈ K}, p ∈ B.

Lemma 2.6. For any point p ∈ B, PK(p) is a singleton and the following inequality
holds for all q ∈ K:

Re⟨[PK(p), p], [PK(p), q]⟩ ≤ 0.

Proof. A proof of the existence and uniqueness of the point PK(p) can be found in
[4, page 108].

Next, recall [16, page 642] that a self-mapping T of B is firmly nonexpansive (of
the first kind) [4, page 124] if and only if

Re{⟨[Tx, Ty], [Tx, x]⟩+ ⟨[Ty, Tx], [Ty, y]⟩} ≤ 0

for all x, y ∈ B. Since PK : B → B is known to be firmly nonexpansive (of the
first kind) [4, page 124], we may take x = p ∈ B and y = q ∈ K, and obtain that
PKq = q and Re⟨[PK(p), p], [PK(p), q]⟩ ≤ 0, as claimed. �
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Let {xn}∞n=0 be a ρ-bounded sequence in B, and let K be a nonempty, ρ-closed
and ρ-convex subset of B. Consider the functional g : B → [0,∞) defined by

g(x) = lim sup
n→∞

ρ(xn, x), x ∈ B.

A point z in K is said to be an asymptotic center of the sequence {xn}∞n=0 with
respect to K if g(z) = min{g(x) : x ∈ K}. The minimum of g over K is called the
asymptotic radius of {xn}∞n=0 with respect to K.

Proposition 2.7 ([4, page 116]). Every ρ-bounded sequence in (B, ρ) has a unique
asymptotic center with respect to any nonempty, ρ-closed and ρ-convex subset of B.

The asymptotic center of {xn}∞n=0 with respect to K is denoted by A(K, {xn})
and its asymptotic radius by r(K, {xn}). If K = B we shall write A({xn}) and
r({xn}), respectively.

Lemma 2.8 ([4, page 116]). If {xn} ⊂ K, then A({xn}) = A(K, {xn}).

Proposition 2.9. [4, page 117] If a ρ-bounded sequence {xn}∞n=0 converges weakly
to x, then x = A({xn}).

We say that a mapping T : K → K is ρ-nonexpansive (that is, 1-Lipschitz) if for
any two points x, y ∈ K, the following inequality holds:

ρ(Tx, Ty) ≤ ρ(x, y).

It is known that every holomorphic self-mapping of B is ρ-nonexpansive [4, page
118].

Let T : K → K be a ρ-nonexpansive mapping. We shall call a sequence {yn}∞n=0 ⊂
K an approximating sequence for T if limn→∞ ρ(yn, T yn) = 0.

Theorem 2.10 ([4, page 120]). Let T : K → K be a ρ-nonexpansive mapping. The
following statements are equivalent:

(a) T has a fixed point;
(b) There exists a point x in K such that the sequence of iterates {Tnx}∞n=0 is

ρ-bounded;
(c) The sequence of iterates {Tnx}∞n=0 is ρ-bounded for each x in K;
(d) There exists a ρ-bounded approximating sequence for T .

The asymptotic centers of the sequences in parts (b) and (d) are fixed points of T .

We also need the following result concerning the structure of the fixed point set
of a ρ-nonexpansive mapping T .

Theorem 2.11 ([4, page 120]). The fixed point set of a ρ-nonexpansive mapping
T : K → K is ρ-closed and ρ-convex.

Finally, we recall a lemma [18] (see also [13, Theorem 1]) regarding a certain
recursive inequality.

Lemma 2.12. Let {βn}∞n=0 and {bn}∞n=0 be two real sequences satisfying the fol-
lowing conditions:

(i) {βn}∞n=0 ⊂ [0, 1] and
∑∞

n=0 βn = ∞;
(ii) lim supn→∞ bn ≤ 0.
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Let {an}∞n=0 be a sequence of non-negative real numbers such that

an+1 ≤ (1− βn)an + βnbn, n ≥ 0.

Then limn→∞ an = 0.

3. An iterative algorithm

In this section we study an iterative procedure for approximating fixed points
of ρ-nonexpansive self-mappings of B. In particular, we state and prove our main
result (Theorem 3.1 below). It is a strong convergence theorem for this algorithm.

Let a sequence {αn}∞n=0 ⊂ (0, 1) satisfy the following three conditions:

(3.1) lim
n→∞

αn = 0;

(3.2)

∞∑
n=0

αn = ∞;

(3.3) either

∞∑
n=0

|αn+1 − αn| < ∞ or lim
n→∞

αn−1/αn = 1.

Given a ρ-nonexpansive mapping T of B, a holomorphic mapping f : B → αB,
where 0 ≤ α < 1, and a point x0 ∈ B, we consider the sequence {xn}∞n=0 defined by
the recursion

(3.4) xn+1 = αnf(xn)⊕ (1− αn)Txn, n = 0, 1, 2, . . . .

Let F = F (T ) = {x ∈ B : x = Tx} denote the fixed point set of a self-mapping
T of B.

Theorem 3.1. Let (B, ρ) be the Hilbert ball equipped with the hyperbolic metric
ρ : B × B → R+ and let T : B → B be a ρ-nonexpansive mapping with a fixed
point. Let f : B → αB be holomorphic, where 0 ≤ α < 1, and let the sequence
{αn}∞n=0 ⊂ (0, 1) satisfy (3.1), (3.2) and (3.3). Then, given an arbitrary point
x0 ∈ B, the sequence {xn}∞n=0 generated by algorithm (3.4) converges in norm to
v ∈ B, the unique solution of the equation z = PF (f(z)), where PF : B → F is the
nearest point projection of B onto the nonempty fixed point set F = F (T ) of T .

Proof. The equation z = PF (f(z)) has indeed a unique solution v ∈ B because the
holomorphic mapping f : B → αB is a strict ρ-contraction [7, Lemma 2.4], the
nearest point mapping PF : B → F is ρ-nonexpansive [4, Theorem 19.2] and the
metric space (B, ρ) is complete.

We divide the proof into four steps.

Step 1. The sequences {xn}∞n=0 and {Txn}∞n=0 are ρ-bounded.
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Given a point y ∈ B and a subset S of B, let h(y, S) := sup{ρ(y, s) : s ∈ S}.
Now fix a point x ∈ F and set M := max{ρ(x0, x), h(x, f(B))}. Assuming that
ρ(xn, x) ≤ M , we have, by Lemma 2.1,

ρ(xn+1, x) = ρ(αnf(xn)⊕ (1− αn)Txn, x)

≤ αnρ(f(xn), x) + (1− αn)ρ(Txn, x)

≤ αnρ(f(xn), x) + (1− αn)ρ(xn, x)

≤ αnM + (1− αn)M = M.

Hence ρ(Txn, x) ≤ ρ(xn, x) ≤ M for all n ∈ N, as claimed.

Step 2. limn→∞ ρ(xn+1, xn) = 0.

For each n ∈ N, consider the metric segment [f(xn−1), Txn−1] as the metric
embedding of the real interval [s, t] under e : R → B. Namely, e(s) = f(xn−1) and
e(t) = Txn−1.

By Step 1, we know that there is a number C ∈ R+ such that ρ(xn, xn−1) ≤ C
and h(Txn, f(B)) ≤ C for all n ∈ N. We also know [7, Lemma 2.4] that the
holomorphic mapping f : B → αB is a strict ρ-contraction with a ρ-Lipschitz
constant α. Therefore we have

ρ(xn+1, xn) = ρ(αnf(xn)⊕ (1− αn)Txn, αn−1f(xn−1)⊕ (1− αn−1)Txn−1)

≤ ρ(αnf(xn)⊕ (1− αn)Txn, αnf(xn−1)⊕ (1− αn)Txn−1)

+ ρ(αnf(xn−1)⊕ (1− αn)Txn−1, αn−1f(xn−1)⊕ (1− αn−1)Txn−1)

≤ αnρ(f(xn), f(xn−1)) + (1− αn)ρ(Txn, Txn−1)

+ ρ(e(αns+ (1− αn)t), e(αn−1s+ (1− αn−1)t))

≤ αnαρ(xn, xn−1) + (1− αn)ρ(xn, xn−1) + |αn − αn−1||s− t|
= (1− (1− α)αn)ρ(xn, xn−1) + |αn − αn−1|ρ(f(xn−1), Txn−1)

≤ (1− (1− α)αn)ρ(xn, xn−1) + C|αn − αn−1|.

Thus, if limn→∞ αn−1/αn = 1, then we can at this point apply Lemma 2.12 to
conclude that limn→∞ ρ(xn+1, xn) = 0, as claimed.

When
∑∞

n=0 |αn+1 − αn| < ∞, we first fix 1 ≤ k ≤ n. We then have

ρ(xn+1, xn) ≤ C

n∏
i=k

(1− (1− α)αi) + C

n∑
i=k

|αi − αi−1|.

Since
∏∞

i=k(1− (1− α)αi) = 0 for each k ≥ 1, letting n → ∞, we get

lim sup
n→∞

ρ(xn+1, xn) ≤ C

∞∑
i=k

|αi − αi−1|.

Letting k → ∞, we now see that in this case too we have limn→∞ ρ(xn+1, xn) = 0,
as claimed.

Step 3. lim supn→∞Re⟨[v, f(v)], [v, Txn]⟩ ≤ 0.
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By Step 1, the real sequence {Re⟨[v, f(v)], [v, Txn]⟩}∞n=0 is bounded; hence its
upper limit is finite. Clearly, there is a subsequence {zk}∞k=1 of {xn}∞n=0, zk :=
xnk

, k ≥ 1, so that, defining

ck := Re⟨[v, f(v)], [v, Tzk]⟩,

we have

lim sup
n→∞

Re⟨[v, f(v)], [v, Txn]⟩ = lim
k→∞

ck.

Since {xn}∞n=0 is ρ-bounded by Step 1, we may assume, without any loss of gen-
erality, that zk ⇀ x̄ as k → ∞ for some x̄ ∈ B, where ⇀ denotes weak convergence.
Then, by Proposition 2.9, x̄ is the asymptotic center of {zk}∞k=1. Next we show that
{zk}∞k=1 is an approximating sequence for T . Indeed,

ρ(zk, T zk) = ρ(xnk
, Txnk

) ≤ ρ(xnk
, xnk+1) + ρ(xnk+1, Txnk

).

By Step 2, limk→∞ ρ(xnk+1, xnk
) = 0. Also, using the definition of our algorithm

and the properties of metric segments, we see that

ρ(xnk+1, Txnk
) = ρ(αnk

f(xnk
)⊕ (1− αnk

)Txnk
, Txnk

)

= αnk
ρ(f(xnk

), Txnk
),

and since, by Step 1, the real sequence {ρ(f(xnk
), Txnk

)}∞k=1 is bounded, it follows
that

(3.5) lim
k→∞

ρ(zk, T zk) = 0.

Thus {zk}∞k=1 is indeed an approximating sequence for T and applying Theorem
2.10, we conclude that its asymptotic center x̄ is a fixed point of T . Namely, x̄ ∈ F .
From (3.5) it also follows that zk−Tzk → 0 as k → ∞ [4, page 91]. Hence Tzk ⇀ x̄
as k → ∞.

Using the definition of the inner product in the tangent Hilbert space, we see
that without loss of generality we may write

ck = Re⟨i([v, f(v)]), i([v, Tzk])⟩

= Re⟨i([v, f(v)]), ρ(v, Tzk)

|M−v(Tzk)|
M−v(Tzk)⟩.

If x̄ = v, then using the weak continuity of the Möbius transformation M−v [4, page
116], we have

Re⟨i([v, f(v)]),M−v(Tzk)⟩ → 0

as k → ∞. By Step 1, the real sequence {ρ(v, Tzk)}∞k=1 is bounded and so, if the
real sequence {1/(|M−v(Tzk)|)}∞k=1 is also bounded, then limk→∞ ck = 0.

Assume there exists a subsequence {M−v(Tzkl)}∞l=1 that tends to the origin as
l → ∞. Applying Mv, we get Tzkl → Mv(0) = v as l → ∞. Hence in this
case ρ(v, Tzkl) → 0 as l → ∞, the subsequence {(M−v(Tzkl))/(|M−v(Tzkl)|)}∞l=1 is
obviously bounded, and once again we have liml→∞ ckl = 0.

Assume now that x̄ ̸= v. In this case we see that

ck = ak · bk,
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where

ak :=
|M−v(x̄)|
ρ(v, x̄)

· ρ(v, Tzk)

|M−v(Tzk)|
and

bk := Re⟨i([v, f(v)]), ρ(v, x̄)

|M−v(x̄)|
M−v(Tzk)⟩.

Combining the weak continuity of the Möbius transformation M−v with Lemma
2.6, we see that

lim
k→∞

bk = Re⟨[v, f(v)], [v, x̄]⟩ ≤ 0.

As for the sequence {ak}∞k=1, it is clearly non-negative.
We claim that it is also bounded. To see this, we need to make sure that the

sequence {M−v(Tzk)}∞k=1 is bounded away from the origin. As before, assume to the
contrary that there exists a subsequence {M−v(Tzkl)}∞l=1 which tends to the origin
as l → ∞. Applying Mv, we get Tzkl → Mv(0) = v as l → ∞ and so x̄ = v. This,
however, contradicts our assumption that x̄ ̸= v, and so we see that the sequence
{ak}∞k=1 is indeed bounded. We conclude that limk→∞ ck ≤ 0, as claimed.

Step 4. limn→∞ ρ(v, xn) = 0.

Using Lemmata 2.2 – 2.5, we see that

ρ2(xn+1, v) = ρ2(αnf(xn)⊕ (1− αn)Txn, v)

≤ αnρ
2(f(xn), v) + (1− αn)ρ

2(Txn, v)− αn(1− αn)ρ
2(f(xn), Txn)

≤ α2
nρ

2(f(xn), v) + (1− αn)
2ρ2(Txn, v)

+ 2αn(1− αn)Re⟨[v, f(xn)], [v, Txn]⟩
≤ (1− αn)

2ρ2(xn, v) + α2
nρ

2(f(xn), v)

+ 2αn(1− αn)Re⟨[v, f(xn], [v, Txn]⟩
= (1− αn)

2ρ2(xn, v) + α2
nρ

2(f(xn), v)

+ 2αn(1− αn)Re⟨[v, f(xn]− [v, f(v)], [v, Txn]⟩
+ 2αn(1− αn)Re⟨[v, f(v)], [v, Txn]⟩
≤ (1− αn)

2ρ2(xn, v) + α2
nρ

2(f(xn), v)

+ 2αn(1− αn)ρ(f(xn), f(v))ρ(v, Txn)

+ 2αn(1− αn)Re⟨[v, f(v)], [v, Txn]⟩
≤ [(1− αn)

2 + 2αn(1− αn)α]ρ
2(xn, v)

+ α2
nρ

2(f(xn), v) + 2αn(1− αn)Re⟨[v, f(v)], [v, Txn]⟩.

Setting βn := αn(2− αn − 2α+ 2αnα), we see that

ρ2(xn+1, v) ≤ (1− βn)ρ
2(xn, v) + βnbn,

where, by Step 3, lim supn→∞ bn ≤ 0. Therefore we can at this point invoke Lemma
2.12 and conclude that limn→∞ ρ(v, xn) = 0, as claimed.
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Hence the sequence {xn}∞n=0 converges in norm to v [4, page 91], as asserted.
This completes the proof of Theorem 3.1. �

This theorem improves upon [7, Theorem 4.1] and provides positive answers to
two questions raised on page 366 of [7]: the mapping f : B → αB is no longer
assumed to be compact and the assumptions imposed on the parameter sequence
{αn}∞n=0 are weaker than those in [7]. When f is a constant we obtain [15, Theorem
3.1]. Related results, established by employing other methods, can be found in [12].

4. Approximating curves

Given a ρ-nonexpansive self-mapping T of B, a holomorphic mapping f : B → αB,
where 0 ≤ α < 1, and a number 0 ≤ t < 1, we define the point zt ∈ B as the unique
fixed point of the strict ρ-contraction S : B → B defined by

(4.1) Sx := tf(x)⊕ (1− t)Tx, x ∈ B.
Note that S is indeed a strict ρ-contraction by Lemmata 2.4 and 2.5 in [7]. It has

a (unique) fixed point because the metric space (B, ρ) is complete. In other words,

(4.2) zt = tf(zt)⊕ (1− t)Tzt, 0 ≤ t < 1.

In this section we prove the following strong convergence theorem regarding the
behavior of the approximating curve {zt : 0 ≤ t < 1}.
Theorem 4.1. Let (B, ρ) be the Hilbert ball equipped with the hyperbolic metric
ρ : B × B → R+ and let T : B → B be ρ-nonexpansive. Let f : B → αB be
holomorphic, where 0 ≤ α < 1, and let zt, 0 ≤ t < 1, be defined by (4.2). If T has
a fixed point, then the strong limt→0+ zt = v, the unique solution of the equation
z = PF (f(z)), where PF : B → F is the nearest point projection of B onto the
nonempty fixed point set F = F (T ) of T .

Proof. Using Lemmata 2.4 and 2.5, we obtain

ρ2(zt, v) = ρ2(tf(zt)⊕ (1− t)Tzt, v) ≤ t2ρ2(f(zt), v) + (1− t)2ρ2(Tzt, v)

+ 2t(1− t)Re⟨[v, f(zt)], [v, Tzt]⟩
≤ (1− t)2ρ2(zt, v) + 2t(1− t)Re⟨[v, f(v)], [v, Tzt]⟩
+ 2t(1− t)Re⟨[v, f(zt)]− [v, f(v)], [v, Tzt]⟩+ t2ρ2(f(zt), v)

≤ (1− t)2ρ2(zt, v) + 2t(1− t)ρ(f(zt), f(v))ρ(v, Tzt)

+ 2t(1− t)Re⟨[v, f(v)], [v, Tzt]⟩+ t2ρ2(f(zt), v).

≤ (1− t)2ρ2(zt, v) + 2t(1− t)αρ2(zt, v)

+ 2t(1− t)Re⟨[v, f(v)], [v, Tzt]⟩+ t2ρ2(f(zt), v).

Hence

(4.3) (2− t− 2α+ 2αt)ρ2(zt, v) ≤ tρ2(f(zt), v) + 2(1− t)Re⟨[v, f(v)], [v, Tzt]⟩.
Since

ρ(zt, v) ≤ tρ(f(zt), v) + (1− t)ρ(Tzt, v) ≤ tρ(f(zt), v) + (1− t)ρ(zt, v)
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by Lemma 2.1, we see that ρ(zt, v) ≤ ρ(f(zt), v). Consequently, the approximating
curve {zt : 0 ≤ t < 1}, as well as the curve {Tzt : 0 ≤ t < 1}, are ρ-bounded and

lim
t→0+

ρ(zt, T zt) = lim
t→0+

tρ(f(zt), T zt) = 0.

Therefore, applying lim supt→0+ to both sides of (4.3) and using the arguments in
Step 3 of the proof of Theorem 3.1, we may conclude that limt→0+ ρ(zt, v) = 0.
Hence the strong limt→0+ zt = v [4, page 91], as asserted. This completes the proof
of Theorem 4.1. �

Since the mapping f : B → αB is no longer assumed to be compact, this theorem
improves upon [8, Theorem 3.12] and solves a problem that was left open on page
3193 of [8].
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[7] E. Kopecká and S. Reich, A note on the approximation of fixed points in the Hilbert ball, J.

Nonlinear Convex Anal. 9 (2008), 361–367.
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